Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,8 +1,6 @@
|
|
| 1 |
"""
|
| 2 |
-
AURA Chat —
|
| 3 |
-
|
| 4 |
-
- Chat / Analysis Tab: Enter prompts, analyze, and chat with the assistant.
|
| 5 |
-
- MCP Server Tab: Call scraping and analysis functions directly with JSON output.
|
| 6 |
"""
|
| 7 |
|
| 8 |
import os
|
|
@@ -15,7 +13,7 @@ import traceback
|
|
| 15 |
from typing import List
|
| 16 |
import gradio as gr
|
| 17 |
|
| 18 |
-
# Defensive
|
| 19 |
if sys.platform != "win32":
|
| 20 |
try:
|
| 21 |
loop = asyncio.new_event_loop()
|
|
@@ -23,43 +21,26 @@ if sys.platform != "win32":
|
|
| 23 |
except Exception:
|
| 24 |
traceback.print_exc()
|
| 25 |
|
| 26 |
-
#
|
| 27 |
-
# CONFIGURATION (fixed)
|
| 28 |
-
# =============================================================================
|
| 29 |
SCRAPER_API_URL = os.getenv("SCRAPER_API_URL", "https://deep-scraper-96.created.app/api/deep-scrape")
|
| 30 |
SCRAPER_HEADERS = {
|
| 31 |
"User-Agent": "Mozilla/5.0",
|
| 32 |
"Content-Type": "application/json"
|
| 33 |
}
|
| 34 |
-
|
| 35 |
LLM_MODEL = os.getenv("LLM_MODEL", "openai/gpt-oss-20b:free")
|
| 36 |
MAX_TOKENS = int(os.getenv("LLM_MAX_TOKENS", "3000"))
|
| 37 |
SCRAPE_DELAY = float(os.getenv("SCRAPE_DELAY", "1.0"))
|
| 38 |
-
|
| 39 |
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
|
| 40 |
OPENAI_BASE_URL = os.getenv("OPENAI_BASE_URL", "https://openrouter.ai/api/v1")
|
| 41 |
|
| 42 |
PROMPT_TEMPLATE = f"""You are AURA, a concise, professional hedge-fund research assistant.
|
| 43 |
Task:
|
| 44 |
-
- Given scraped data below, produce a clear
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
and a one-line "When to Sell" instruction (these two lines are mandatory
|
| 49 |
-
for each stock).
|
| 50 |
-
3) Keep each stock entry short and scannable. Use a bullet list or numbered list.
|
| 51 |
-
4) At the top, provide a 2-3 sentence summary conclusion (market context +
|
| 52 |
-
highest conviction pick).
|
| 53 |
-
5) Output in plain text, clean formatting, easy for humans to read. No JSON.
|
| 54 |
-
6) After the list, include a concise "Assumptions & Risks" section (2-3 bullet points).
|
| 55 |
-
Important: Be decisive. If data is insufficient, state that clearly and provide
|
| 56 |
-
the best-available picks with lower confidence.
|
| 57 |
-
Max tokens for the LLM response: {MAX_TOKENS}
|
| 58 |
-
Model: {LLM_MODEL}"""
|
| 59 |
|
| 60 |
-
#
|
| 61 |
-
# SCRAPING HELPERS
|
| 62 |
-
# =============================================================================
|
| 63 |
def deep_scrape(query: str, retries: int = 3, timeout: int = 40) -> str:
|
| 64 |
payload = {"query": query}
|
| 65 |
last_err = None
|
|
@@ -69,8 +50,7 @@ def deep_scrape(query: str, retries: int = 3, timeout: int = 40) -> str:
|
|
| 69 |
resp.raise_for_status()
|
| 70 |
data = resp.json()
|
| 71 |
if isinstance(data, dict):
|
| 72 |
-
|
| 73 |
-
return "\n".join(parts)
|
| 74 |
return str(data)
|
| 75 |
except Exception as e:
|
| 76 |
last_err = e
|
|
@@ -85,36 +65,33 @@ def multi_scrape(queries: List[str], delay: float = SCRAPE_DELAY) -> str:
|
|
| 85 |
if not q:
|
| 86 |
continue
|
| 87 |
aggregated.append(f"\n=== QUERY: {q} ===\n")
|
| 88 |
-
|
| 89 |
-
aggregated.append(scraped)
|
| 90 |
time.sleep(delay)
|
| 91 |
return "\n".join(aggregated)
|
| 92 |
|
| 93 |
-
#
|
| 94 |
-
# LLM INTERACTION
|
| 95 |
-
# =============================================================================
|
| 96 |
try:
|
| 97 |
from openai import OpenAI
|
| 98 |
except Exception:
|
| 99 |
OpenAI = None
|
| 100 |
|
| 101 |
-
def run_llm_system_and_user(system_prompt: str, user_text: str
|
| 102 |
if OpenAI is None:
|
| 103 |
-
return "ERROR: openai package not installed
|
| 104 |
if not OPENAI_API_KEY:
|
| 105 |
-
return "ERROR: OPENAI_API_KEY not set
|
| 106 |
client = None
|
| 107 |
try:
|
| 108 |
client = OpenAI(base_url=OPENAI_BASE_URL, api_key=OPENAI_API_KEY)
|
| 109 |
completion = client.chat.completions.create(
|
| 110 |
-
model=
|
| 111 |
messages=[{"role": "system", "content": system_prompt}, {"role": "user", "content": user_text}],
|
| 112 |
-
max_tokens=
|
| 113 |
)
|
| 114 |
-
if hasattr(completion, "choices") and
|
| 115 |
try:
|
| 116 |
return completion.choices[0].message.content
|
| 117 |
-
except
|
| 118 |
return str(completion.choices[0])
|
| 119 |
return str(completion)
|
| 120 |
except Exception as e:
|
|
@@ -124,164 +101,117 @@ def run_llm_system_and_user(system_prompt: str, user_text: str, model: str = LLM
|
|
| 124 |
if client is not None:
|
| 125 |
try:
|
| 126 |
client.close()
|
| 127 |
-
except
|
| 128 |
-
try:
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
pass
|
| 132 |
-
except Exception:
|
| 133 |
-
pass
|
| 134 |
|
| 135 |
-
#
|
| 136 |
-
# MAIN PIPELINE
|
| 137 |
-
# =============================================================================
|
| 138 |
def analyze_and_seed_chat(prompts_text: str):
|
| 139 |
if not prompts_text.strip():
|
| 140 |
-
return "Please enter at least one prompt
|
| 141 |
queries = [line.strip() for line in prompts_text.splitlines() if line.strip()]
|
| 142 |
-
scraped = multi_scrape(queries
|
| 143 |
if scraped.startswith("ERROR"):
|
| 144 |
return scraped, []
|
| 145 |
-
user_payload = f"SCRAPED DATA:\n\n{scraped}\n\
|
| 146 |
analysis = run_llm_system_and_user(PROMPT_TEMPLATE, user_payload)
|
| 147 |
if analysis.startswith("ERROR"):
|
| 148 |
return analysis, []
|
| 149 |
initial_chat = [
|
| 150 |
-
{"role": "user", "content": f"Analyze
|
| 151 |
{"role": "assistant", "content": analysis}
|
| 152 |
]
|
| 153 |
return analysis, initial_chat
|
| 154 |
|
| 155 |
def continue_chat(chat_messages, user_message: str, analysis_text: str):
|
| 156 |
-
if chat_messages is None:
|
| 157 |
-
|
| 158 |
-
if not user_message.strip():
|
| 159 |
-
return chat_messages
|
| 160 |
chat_messages.append({"role": "user", "content": user_message})
|
| 161 |
-
followup_system =
|
| 162 |
-
"You are AURA, a helpful analyst. Use the previous analysis as context; answer follow-ups concisely."
|
| 163 |
-
)
|
| 164 |
user_payload = f"REFERENCE ANALYSIS:\n\n{analysis_text}\n\nUSER QUESTION: {user_message}"
|
| 165 |
assistant_reply = run_llm_system_and_user(followup_system, user_payload)
|
| 166 |
chat_messages.append({"role": "assistant", "content": assistant_reply})
|
| 167 |
return chat_messages
|
| 168 |
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
# MCP Server Tab
|
| 231 |
-
with gr.TabItem("MCP Server"):
|
| 232 |
-
gr.Markdown("**Call scraping and analysis functions directly:**")
|
| 233 |
-
with gr.Row():
|
| 234 |
-
with gr.Column(scale=1):
|
| 235 |
-
single_query = gr.Textbox(label="Single Scrape Query")
|
| 236 |
-
scrape_btn = gr.Button("Scrape Query")
|
| 237 |
-
scrape_out = gr.JSON()
|
| 238 |
-
multi_queries = gr.Textbox(lines=6, label="Multi Scrape Queries")
|
| 239 |
-
multi_scrape_btn = gr.Button("Multi Scrape")
|
| 240 |
-
multi_scrape_out = gr.JSON()
|
| 241 |
-
with gr.Column(scale=1):
|
| 242 |
-
analysis_prompts = gr.Textbox(lines=6, label="Analysis Prompts")
|
| 243 |
-
analyze_mcp_btn = gr.Button("Run Full Analysis")
|
| 244 |
-
analyze_mcp_out = gr.JSON()
|
| 245 |
-
|
| 246 |
-
scrape_btn.click(fn=mcp_scrape, inputs=[single_query], outputs=[scrape_out])
|
| 247 |
-
multi_scrape_btn.click(fn=mcp_multi_scrape, inputs=[multi_queries], outputs=[multi_scrape_out])
|
| 248 |
-
analyze_mcp_btn.click(fn=mcp_analyze, inputs=[analysis_prompts], outputs=[analyze_mcp_out])
|
| 249 |
|
| 250 |
return demo
|
| 251 |
|
| 252 |
-
#
|
| 253 |
-
# Handlers for Chat Tab
|
| 254 |
-
# =============================================================================
|
| 255 |
-
def on_analyze(prompts_text):
|
| 256 |
-
analysis_text, initial_chat = analyze_and_seed_chat(prompts_text)
|
| 257 |
-
if analysis_text.startswith("ERROR"):
|
| 258 |
-
return "", f"**Error:** {analysis_text}", "", []
|
| 259 |
-
return analysis_text, "", analysis_text, initial_chat
|
| 260 |
-
|
| 261 |
-
def on_send(chat_state_list, user_msg, analysis_text):
|
| 262 |
-
if not user_msg.strip():
|
| 263 |
-
return chat_state_list or [], ""
|
| 264 |
-
updated_history = continue_chat(chat_state_list or [], user_msg, analysis_text)
|
| 265 |
-
return updated_history, ""
|
| 266 |
-
|
| 267 |
-
# =============================================================================
|
| 268 |
-
# CLEAN SHUTDOWN
|
| 269 |
-
# =============================================================================
|
| 270 |
def _cleanup_on_exit():
|
| 271 |
try:
|
| 272 |
loop = asyncio.get_event_loop()
|
| 273 |
if loop and not loop.is_closed():
|
| 274 |
try: loop.stop()
|
| 275 |
-
except
|
| 276 |
try: loop.close()
|
| 277 |
-
except
|
| 278 |
-
except
|
| 279 |
|
| 280 |
atexit.register(_cleanup_on_exit)
|
| 281 |
|
| 282 |
-
#
|
| 283 |
-
# RUN
|
| 284 |
-
# =============================================================================
|
| 285 |
if __name__ == "__main__":
|
| 286 |
-
demo =
|
| 287 |
demo.launch(server_name="0.0.0.0", server_port=int(os.environ.get("PORT", 7860)))
|
|
|
|
| 1 |
"""
|
| 2 |
+
AURA Chat — Hedge Fund Picks
|
| 3 |
+
Enhanced UI/UX with instructions, examples, YouTube video, and colored containers.
|
|
|
|
|
|
|
| 4 |
"""
|
| 5 |
|
| 6 |
import os
|
|
|
|
| 13 |
from typing import List
|
| 14 |
import gradio as gr
|
| 15 |
|
| 16 |
+
# ===================== Defensive event loop =====================
|
| 17 |
if sys.platform != "win32":
|
| 18 |
try:
|
| 19 |
loop = asyncio.new_event_loop()
|
|
|
|
| 21 |
except Exception:
|
| 22 |
traceback.print_exc()
|
| 23 |
|
| 24 |
+
# ===================== CONFIGURATION =====================
|
|
|
|
|
|
|
| 25 |
SCRAPER_API_URL = os.getenv("SCRAPER_API_URL", "https://deep-scraper-96.created.app/api/deep-scrape")
|
| 26 |
SCRAPER_HEADERS = {
|
| 27 |
"User-Agent": "Mozilla/5.0",
|
| 28 |
"Content-Type": "application/json"
|
| 29 |
}
|
|
|
|
| 30 |
LLM_MODEL = os.getenv("LLM_MODEL", "openai/gpt-oss-20b:free")
|
| 31 |
MAX_TOKENS = int(os.getenv("LLM_MAX_TOKENS", "3000"))
|
| 32 |
SCRAPE_DELAY = float(os.getenv("SCRAPE_DELAY", "1.0"))
|
|
|
|
| 33 |
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
|
| 34 |
OPENAI_BASE_URL = os.getenv("OPENAI_BASE_URL", "https://openrouter.ai/api/v1")
|
| 35 |
|
| 36 |
PROMPT_TEMPLATE = f"""You are AURA, a concise, professional hedge-fund research assistant.
|
| 37 |
Task:
|
| 38 |
+
- Given scraped data below, produce a clear analysis listing top stocks (with Investment Duration)
|
| 39 |
+
- Output must be human-readable text, 2-3 sentence summary, 5 top stocks max, and Assumptions & Risks
|
| 40 |
+
Max tokens: {MAX_TOKENS}, Model: {LLM_MODEL}
|
| 41 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
+
# ===================== SCRAPING HELPERS =====================
|
|
|
|
|
|
|
| 44 |
def deep_scrape(query: str, retries: int = 3, timeout: int = 40) -> str:
|
| 45 |
payload = {"query": query}
|
| 46 |
last_err = None
|
|
|
|
| 50 |
resp.raise_for_status()
|
| 51 |
data = resp.json()
|
| 52 |
if isinstance(data, dict):
|
| 53 |
+
return "\n".join([f"{k.upper()}:\n{v}\n" for k, v in data.items()])
|
|
|
|
| 54 |
return str(data)
|
| 55 |
except Exception as e:
|
| 56 |
last_err = e
|
|
|
|
| 65 |
if not q:
|
| 66 |
continue
|
| 67 |
aggregated.append(f"\n=== QUERY: {q} ===\n")
|
| 68 |
+
aggregated.append(deep_scrape(q))
|
|
|
|
| 69 |
time.sleep(delay)
|
| 70 |
return "\n".join(aggregated)
|
| 71 |
|
| 72 |
+
# ===================== LLM INTERACTION =====================
|
|
|
|
|
|
|
| 73 |
try:
|
| 74 |
from openai import OpenAI
|
| 75 |
except Exception:
|
| 76 |
OpenAI = None
|
| 77 |
|
| 78 |
+
def run_llm_system_and_user(system_prompt: str, user_text: str) -> str:
|
| 79 |
if OpenAI is None:
|
| 80 |
+
return "ERROR: openai package not installed."
|
| 81 |
if not OPENAI_API_KEY:
|
| 82 |
+
return "ERROR: OPENAI_API_KEY not set."
|
| 83 |
client = None
|
| 84 |
try:
|
| 85 |
client = OpenAI(base_url=OPENAI_BASE_URL, api_key=OPENAI_API_KEY)
|
| 86 |
completion = client.chat.completions.create(
|
| 87 |
+
model=LLM_MODEL,
|
| 88 |
messages=[{"role": "system", "content": system_prompt}, {"role": "user", "content": user_text}],
|
| 89 |
+
max_tokens=MAX_TOKENS,
|
| 90 |
)
|
| 91 |
+
if hasattr(completion, "choices") and completion.choices:
|
| 92 |
try:
|
| 93 |
return completion.choices[0].message.content
|
| 94 |
+
except:
|
| 95 |
return str(completion.choices[0])
|
| 96 |
return str(completion)
|
| 97 |
except Exception as e:
|
|
|
|
| 101 |
if client is not None:
|
| 102 |
try:
|
| 103 |
client.close()
|
| 104 |
+
except:
|
| 105 |
+
try: asyncio.get_event_loop().run_until_complete(client.aclose())
|
| 106 |
+
except: pass
|
| 107 |
+
except: pass
|
|
|
|
|
|
|
|
|
|
| 108 |
|
| 109 |
+
# ===================== MAIN PIPELINE =====================
|
|
|
|
|
|
|
| 110 |
def analyze_and_seed_chat(prompts_text: str):
|
| 111 |
if not prompts_text.strip():
|
| 112 |
+
return "Please enter at least one prompt.", []
|
| 113 |
queries = [line.strip() for line in prompts_text.splitlines() if line.strip()]
|
| 114 |
+
scraped = multi_scrape(queries)
|
| 115 |
if scraped.startswith("ERROR"):
|
| 116 |
return scraped, []
|
| 117 |
+
user_payload = f"SCRAPED DATA:\n\n{scraped}\n\nGenerate analysis."
|
| 118 |
analysis = run_llm_system_and_user(PROMPT_TEMPLATE, user_payload)
|
| 119 |
if analysis.startswith("ERROR"):
|
| 120 |
return analysis, []
|
| 121 |
initial_chat = [
|
| 122 |
+
{"role": "user", "content": f"Analyze prompts: {', '.join(queries)}"},
|
| 123 |
{"role": "assistant", "content": analysis}
|
| 124 |
]
|
| 125 |
return analysis, initial_chat
|
| 126 |
|
| 127 |
def continue_chat(chat_messages, user_message: str, analysis_text: str):
|
| 128 |
+
if chat_messages is None: chat_messages = []
|
| 129 |
+
if not user_message.strip(): return chat_messages
|
|
|
|
|
|
|
| 130 |
chat_messages.append({"role": "user", "content": user_message})
|
| 131 |
+
followup_system = "You are AURA. Use previous analysis as context; answer follow-ups concisely."
|
|
|
|
|
|
|
| 132 |
user_payload = f"REFERENCE ANALYSIS:\n\n{analysis_text}\n\nUSER QUESTION: {user_message}"
|
| 133 |
assistant_reply = run_llm_system_and_user(followup_system, user_payload)
|
| 134 |
chat_messages.append({"role": "assistant", "content": assistant_reply})
|
| 135 |
return chat_messages
|
| 136 |
|
| 137 |
+
# ===================== GRADIO UI =====================
|
| 138 |
+
def build_demo():
|
| 139 |
+
with gr.Blocks(title="AURA Chat — Hedge Fund Picks") as demo:
|
| 140 |
+
gr.HTML("""
|
| 141 |
+
<style>
|
| 142 |
+
.header {text-align:center; color:#2C3E50; font-size:32px; font-weight:bold; margin-bottom:10px;}
|
| 143 |
+
.container {background:#f9f9f9; border-radius:10px; padding:15px; margin-bottom:15px; box-shadow:0 4px 10px rgba(0,0,0,0.1);}
|
| 144 |
+
.instructions {color:#34495E; font-size:16px; line-height:1.6;}
|
| 145 |
+
.example {background:#EAF2F8; padding:8px; border-radius:5px; margin-top:5px; font-family:monospace;}
|
| 146 |
+
</style>
|
| 147 |
+
""")
|
| 148 |
+
gr.HTML('<div class="header">AURA Chat — Hedge Fund Picks</div>')
|
| 149 |
+
|
| 150 |
+
# Explanatory YouTube video
|
| 151 |
+
gr.Video("https://youtu.be/56zpjyHd3d4", type="youtube", label="How it works")
|
| 152 |
+
|
| 153 |
+
# Instructions container
|
| 154 |
+
gr.HTML("""
|
| 155 |
+
<div class="container instructions">
|
| 156 |
+
<b>What this does:</b> Fetches latest public data on insider trading and top stock market insights based on your prompts.
|
| 157 |
+
It outputs top stock picks with <b>Investment Duration</b> guidance (when to buy and sell).<br><br>
|
| 158 |
+
<b>How to use:</b> Enter one or more prompts below, press <b>Analyze</b>, then chat with AURA about the results.<br><br>
|
| 159 |
+
<b>Example prompts you can copy:</b>
|
| 160 |
+
<div class="example">SEC insider transactions October 2025\n13F filings Q3 2025\nCompany: ACME corp insider buys</div>
|
| 161 |
+
<br>
|
| 162 |
+
The output will help you know which stocks are best to invest in and when to monitor alerts.
|
| 163 |
+
</div>
|
| 164 |
+
""")
|
| 165 |
+
|
| 166 |
+
# Main interface
|
| 167 |
+
with gr.Row():
|
| 168 |
+
with gr.Column(scale=1):
|
| 169 |
+
prompts = gr.Textbox(lines=6, label="Enter Prompts", placeholder="SEC insider transactions October 2025\n13F filings Q3 2025\nCompany: ACME corp insider buys")
|
| 170 |
+
analyze_btn = gr.Button("Analyze", variant="primary")
|
| 171 |
+
error_box = gr.Markdown("", visible=False)
|
| 172 |
+
|
| 173 |
+
with gr.Column(scale=1):
|
| 174 |
+
analysis_out = gr.Textbox(label="Generated Analysis", lines=18, interactive=False)
|
| 175 |
+
gr.Markdown("**Chat with AURA about this analysis**")
|
| 176 |
+
chatbot = gr.Chatbot(height=420)
|
| 177 |
+
user_input = gr.Textbox(placeholder="Ask a follow-up question...", label="Your question")
|
| 178 |
+
send_btn = gr.Button("Send")
|
| 179 |
+
|
| 180 |
+
analysis_state = gr.State("")
|
| 181 |
+
chat_state = gr.State([])
|
| 182 |
+
|
| 183 |
+
def on_analyze(prompts_text):
|
| 184 |
+
analysis_text, initial_chat = analyze_and_seed_chat(prompts_text)
|
| 185 |
+
if analysis_text.startswith("ERROR"):
|
| 186 |
+
return "", f"**Error:** {analysis_text}", "", []
|
| 187 |
+
return analysis_text, "", analysis_text, initial_chat
|
| 188 |
+
|
| 189 |
+
def on_send(chat_state_list, user_msg, analysis_text):
|
| 190 |
+
if not user_msg.strip(): return chat_state_list or [], ""
|
| 191 |
+
updated_history = continue_chat(chat_state_list or [], user_msg, analysis_text)
|
| 192 |
+
return updated_history, ""
|
| 193 |
+
|
| 194 |
+
analyze_btn.click(fn=on_analyze, inputs=[prompts], outputs=[analysis_out, error_box, analysis_state, chat_state])
|
| 195 |
+
send_btn.click(fn=on_send, inputs=[chat_state, user_input, analysis_state], outputs=[chat_state, user_input])
|
| 196 |
+
user_input.submit(fn=on_send, inputs=[chat_state, user_input, analysis_state], outputs=[chat_state, user_input])
|
| 197 |
+
chat_state.change(fn=lambda msgs: msgs or [], inputs=[chat_state], outputs=[chatbot])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 198 |
|
| 199 |
return demo
|
| 200 |
|
| 201 |
+
# ===================== CLEAN SHUTDOWN =====================
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 202 |
def _cleanup_on_exit():
|
| 203 |
try:
|
| 204 |
loop = asyncio.get_event_loop()
|
| 205 |
if loop and not loop.is_closed():
|
| 206 |
try: loop.stop()
|
| 207 |
+
except: pass
|
| 208 |
try: loop.close()
|
| 209 |
+
except: pass
|
| 210 |
+
except: pass
|
| 211 |
|
| 212 |
atexit.register(_cleanup_on_exit)
|
| 213 |
|
| 214 |
+
# ===================== RUN =====================
|
|
|
|
|
|
|
| 215 |
if __name__ == "__main__":
|
| 216 |
+
demo = build_demo()
|
| 217 |
demo.launch(server_name="0.0.0.0", server_port=int(os.environ.get("PORT", 7860)))
|