Spaces:
Sleeping
Sleeping
File size: 50,896 Bytes
2510c5e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 |
# Research: Multi-Tenant Obsidian-Like Docs Viewer
**Branch**: `001-obsidian-docs-viewer` | **Date**: 2025-11-15 | **Plan**: [plan.md](./plan.md)
## Overview
This document captures technical research and decisions for the implementation of a multi-tenant Obsidian-like documentation viewer. Each section addresses a specific research topic from Phase 0 of the implementation plan.
---
## 1. FastMCP HTTP Transport Authentication (Bearer Token)
### Decision
Use FastMCP's built-in `BearerAuth` mechanism with JWT token validation for HTTP transport authentication.
**Implementation approach**:
- Server: Configure FastMCP HTTP transport to accept `Authorization: Bearer <token>` header
- Client: Pass JWT token as string to `auth` parameter (FastMCP adds "Bearer" prefix automatically)
- Token format: JWT with claims `sub=user_id`, `exp=now+90days`, signed with `HS256` and server secret
### Rationale
1. **Native FastMCP support**: FastMCP provides first-class Bearer token authentication via `BearerAuth` class and string token shortcuts
2. **Minimal configuration**: Client code is as simple as `Client("https://...", auth="<token>")`
3. **Standard compliance**: Uses industry-standard `Authorization: Bearer` header pattern
4. **Transport flexibility**: Works seamlessly with both HTTP and SSE (Server-Sent Events) transports
5. **Non-interactive workflow**: Perfect for AI agents and service accounts that need programmatic access
### Alternatives Considered
**Alternative 1: Custom header authentication**
- **Rejected**: FastMCP supports custom headers but requires manual implementation of auth logic
- **Why rejected**: More complex, loses benefit of FastMCP's built-in token handling and validation
**Alternative 2: OAuth flow for MCP clients**
- **Rejected**: FastMCP supports full OAuth 2.1 flows with browser-based authentication
- **Why rejected**: Overly complex for AI agent use case; requires interactive browser flow which doesn't suit MCP STDIO or programmatic access patterns
**Alternative 3: API key-based authentication**
- **Rejected**: Could use simple API keys instead of JWTs
- **Why rejected**: JWTs provide expiration, claims, and stateless validation; better security posture for multi-tenant system
### Implementation Notes
**Server-side setup**:
```python
from fastmcp import FastMCP
from fastmcp.server.auth import BearerAuthProvider
import jwt
# For token validation (if using external issuer)
auth_provider = BearerAuthProvider(
public_key="<RSA_PUBLIC_KEY>",
issuer="https://your-issuer.com",
audience="your-api"
)
# For internal JWT validation (our use case)
# Validate manually in middleware/dependency injection
def validate_jwt(token: str) -> str:
payload = jwt.decode(token, SECRET_KEY, algorithms=["HS256"])
return payload["sub"] # user_id
```
**Client-side setup**:
```python
from fastmcp import Client
# Simplest approach - pass token as string
async with Client(
"https://fastmcp.cloud/mcp",
auth="eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9..."
) as client:
await client.call_tool("list_notes", {})
# Explicit approach - use BearerAuth class
from fastmcp.client.auth import BearerAuth
async with Client(
"https://fastmcp.cloud/mcp",
auth=BearerAuth(token="eyJhbGci...")
) as client:
await client.call_tool("list_notes", {})
```
**Key points**:
- Do NOT include "Bearer" prefix when passing token - FastMCP adds it automatically
- Token validation happens on every MCP tool call via HTTP transport
- STDIO transport bypasses authentication (local development only)
- For HF Space deployment, combine with HF OAuth to issue user-specific JWTs
**References**:
- FastMCP Bearer Auth docs: https://gofastmcp.com/clients/auth/bearer
- FastMCP authentication patterns: https://gyliu513.github.io/jekyll/update/2025/08/12/fastmcp-auth-patterns.html
---
## 2. Hugging Face Space OAuth Integration
### Decision
Use `huggingface_hub` library's built-in OAuth helpers (`attach_huggingface_oauth`, `parse_huggingface_oauth`) for zero-configuration OAuth integration in HF Spaces.
**Implementation approach**:
- Add `hf_oauth: true` to Space metadata in README.md
- Call `attach_huggingface_oauth(app)` to auto-register OAuth endpoints (`/oauth/huggingface/login`, `/oauth/huggingface/logout`, `/oauth/huggingface/callback`)
- Call `parse_huggingface_oauth(request)` in route handlers to extract authenticated user info
- Map HF username/ID to internal `user_id` for vault scoping
### Rationale
1. **Zero-configuration**: HF Spaces automatically injects OAuth environment variables (`OAUTH_CLIENT_ID`, `OAUTH_CLIENT_SECRET`, `OAUTH_SCOPES`) when `hf_oauth: true` is set
2. **Local dev friendly**: `parse_huggingface_oauth` returns mock user in local mode, enabling seamless development without OAuth setup
3. **Minimal code**: Two function calls provide complete OAuth flow (login redirect, callback handling, session management)
4. **First-class support**: Official HF library with guaranteed compatibility with Spaces platform
5. **Standard OAuth 2.0**: Under the hood, implements industry-standard OAuth with PKCE
### Alternatives Considered
**Alternative 1: Manual OAuth implementation**
- **Rejected**: Implement OAuth flow manually using `authlib` or `requests-oauthlib`
- **Why rejected**: Significantly more code, requires manual handling of PKCE, state validation, and token exchange; error-prone and loses HF Spaces auto-configuration
**Alternative 2: Third-party auth provider (Auth0, WorkOS)**
- **Rejected**: Use external auth service and connect HF as identity provider
- **Why rejected**: Adds unnecessary complexity and external dependencies for a system designed specifically for HF Spaces deployment
**Alternative 3: Session-based auth without OAuth**
- **Rejected**: Use simple username/password with cookie sessions
- **Why rejected**: Poor UX (users already have HF accounts), requires password management, doesn't leverage HF ecosystem integration
### Implementation Notes
**Space configuration** (README.md frontmatter):
```yaml
---
title: Obsidian Docs Viewer
emoji: π
colorFrom: blue
colorTo: green
sdk: docker
app_port: 8000
hf_oauth: true # <-- Enable OAuth
---
```
**Backend integration** (FastAPI):
```python
from fastapi import FastAPI, Request
from huggingface_hub import attach_huggingface_oauth, parse_huggingface_oauth
app = FastAPI()
# Auto-register OAuth endpoints
attach_huggingface_oauth(app)
@app.get("/")
def index(request: Request):
oauth_info = parse_huggingface_oauth(request)
if oauth_info is None:
return {"message": "Not logged in", "login_url": "/oauth/huggingface/login"}
# Extract user info
user_id = oauth_info.user_info.preferred_username # or use 'sub' for UUID
display_name = oauth_info.user_info.name
avatar = oauth_info.user_info.picture
return {
"user_id": user_id,
"display_name": display_name,
"avatar": avatar
}
@app.get("/api/me")
def get_current_user(request: Request):
oauth_info = parse_huggingface_oauth(request)
if oauth_info is None:
raise HTTPException(status_code=401, detail="Not authenticated")
# Map to internal user model
user_id = oauth_info.user_info.preferred_username
# Initialize vault on first login if needed
vault_service.ensure_vault_exists(user_id)
return {
"user_id": user_id,
"hf_profile": {
"username": oauth_info.user_info.preferred_username,
"name": oauth_info.user_info.name,
"avatar": oauth_info.user_info.picture
}
}
```
**Frontend integration** (React):
```typescript
// Check auth status on app load
useEffect(() => {
fetch('/api/me')
.then(res => {
if (res.ok) return res.json();
throw new Error('Not authenticated');
})
.then(user => setCurrentUser(user))
.catch(() => window.location.href = '/oauth/huggingface/login');
}, []);
```
**Key points**:
- `attach_huggingface_oauth` must be called BEFORE defining routes that need auth
- `parse_huggingface_oauth` returns `None` if not authenticated (check before accessing user_info)
- In local development, returns mocked user with deterministic username (e.g., "local-user")
- OAuth tokens/sessions are managed by `huggingface_hub` (stored in cookies)
- For API/MCP access, issue separate JWT after OAuth login via `POST /api/tokens`
**Environment variables** (auto-injected in HF Space):
- `OAUTH_CLIENT_ID`: Public client identifier
- `OAUTH_CLIENT_SECRET`: Secret for token exchange
- `OAUTH_SCOPES`: Space-specific scopes (typically `openid profile`)
**References**:
- HF OAuth docs: https://huggingface.co/docs/hub/spaces-oauth
- huggingface_hub API: https://huggingface.co/docs/huggingface_hub/en/package_reference/oauth
---
## 3. SQLite Schema Design for Multi-Index Storage
### Decision
Use SQLite with FTS5 (Full-Text Search 5) for full-text indexing, plus separate regular tables for tags and link graph. Implement per-user isolation via `user_id` column in all tables.
**Schema approach**:
- **Full-text index**: FTS5 virtual table with `title` and `body` columns, using `porter` tokenizer for stemming
- **Tag index**: Regular table with `user_id`, `tag`, `note_path` (many-to-many relationship)
- **Link graph**: Regular table with `user_id`, `source_path`, `target_path`, `link_text`, `is_resolved`
- **Metadata index**: Regular table with `user_id`, `note_path`, `version`, `created`, `updated`, `title` for fast lookups
- **Index health**: Regular table with `user_id`, `note_count`, `last_full_rebuild`, `last_incremental_update`
### Rationale
1. **FTS5 performance**: Native full-text search with inverted index, sub-100ms query times for thousands of documents
2. **Separate concerns**: Full-text (FTS5), tags (simple lookup), and links (graph traversal) have different query patterns; separate tables optimize each
3. **Per-user isolation**: `user_id` column in all tables enables simple WHERE filtering without complex row-level security
4. **External content pattern**: FTS5 with `content=''` (contentless) avoids storing document text twice (already in filesystem)
5. **Version tracking**: Metadata table stores version counter for optimistic concurrency without polluting frontmatter
6. **Prefix indexes**: FTS5 `prefix='2 3'` option enables fast autocomplete/prefix search
### Alternatives Considered
**Alternative 1: Single FTS5 table for everything**
- **Rejected**: Store tags and links as UNINDEXED columns in FTS5 table
- **Why rejected**: FTS5 is optimized for full-text, not structured data; complex queries (e.g., "all notes with tag X") would require scanning all rows; tags/links don't benefit from tokenization
**Alternative 2: Separate SQLite database per user**
- **Rejected**: One `.db` file per user instead of `user_id` column
- **Why rejected**: Increases file I/O overhead, complicates connection pooling, harder to implement global admin queries (e.g., total user count)
**Alternative 3: PostgreSQL with pg_trgm or RUM indexes**
- **Rejected**: Use full Postgres instead of SQLite
- **Why rejected**: Overkill for single-server deployment, adds deployment complexity, SQLite is sufficient for target scale (5,000 notes/user, 10 concurrent users)
**Alternative 4: In-memory index only**
- **Rejected**: Build inverted index in Python dict, no persistence
- **Why rejected**: Slow startup (rebuild on every restart), no durability, doesn't scale beyond single process
### Implementation Notes
**Schema definition**:
```sql
-- Metadata index (fast lookups, version tracking)
CREATE TABLE IF NOT EXISTS note_metadata (
user_id TEXT NOT NULL,
note_path TEXT NOT NULL,
version INTEGER NOT NULL DEFAULT 1,
title TEXT NOT NULL,
created TEXT NOT NULL, -- ISO 8601 timestamp
updated TEXT NOT NULL, -- ISO 8601 timestamp
PRIMARY KEY (user_id, note_path)
);
CREATE INDEX idx_metadata_user ON note_metadata(user_id);
CREATE INDEX idx_metadata_updated ON note_metadata(user_id, updated DESC);
-- Full-text search index (FTS5, contentless)
CREATE VIRTUAL TABLE IF NOT EXISTS note_fts USING fts5(
user_id UNINDEXED,
note_path UNINDEXED,
title,
body,
content='', -- Contentless (we don't store the actual text)
tokenize='porter unicode61', -- Stemming + Unicode support
prefix='2 3' -- Prefix indexes for autocomplete
);
-- Tag index (many-to-many: notes <-> tags)
CREATE TABLE IF NOT EXISTS note_tags (
user_id TEXT NOT NULL,
note_path TEXT NOT NULL,
tag TEXT NOT NULL,
PRIMARY KEY (user_id, note_path, tag)
);
CREATE INDEX idx_tags_user_tag ON note_tags(user_id, tag);
CREATE INDEX idx_tags_user_path ON note_tags(user_id, note_path);
-- Link graph (outgoing links from notes)
CREATE TABLE IF NOT EXISTS note_links (
user_id TEXT NOT NULL,
source_path TEXT NOT NULL,
target_path TEXT, -- NULL if unresolved
link_text TEXT NOT NULL, -- Original [[link text]]
is_resolved INTEGER NOT NULL DEFAULT 0, -- Boolean: 0=broken, 1=resolved
PRIMARY KEY (user_id, source_path, link_text)
);
CREATE INDEX idx_links_user_source ON note_links(user_id, source_path);
CREATE INDEX idx_links_user_target ON note_links(user_id, target_path);
CREATE INDEX idx_links_unresolved ON note_links(user_id, is_resolved);
-- Index health tracking
CREATE TABLE IF NOT EXISTS index_health (
user_id TEXT PRIMARY KEY,
note_count INTEGER NOT NULL DEFAULT 0,
last_full_rebuild TEXT, -- ISO 8601 timestamp
last_incremental_update TEXT -- ISO 8601 timestamp
);
```
**Query patterns**:
```python
# Full-text search with ranking
cursor.execute("""
SELECT
note_path,
title,
bm25(note_fts, 3.0, 1.0) AS rank -- Title weight=3, body weight=1
FROM note_fts
WHERE user_id = ? AND note_fts MATCH ?
ORDER BY rank DESC
LIMIT 50
""", (user_id, query))
# Get all notes with a specific tag
cursor.execute("""
SELECT DISTINCT note_path, title
FROM note_tags t
JOIN note_metadata m USING (user_id, note_path)
WHERE t.user_id = ? AND t.tag = ?
ORDER BY m.updated DESC
""", (user_id, tag))
# Get backlinks for a note
cursor.execute("""
SELECT DISTINCT l.source_path, m.title
FROM note_links l
JOIN note_metadata m ON l.user_id = m.user_id AND l.source_path = m.note_path
WHERE l.user_id = ? AND l.target_path = ?
ORDER BY m.updated DESC
""", (user_id, target_path))
# Get all unresolved links for UI display
cursor.execute("""
SELECT source_path, link_text
FROM note_links
WHERE user_id = ? AND is_resolved = 0
""", (user_id,))
```
**Incremental update strategy**:
1. On `write_note`: Delete all existing rows for `(user_id, note_path)`, then insert new rows
2. Use transactions to ensure atomicity (delete old + insert new = single atomic operation)
3. Update `index_health.last_incremental_update` on every write
**Full rebuild strategy**:
1. Delete all index rows for `user_id`
2. Scan all `.md` files in vault directory
3. Parse each file and insert into all indexes
4. Update `index_health.note_count` and `last_full_rebuild`
**Key points**:
- FTS5 with `content=''` is contentless - we must manually INSERT/DELETE rows (no automatic synchronization)
- Use `porter` tokenizer for English stemming (search "running" matches "run")
- `bm25()` function provides relevance ranking (better than simple MATCH count)
- Prefix indexes (`prefix='2 3'`) enable fast `MATCH 'prefix*'` queries
- `UNINDEXED` columns in FTS5 are retrievable but not searchable (good for IDs)
**References**:
- SQLite FTS5 docs: https://www.sqlite.org/fts5.html
- FTS5 structure deep dive: https://darksi.de/13.sqlite-fts5-structure/
---
## 4. Wikilink Normalization and Resolution
### Decision
Implement case-insensitive normalized slug matching with deterministic ambiguity resolution based on Obsidian's behavior.
**Normalization algorithm**:
1. Extract link text from `[[link text]]`
2. Normalize: lowercase, replace spaces/hyphens/underscores with single dash, remove non-alphanumeric except dashes
3. Match normalized slug against normalized filename stems AND normalized frontmatter titles
4. If multiple matches: prefer same-folder match, then lexicographically smallest path
**Slug normalization function**:
```python
import re
def normalize_slug(text: str) -> str:
"""Normalize text to slug for case-insensitive matching."""
text = text.lower()
text = re.sub(r'[\s_]+', '-', text) # Spaces/underscores β dash
text = re.sub(r'[^a-z0-9-]', '', text) # Keep only alphanumeric + dash
text = re.sub(r'-+', '-', text) # Collapse multiple dashes
return text.strip('-')
```
### Rationale
1. **Obsidian compatibility**: Matches Obsidian's link resolution behavior (case-insensitive, flexible matching)
2. **User-friendly**: Users don't need to remember exact case or spacing (e.g., `[[API Design]]` matches `api-design.md`)
3. **Deterministic**: Same-folder preference + lexicographic tiebreaker ensures consistent resolution
4. **Efficient indexing**: Normalized slugs can be pre-computed and indexed for O(1) lookup
5. **Graceful fallback**: Broken links are tracked and displayed distinctly in UI
### Alternatives Considered
**Alternative 1: Exact case-sensitive matching**
- **Rejected**: Require `[[exact-filename]]` to match `exact-filename.md`
- **Why rejected**: Brittle user experience, doesn't match Obsidian behavior, forces users to remember exact capitalization
**Alternative 2: Fuzzy matching (Levenshtein distance)**
- **Rejected**: Use string similarity to find "close enough" matches
- **Why rejected**: Non-deterministic, slower, can match wrong notes ("Setup" matches "Startup"), confusing UX
**Alternative 3: Path-based links only**
- **Rejected**: Require full paths like `[[guides/setup]]` instead of `[[Setup]]`
- **Why rejected**: Verbose, doesn't match Obsidian's short-link paradigm, poor UX for large vaults
**Alternative 4: UUID-based links**
- **Rejected**: Use unique IDs like `[[#uuid-123]]` for stable references
- **Why rejected**: Not human-readable, requires additional metadata, doesn't match Obsidian convention
### Implementation Notes
**Resolution algorithm** (priority order):
```python
def resolve_wikilink(user_id: str, link_text: str, current_note_folder: str) -> str | None:
"""Resolve wikilink to note path, or None if unresolved."""
normalized = normalize_slug(link_text)
# Build candidate index: normalized_slug -> [note_paths]
candidates = defaultdict(list)
# Scan all notes for this user
for note in list_all_notes(user_id):
# Match against filename stem
stem = Path(note.path).stem
if normalize_slug(stem) == normalized:
candidates[note.path].append(note.path)
# Match against frontmatter title
if note.title and normalize_slug(note.title) == normalized:
candidates[note.path].append(note.path)
if not candidates:
return None # Unresolved link
paths = list(set(candidates.keys())) # Deduplicate
if len(paths) == 1:
return paths[0] # Unique match
# Ambiguity resolution
# 1. Prefer same-folder match
same_folder = [p for p in paths if Path(p).parent == current_note_folder]
if same_folder:
return sorted(same_folder)[0] # Lexicographic tiebreaker
# 2. Lexicographically smallest path
return sorted(paths)[0]
```
**Index optimization**:
Pre-compute normalized slugs for all notes and store in `note_metadata` table:
```sql
ALTER TABLE note_metadata ADD COLUMN normalized_title_slug TEXT;
ALTER TABLE note_metadata ADD COLUMN normalized_path_slug TEXT;
CREATE INDEX idx_metadata_title_slug ON note_metadata(user_id, normalized_title_slug);
CREATE INDEX idx_metadata_path_slug ON note_metadata(user_id, normalized_path_slug);
```
**Link extraction from Markdown**:
```python
import re
def extract_wikilinks(markdown_body: str) -> list[str]:
"""Extract all wikilink texts from markdown body."""
pattern = r'\[\[([^\]]+)\]\]'
return re.findall(pattern, markdown_body)
```
**Update link graph on write**:
```python
def update_link_graph(user_id: str, note_path: str, body: str):
"""Update outgoing links and backlinks for a note."""
current_folder = str(Path(note_path).parent)
# Extract wikilinks from body
link_texts = extract_wikilinks(body)
# Delete old links from this note
db.execute("DELETE FROM note_links WHERE user_id=? AND source_path=?",
(user_id, note_path))
# Insert new links
for link_text in link_texts:
target_path = resolve_wikilink(user_id, link_text, current_folder)
is_resolved = 1 if target_path else 0
db.execute("""
INSERT INTO note_links (user_id, source_path, target_path, link_text, is_resolved)
VALUES (?, ?, ?, ?, ?)
""", (user_id, note_path, target_path, link_text, is_resolved))
```
**UI rendering**:
```typescript
// Transform wikilinks to clickable links in rendered Markdown
function transformWikilinks(markdown: string, linkIndex: Record<string, string>): string {
return markdown.replace(/\[\[([^\]]+)\]\]/g, (match, linkText) => {
const targetPath = linkIndex[linkText];
if (targetPath) {
// Resolved link
return `<a href="#/note/${encodeURIComponent(targetPath)}" class="wikilink">${linkText}</a>`;
} else {
// Broken link
return `<a href="#/create/${encodeURIComponent(linkText)}" class="wikilink broken">${linkText}</a>`;
}
});
}
```
**Key points**:
- Pre-compute and cache slug mappings for performance (avoid re-scanning on every link resolution)
- Same-folder preference matches Obsidian's behavior (local references are intuitive)
- Lexicographic tiebreaker ensures determinism (same input always resolves to same output)
- Track `is_resolved` flag to identify broken links for UI warnings/affordances
- Update entire link graph on every note write (incremental update, not rebuild)
**Edge cases**:
- Empty link text `[[]]` - ignore/skip
- Nested brackets `[[foo [[bar]]]]` - naive regex fails; use proper parser or limit to non-nested pattern
- Link with pipe `[[link|display]]` - out of scope for MVP; treat entire string as link text
---
## 5. React + shadcn/ui Directory Tree Component
### Decision
Use **shadcn-extension Tree View** component with built-in virtualization via `@tanstack/react-virtual` for directory tree rendering.
**Component choice**: `shadcn-extension` Tree View
- **Installation**: Available at https://shadcn-extension.vercel.app/docs/tree-view
- **Features**: Virtualization, accordion-based expand/collapse, keyboard navigation, selection, custom icons
- **Why this one**: Only shadcn tree component with native virtualization support; critical for large vaults (5,000 notes)
### Rationale
1. **Virtualization required**: 5,000 notes would create 5,000+ DOM nodes without virtualization; TanStack Virtual renders only visible rows (~20-50 nodes)
2. **Performance**: Virtualization reduces initial render from ~2s to <100ms for large trees
3. **shadcn ecosystem**: Consistent styling with other shadcn/ui components (Button, ScrollArea, etc.)
4. **Accessibility**: Built on Radix UI primitives with keyboard navigation and ARIA support
5. **Customizable**: Supports custom icons per node, expand/collapse callbacks, and selection handling
### Alternatives Considered
**Alternative 1: MrLightful's shadcn Tree View**
- **Rejected**: Feature-rich component with drag-and-drop, custom icons
- **Why rejected**: No virtualization support; would cause performance issues with 1,000+ notes
**Alternative 2: Neigebaie's shadcn Tree View**
- **Rejected**: Advanced features (multi-select, checkboxes, context menus)
- **Why rejected**: No virtualization; overkill for simple directory browsing
**Alternative 3: react-arborist**
- **Rejected**: Powerful tree view library with virtualization and drag-and-drop
- **Why rejected**: Not part of shadcn ecosystem; requires custom styling to match UI; heavier dependency
**Alternative 4: Custom implementation with react-window**
- **Rejected**: Build tree view from scratch using `react-window` or `react-virtual`
- **Why rejected**: Significant development effort; reinventing the wheel; shadcn-extension already provides this
### Implementation Notes
**Installation**:
```bash
npx shadcn add https://shadcn-extension.vercel.app/registry/tree-view.json
```
**Component usage**:
```tsx
import { Tree, TreeNode } from "@/components/ui/tree-view";
interface FileTreeNode {
id: string;
name: string;
path: string;
isFolder: boolean;
children?: FileTreeNode[];
}
function DirectoryTree({ vault, onSelectNote }: Props) {
// Transform vault notes into tree structure
const treeData = useMemo(() => buildTree(vault.notes), [vault.notes]);
return (
<Tree
data={treeData}
onSelectChange={(nodeId) => {
const node = findNode(treeData, nodeId);
if (!node.isFolder) {
onSelectNote(node.path);
}
}}
// Virtualization is enabled by default
className="w-full h-full"
/>
);
}
// Transform flat list of note paths into hierarchical tree
function buildTree(notes: Note[]): TreeNode[] {
const root: Map<string, TreeNode> = new Map();
for (const note of notes) {
const parts = note.path.split('/');
let currentLevel = root;
for (let i = 0; i < parts.length; i++) {
const part = parts[i];
const isFile = i === parts.length - 1;
const id = parts.slice(0, i + 1).join('/');
if (!currentLevel.has(part)) {
currentLevel.set(part, {
id,
name: isFile ? note.title : part,
path: id,
isFolder: !isFile,
children: isFile ? undefined : new Map()
});
}
if (!isFile) {
currentLevel = currentLevel.get(part)!.children!;
}
}
}
return Array.from(root.values());
}
```
**Styling for Obsidian-like appearance**:
```css
/* Custom styles for file tree */
.tree-view-node {
@apply py-1 px-2 rounded hover:bg-accent transition-colors;
}
.tree-view-node.selected {
@apply bg-accent text-accent-foreground font-medium;
}
.tree-view-folder {
@apply flex items-center gap-2;
}
.tree-view-file {
@apply flex items-center gap-2 text-sm;
}
/* Icons */
.folder-icon {
@apply text-yellow-500;
}
.file-icon {
@apply text-gray-500;
}
```
**Collapsible behavior**:
```tsx
// Track expanded folders in state
const [expanded, setExpanded] = useState<Set<string>>(new Set(['root']));
<Tree
data={treeData}
expanded={expanded}
onExpandedChange={setExpanded}
// Auto-expand to selected note's folder
onSelectChange={(nodeId) => {
const path = nodeId.split('/');
const folders = path.slice(0, -1);
setExpanded(new Set([...expanded, ...folders]));
}}
/>
```
**Key points**:
- Virtualization is automatic with shadcn-extension Tree View (uses TanStack Virtual internally)
- Must transform flat note list into nested tree structure (use `buildTree` utility)
- Track expanded/collapsed state separately from tree data
- Custom icons per node type (folder vs file) via `icon` prop
- Use `ScrollArea` component from shadcn to wrap tree for custom scrollbars
**Performance targets**:
- Initial render: <200ms for 5,000 notes
- Expand/collapse: <50ms per folder
- Search filter: <100ms to re-render filtered tree
**Accessibility**:
- Keyboard navigation: Arrow keys to navigate, Enter to select, Space to expand/collapse
- Screen reader support: ARIA labels for folders/files, expand/collapse state
- Focus management: Visible focus indicators, focus restoration after selection
---
## 6. Optimistic Concurrency Implementation
### Decision
Use **version counter** (integer) stored in SQLite index with `if_version` parameter for UI writes. Implement **ETag-like validation** via `If-Match` header in HTTP API.
**Approach**:
- Version counter: Integer field in `note_metadata` table, incremented on every write
- UI writes: Include `if_version: N` in `PUT /api/notes/{path}` body
- Server validation: Compare `if_version` with current version; return `409 Conflict` if mismatch
- MCP writes: No version checking (last-write-wins)
- ETag header: Return `ETag: "<version>"` in `GET /api/notes/{path}` response for HTTP compliance
### Rationale
1. **Simple implementation**: Integer counter is trivial to increment and compare
2. **Explicit versioning**: Version in request body makes intent clear ("I'm updating version 5")
3. **Database-backed**: Version persists in index, not frontmatter (keeps note content clean)
4. **HTTP-friendly**: Can expose as ETag header for standards compliance
5. **Performance**: Integer comparison is O(1), no hash computation needed
### Alternatives Considered
**Alternative 1: ETag with content hash**
- **Rejected**: Compute MD5/SHA hash of note content, return as ETag header
- **Why rejected**: Hash computation on every read adds latency; version counter is sufficient and faster
**Alternative 2: Last-Modified timestamps**
- **Rejected**: Use `updated` timestamp + `If-Unmodified-Since` header
- **Why rejected**: Timestamp precision issues (SQLite stores ISO strings, not microsecond precision); race conditions if multiple updates within same second
**Alternative 3: Version in frontmatter**
- **Rejected**: Store `version: 5` in YAML frontmatter
- **Why rejected**: Pollutes user-facing metadata; incrementing version requires parsing/re-serializing frontmatter; harder to manage
**Alternative 4: MVCC (Multi-Version Concurrency Control)**
- **Rejected**: Store multiple versions of each note, allow rollback
- **Why rejected**: Complex implementation; storage overhead; out of scope for MVP (no version history requirement)
### Implementation Notes
**Schema addition**:
```sql
-- Version counter in note_metadata table
ALTER TABLE note_metadata ADD COLUMN version INTEGER NOT NULL DEFAULT 1;
```
**API endpoint implementation**:
```python
from fastapi import HTTPException, Header
from typing import Optional
@app.put("/api/notes/{path}")
async def update_note(
path: str,
body: NoteUpdateRequest,
user_id: str = Depends(get_current_user),
if_match: Optional[str] = Header(None) # ETag header support
):
# Get current version
current = get_note_metadata(user_id, path)
# Check if_version in body OR If-Match header
expected_version = body.if_version or (int(if_match.strip('"')) if if_match else None)
if expected_version is not None and current.version != expected_version:
raise HTTPException(
status_code=409,
detail={
"error": "version_conflict",
"message": "Note was updated by another process",
"current_version": current.version,
"provided_version": expected_version
}
)
# Update note and increment version
new_version = current.version + 1
save_note(user_id, path, body.content)
update_metadata(user_id, path, version=new_version, updated=now())
return {
"status": "ok",
"version": new_version
}
@app.get("/api/notes/{path}")
async def get_note(
path: str,
user_id: str = Depends(get_current_user)
):
note = load_note(user_id, path)
return JSONResponse(
content={
"path": note.path,
"title": note.title,
"metadata": note.metadata,
"body": note.body,
"version": note.version,
"created": note.created,
"updated": note.updated
},
headers={
"ETag": f'"{note.version}"', # Expose version as ETag
"Cache-Control": "no-cache" # Prevent stale reads
}
)
```
**Frontend implementation** (React):
```typescript
interface Note {
path: string;
title: string;
body: string;
version: number;
// ...
}
async function saveNote(note: Note, newBody: string) {
try {
const response = await fetch(`/api/notes/${encodeURIComponent(note.path)}`, {
method: 'PUT',
headers: {
'Content-Type': 'application/json',
'Authorization': `Bearer ${token}`,
// Option 1: Version in body
},
body: JSON.stringify({
body: newBody,
if_version: note.version // Optimistic concurrency check
})
});
if (response.status === 409) {
const error = await response.json();
alert(`Conflict: Note was updated (current version: ${error.current_version}). Please reload and try again.`);
return;
}
const updated = await response.json();
// Update local state with new version
setNote({ ...note, body: newBody, version: updated.version });
} catch (error) {
console.error('Save failed:', error);
}
}
```
**MCP tool implementation** (last-write-wins):
```python
@mcp.tool()
async def write_note(path: str, body: str, title: str = None) -> dict:
"""Write note via MCP (no version checking)."""
user_id = get_user_from_context()
# Load existing note to get current version (if exists)
try:
current = get_note_metadata(user_id, path)
new_version = current.version + 1
except NotFoundError:
new_version = 1 # New note
# Write without version check (last-write-wins)
save_note(user_id, path, body, title)
update_metadata(user_id, path, version=new_version, updated=now())
return {"status": "ok", "path": path, "version": new_version}
```
**Conflict resolution UI**:
```tsx
function ConflictDialog({ currentVersion, serverVersion }: Props) {
return (
<Alert variant="destructive">
<AlertTitle>Version Conflict</AlertTitle>
<AlertDescription>
This note was updated while you were editing (version {currentVersion} β {serverVersion}).
<div className="mt-4 space-x-2">
<Button onClick={reload}>Reload and Discard Changes</Button>
<Button variant="outline" onClick={saveAsCopy}>Save as Copy</Button>
</div>
</AlertDescription>
</Alert>
);
}
```
**Key points**:
- Version counter starts at 1 for new notes, increments on every write
- HTTP API returns `409 Conflict` with detailed error message (current vs provided version)
- ETag header is optional but recommended for HTTP standards compliance
- MCP writes skip version check (AI agents don't need optimistic concurrency)
- Frontend shows clear error message with options: reload, save as copy, or manual merge
**Performance considerations**:
- Version check is single integer comparison (O(1))
- No need to read entire note content for validation
- Version update is atomic (SQLite transaction)
**References**:
- Optimistic concurrency patterns: https://event-driven.io/en/how_to_use_etag_header_for_optimistic_concurrency/
- HTTP conditional requests: https://developer.mozilla.org/en-US/docs/Web/HTTP/Conditional_requests
---
## 7. Markdown Frontmatter Parsing with Fallback
### Decision
Use `python-frontmatter` library for YAML parsing with try-except wrapper to handle malformed frontmatter gracefully. Implement fallback strategy: malformed YAML β treat as no frontmatter, extract title from first `# Heading` or filename stem.
**Parsing approach**:
```python
import frontmatter
from pathlib import Path
def parse_note(file_path: str) -> dict:
"""Parse note with frontmatter fallback."""
try:
# Attempt to parse frontmatter
post = frontmatter.load(file_path)
metadata = dict(post.metadata)
body = post.content
except (yaml.scanner.ScannerError, yaml.parser.ParserError) as e:
# Malformed YAML - treat entire file as body
with open(file_path, 'r', encoding='utf-8') as f:
full_text = f.read()
metadata = {}
body = full_text
# Log warning for debugging
logger.warning(f"Malformed frontmatter in {file_path}: {e}")
# Extract title (priority: frontmatter > first H1 > filename)
title = (
metadata.get('title') or
extract_first_heading(body) or
Path(file_path).stem
)
return {
'title': title,
'metadata': metadata,
'body': body
}
def extract_first_heading(markdown: str) -> str | None:
"""Extract first # Heading from markdown body."""
match = re.match(r'^#\s+(.+)$', markdown, re.MULTILINE)
return match.group(1).strip() if match else None
```
### Rationale
1. **Graceful degradation**: Malformed YAML doesn't break the system; note is still readable
2. **User-friendly**: Non-technical users may create invalid YAML; system should be forgiving
3. **Simple implementation**: Try-except wrapper is minimal code; `python-frontmatter` handles valid cases
4. **Fallback chain**: Title extraction has clear priority order (explicit > inferred > default)
5. **Debugging support**: Log warnings for malformed YAML so admins can fix source files
### Alternatives Considered
**Alternative 1: Strict parsing (fail on malformed YAML)**
- **Rejected**: Raise error and reject note with invalid frontmatter
- **Why rejected**: Poor UX; users may accidentally create invalid YAML (e.g., unquoted colons); breaks read-first workflow
**Alternative 2: TOML or JSON frontmatter**
- **Rejected**: Use `+++` TOML or `{{{ }}}` JSON delimiters instead of YAML
- **Why rejected**: Obsidian uses YAML exclusively; compatibility is critical
**Alternative 3: Lenient YAML parser**
- **Rejected**: Use `ruamel.yaml` with error recovery instead of PyYAML
- **Why rejected**: Adds complexity; `python-frontmatter` uses PyYAML internally; fallback strategy is simpler
**Alternative 4: Partial frontmatter extraction**
- **Rejected**: Parse valid keys, ignore malformed keys
- **Why rejected**: Difficult to implement; unclear semantics (which keys are valid?); safer to treat all as invalid
### Implementation Notes
**Error types to catch**:
```python
import yaml
try:
post = frontmatter.load(file_path)
except (
yaml.scanner.ScannerError, # Invalid YAML syntax (e.g., unmatched quotes)
yaml.parser.ParserError, # Invalid YAML structure
UnicodeDecodeError # Non-UTF8 file encoding
) as e:
# Fallback to no frontmatter
pass
```
**Common malformed YAML examples**:
```yaml
---
title: API Design: Overview # Unquoted colon - INVALID
tags: [backend, api]
---
---
title: "Setup Guide
description: Installation steps # Unclosed quote - INVALID
---
---
title: Indented incorrectly # Bad indentation - INVALID
tags:
- frontend
---
```
**Auto-fix on write** (optional enhancement):
```python
def save_note(user_id: str, path: str, title: str, metadata: dict, body: str):
"""Save note with valid frontmatter (auto-fix on write)."""
# Merge title into metadata
metadata['title'] = title
# Create Post object with validated metadata
post = frontmatter.Post(body, **metadata)
# Serialize with valid YAML
file_content = frontmatter.dumps(post)
# Write to file
full_path = get_vault_path(user_id) / path
full_path.write_text(file_content, encoding='utf-8')
```
**Title extraction regex**:
```python
def extract_first_heading(markdown: str) -> str | None:
"""Extract first # Heading (must be H1, not H2/H3)."""
# Match # Heading (H1 only, not ## or ###)
pattern = r'^#\s+(.+?)(?:\s+\{[^}]+\})?\s*$'
match = re.search(pattern, markdown, re.MULTILINE)
if match:
heading = match.group(1).strip()
# Remove Markdown formatting (e.g., **bold**, *italic*)
heading = re.sub(r'[*_`]', '', heading)
return heading
return None
```
**Fallback priority**:
1. `metadata.get('title')` - Explicit frontmatter title
2. `extract_first_heading(body)` - First `# Heading` in body
3. `Path(file_path).stem` - Filename without `.md` extension
**Validation warnings**:
```python
# Add validation warnings to API response
if malformed_frontmatter:
warnings.append({
"type": "malformed_frontmatter",
"message": "YAML frontmatter is invalid and was ignored",
"line": error.problem_mark.line if hasattr(error, 'problem_mark') else None
})
```
**UI display for warnings**:
```tsx
function NoteViewer({ note, warnings }: Props) {
return (
<div>
{warnings.map(w => (
<Alert key={w.type} variant="warning">
<AlertTitle>Warning</AlertTitle>
<AlertDescription>{w.message}</AlertDescription>
</Alert>
))}
<Markdown>{note.body}</Markdown>
</div>
);
}
```
**Key points**:
- Always catch `yaml.scanner.ScannerError` and `yaml.parser.ParserError` from PyYAML
- Log warnings with file path and error details for admin debugging
- Prefer graceful fallback over strict validation (read-first workflow)
- Auto-fix on write ensures newly saved notes have valid frontmatter
- Extract title from first `# Heading`, not `## Subheading` (H1 only)
**References**:
- python-frontmatter docs: https://python-frontmatter.readthedocs.io/
- PyYAML error handling: https://pyyaml.org/wiki/PyYAMLDocumentation
---
## 8. JWT Token Management in React
### Decision
Use **hybrid approach**: Store short-lived access token (JWT) in **memory** (React state/context), store long-lived refresh token in **HttpOnly cookie** (server-managed). For MVP without refresh tokens, store JWT in **memory only** with 90-day expiration.
**MVP approach** (no refresh tokens):
- Store JWT in React Context (memory)
- Token expires after 90 days (long-lived)
- On app load, check if token exists in memory β if not, redirect to login
- No localStorage (XSS vulnerability mitigation)
- No refresh flow (acceptable for MVP scale)
**Production approach** (with refresh tokens):
- Access token: 15-minute expiration, stored in memory
- Refresh token: 90-day expiration, stored in HttpOnly cookie
- Automatic refresh before access token expires
- Refresh endpoint: `POST /api/auth/refresh` (validates cookie, issues new access token)
### Rationale
1. **XSS protection**: Memory storage prevents JavaScript-based token theft (localStorage is vulnerable to XSS)
2. **CSRF protection**: HttpOnly cookies can't be accessed by JS, mitigating CSRF (when combined with SameSite attribute)
3. **Industry best practice (2025)**: Hybrid approach is current security standard for React SPAs
4. **Acceptable UX**: User logs in once per 90 days (or once per session if memory-only)
5. **No additional dependencies**: Built-in React Context API handles memory storage
### Alternatives Considered
**Alternative 1: localStorage for JWT**
- **Rejected**: Store JWT in `localStorage.setItem('token', jwt)`
- **Why rejected**: Vulnerable to XSS attacks (malicious scripts can read localStorage); still in OWASP Top 10; unacceptable security risk for multi-tenant system
**Alternative 2: sessionStorage for JWT**
- **Rejected**: Store JWT in `sessionStorage` (cleared on tab close)
- **Why rejected**: Poor UX (re-login on every new tab); still vulnerable to XSS
**Alternative 3: Cookies for both access and refresh tokens**
- **Rejected**: Store JWT in regular cookies (not HttpOnly)
- **Why rejected**: Vulnerable to CSRF if not using HttpOnly; vulnerable to XSS if accessible to JS
**Alternative 4: No token storage (re-authenticate on every request)**
- **Rejected**: Use HF OAuth on every API call
- **Why rejected**: Unacceptable latency; OAuth flow is slow (~2-3s per request)
### Implementation Notes
**MVP implementation** (memory-only, 90-day JWT):
```typescript
// Auth context (memory storage)
import { createContext, useContext, useState, useEffect } from 'react';
interface AuthContextType {
token: string | null;
setToken: (token: string) => void;
logout: () => void;
}
const AuthContext = createContext<AuthContextType | null>(null);
export function AuthProvider({ children }: { children: React.ReactNode }) {
const [token, setTokenState] = useState<string | null>(null);
const setToken = (newToken: string) => {
setTokenState(newToken);
};
const logout = () => {
setTokenState(null);
window.location.href = '/oauth/huggingface/logout';
};
return (
<AuthContext.Provider value={{ token, setToken, logout }}>
{children}
</AuthContext.Provider>
);
}
export function useAuth() {
const context = useContext(AuthContext);
if (!context) throw new Error('useAuth must be used within AuthProvider');
return context;
}
```
```typescript
// App initialization (fetch token after OAuth)
function App() {
const { token, setToken } = useAuth();
const [loading, setLoading] = useState(true);
useEffect(() => {
// Check if authenticated via HF OAuth
fetch('/api/me')
.then(res => {
if (!res.ok) throw new Error('Not authenticated');
return res.json();
})
.then(user => {
// Issue JWT token for API access
return fetch('/api/tokens', { method: 'POST' });
})
.then(res => res.json())
.then(data => {
setToken(data.token);
setLoading(false);
})
.catch(() => {
// Redirect to OAuth login
window.location.href = '/oauth/huggingface/login';
});
}, []);
if (loading) return <div>Loading...</div>;
return <MainApp />;
}
```
```typescript
// API client (include token in headers)
async function apiRequest(endpoint: string, options: RequestInit = {}) {
const { token } = useAuth();
const response = await fetch(`/api${endpoint}`, {
...options,
headers: {
'Content-Type': 'application/json',
'Authorization': `Bearer ${token}`,
...options.headers
}
});
if (response.status === 401) {
// Token expired or invalid
logout();
throw new Error('Unauthorized');
}
return response;
}
```
**Production implementation** (with refresh tokens):
```typescript
// Token refresh logic
let refreshPromise: Promise<string> | null = null;
async function refreshAccessToken(): Promise<string> {
// Prevent multiple concurrent refresh calls
if (refreshPromise) return refreshPromise;
refreshPromise = fetch('/api/auth/refresh', {
method: 'POST',
credentials: 'include' // Send HttpOnly cookie
})
.then(res => {
if (!res.ok) throw new Error('Refresh failed');
return res.json();
})
.then(data => {
setToken(data.access_token);
refreshPromise = null;
return data.access_token;
})
.catch(err => {
refreshPromise = null;
logout();
throw err;
});
return refreshPromise;
}
// Automatic refresh before token expires
useEffect(() => {
if (!token) return;
// Parse token to get expiration
const payload = JSON.parse(atob(token.split('.')[1]));
const expiresAt = payload.exp * 1000;
const now = Date.now();
const refreshAt = expiresAt - (5 * 60 * 1000); // 5 minutes before expiry
const timeoutId = setTimeout(() => {
refreshAccessToken();
}, refreshAt - now);
return () => clearTimeout(timeoutId);
}, [token]);
```
**Backend refresh endpoint**:
```python
from fastapi import Cookie, HTTPException
@app.post("/api/auth/refresh")
async def refresh_token(
refresh_token: str = Cookie(None, httponly=True, samesite='strict')
):
if not refresh_token:
raise HTTPException(status_code=401, detail="No refresh token")
# Validate refresh token
try:
payload = jwt.decode(refresh_token, SECRET_KEY, algorithms=["HS256"])
user_id = payload["sub"]
except jwt.ExpiredSignatureError:
raise HTTPException(status_code=401, detail="Refresh token expired")
except jwt.InvalidTokenError:
raise HTTPException(status_code=401, detail="Invalid refresh token")
# Issue new access token (15-minute expiry)
access_token = create_jwt(user_id, expiration_minutes=15)
return {"access_token": access_token, "token_type": "bearer"}
```
**Key points**:
- Memory storage = token lost on page refresh (re-login required) β acceptable for MVP
- HttpOnly cookies cannot be accessed by JavaScript (XSS protection)
- Set `SameSite=strict` on refresh token cookie (CSRF protection)
- Refresh token rotation: issue new refresh token on each refresh (advanced security)
- Use `credentials: 'include'` in fetch to send HttpOnly cookies
- Parse JWT client-side to schedule refresh (or use server-sent expiry hint)
**Security checklist**:
- β
Access token in memory (XSS-resistant)
- β
Refresh token in HttpOnly cookie (XSS-resistant)
- β
SameSite=strict on cookies (CSRF-resistant)
- β
HTTPS required (prevent MITM)
- β
Short access token expiry (limit blast radius)
- β
Token refresh before expiry (seamless UX)
- β
Logout clears both tokens
**MVP vs Production tradeoff**:
- **MVP**: 90-day JWT in memory β simpler, acceptable for hackathon/PoC
- **Production**: 15-min access + 90-day refresh β better security, more complex
**References**:
- JWT storage best practices: https://www.descope.com/blog/post/developer-guide-jwt-storage
- HttpOnly cookies vs localStorage: https://www.wisp.blog/blog/understanding-token-storage-local-storage-vs-httponly-cookies
- React authentication patterns: https://marmelab.com/blog/2020/07/02/manage-your-jwt-react-admin-authentication-in-memory.html
---
## Summary of Key Decisions
| Topic | Decision | Primary Rationale |
|-------|----------|-------------------|
| **FastMCP Auth** | Bearer token with JWT validation | Native FastMCP support, minimal config, standard-compliant |
| **HF OAuth** | `attach_huggingface_oauth` + `parse_huggingface_oauth` | Zero-config, local dev friendly, official HF support |
| **SQLite Schema** | FTS5 for full-text + separate tables for tags/links | Performance, per-user isolation, optimized query patterns |
| **Wikilink Resolution** | Case-insensitive slug matching + same-folder preference | Obsidian compatibility, user-friendly, deterministic |
| **Directory Tree** | shadcn-extension Tree View with virtualization | Only shadcn option with virtualization for 5K+ notes |
| **Optimistic Concurrency** | Version counter in SQLite + `if_version` param | Simple, fast, HTTP-friendly, no content hashing overhead |
| **Frontmatter Parsing** | `python-frontmatter` + fallback to no frontmatter | Graceful degradation, user-friendly error handling |
| **JWT Management** | Memory storage (MVP) or memory + HttpOnly cookie (prod) | XSS protection, industry best practice (2025) |
---
## Next Steps
With research complete, proceed to **Phase 1: Data Model & Contracts**:
1. Create `data-model.md` with detailed Pydantic models and SQLite schemas
2. Create `contracts/http-api.yaml` with OpenAPI 3.1 specification
3. Create `contracts/mcp-tools.json` with MCP tool schemas (JSON Schema format)
4. Create `quickstart.md` with setup instructions and testing workflows
After Phase 1, run `/speckit.tasks` to generate dependency-ordered implementation tasks.
|