Spaces:
Sleeping
Sleeping
File size: 11,164 Bytes
b990c11 886e630 713f69a b990c11 cc5958e 886e630 cc5958e db4bc77 cc5958e 886e630 cc5958e 886e630 cc5958e db4bc77 886e630 cc5958e 886e630 cc5958e fb609fe cc5958e 886e630 cc5958e 886e630 cc5958e 886e630 cc5958e 886e630 cc5958e 886e630 cc5958e 886e630 cc5958e 886e630 cc5958e 886e630 cc5958e 713f69a cc5958e 886e630 cc5958e 886e630 cc5958e 711e100 cc5958e 886e630 cc5958e 886e630 cc5958e 886e630 cc5958e 886e630 cc5958e 886e630 cc5958e 886e630 cc5958e 87c7f72 cc5958e db4bc77 cc5958e 886e630 cc5958e 87c7f72 886e630 cc5958e 886e630 cc5958e 886e630 cc5958e 886e630 cc5958e cbb9cf7 cc5958e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 |
---
title: Pepe Meme Generator
emoji: ๐ธ
colorFrom: green
colorTo: blue
sdk: streamlit
sdk_version: 1.31.0
app_file: src/app.py
python_version: "3.11"
---
<div align="center">
# ๐ธ Pepe the Frog AI Meme Generator
### Create custom Pepe memes using AI-powered Stable Diffusion with LoRA fine-tuning
[](https://www.python.org/downloads/)
[](https://streamlit.io)
[](https://opensource.org/licenses/MIT)
[](https://huggingface.co/MJaheen/Pepe_The_Frog_model_v1_lora)
[Demo](https://huggingface.co/spaces/MJaheen/Pepe-Meme-Generator) โข [Documentation](./docs/) โข [Training Guide](./docs/TRAINING.md) โข [Report Bug](https://github.com/MJaheen/-Pepe-Meme-Generator-/issues)
</div>
---
## ๐ Table of Contents
- [Features](#-features)
- [Quick Start](#-quick-start)
- [Installation](#-installation)
- [Usage](#-usage)
- [Model Information](#-model-information)
- [Project Structure](#-project-structure)
- [Training](#-training-your-own-model)
- [Contributing](#-contributing)
- [License](#-license)
- [Acknowledgments](#-acknowledgments)
- [Contact & Support](#-contact--support)
---
## โจ Features
### ๐จ **Multiple AI Models**
- **Pepe Fine-tuned LoRA** - Custom trained on Pepe dataset (1600 steps)
- **Pepe + LCM (FAST)** - 8x faster generation with LCM technology
- **Tiny SD** - Lightweight model for faster CPU generation
- **Small SD** - Balanced speed and quality
- **Base SD 1.5** - Standard Stable Diffusion
- **Dreamlike Photoreal 2.0** - Photorealistic style
- **Openjourney v4** - Artistic Midjourney-inspired style
### โก **Performance Features**
- **LCM Support**: Generate images in 6 steps (~30 seconds on CPU)
- **GPU Acceleration**: Automatic CUDA detection with xformers support
- **Memory Efficient**: Attention slicing and VAE slicing enabled
### ๐ญ **Generation Features**
- **Style Presets**: Happy, sad, smug, angry, crying, and more
- **Raw Prompt Mode**: Use exact prompts without automatic enhancements
- **Text Overlays**: Add meme text with Impact font
- **Batch Generation**: Create multiple variations
- **Progress Tracking**: Real-time generation progress bar
- **Seed Control**: Reproducible generations with fixed seeds
- **Gallery System**: View and manage all generated memes
### ๐ฏ **User Experience**
- **Model Hot-Swapping**: Switch models without restart
- **Interactive UI**: Clean Streamlit interface
- **Example Prompts**: Built-in inspiration gallery
- **Download Support**: Save images with one click
- **Responsive Design**: Works on desktop and mobile
---
## ๐ Quick Start
### Try Online (No Installation)
๐ **[Open in Hugging Face Spaces](https://huggingface.co/spaces/MJaheen/Pepe-Meme-Generator)** - Run instantly in your browser!
### Local Installation
```bash
# 1. Clone the repository
git clone https://github.com/YOUR_USERNAME/pepe-meme-generator.git
cd pepe-meme-generator
# 2. Create virtual environment (recommended)
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
# 3. Install dependencies
pip install -r requirements.txt
# 4. Run the app
streamlit run src/app.py
```
The app will open in your browser at `http://localhost:8501`
---
## ๐ฆ Installation
### System Requirements
- **Python**: 3.10 or higher
- **RAM**: 8GB minimum, 16GB recommended
- **GPU**: Optional (NVIDIA with CUDA for faster generation)
- **Storage**: ~5GB for models and dependencies
### Dependencies
```bash
# Core dependencies
pip install torch torchvision # PyTorch
pip install diffusers transformers accelerate # Diffusion models
pip install streamlit # Web interface
pip install pillow numpy scipy # Image processing
pip install peft safetensors # LoRA support
```
Or install everything at once:
```bash
pip install -r requirements.txt
```
### GPU Setup (Optional but Recommended)
For NVIDIA GPUs with CUDA:
```bash
# Install PyTorch with CUDA support
pip install torch torchvision --index-url https://download.pytorch.org/whl/cu118
# Install xformers for memory-efficient attention
pip install xformers
```
---
## ๐ฎ Usage
### Basic Usage
1. **Select a Model**: Choose from the dropdown (try "Pepe + LCM (FAST)" for speed)
2. **Enter a Prompt**: e.g., "pepe the frog as a wizard casting spells"
3. **Adjust Settings**: Steps (6 for LCM, 25 for normal), guidance scale, etc.
4. **Generate**: Click "Generate Meme" and wait
5. **Download**: Save your creation!
### Example Prompts
```
pepe_style_frog, wizard casting magical spells, detailed
pepe_style_frog, programmer coding on laptop, cyberpunk style
pepe_style_frog, drinking coffee at sunrise, peaceful
pepe_style_frog, wearing sunglasses, smug expression
pepe_style_frog, crying with rain, emotional, dramatic lighting
```
### Advanced Features
#### **Using LCM for Fast Generation**
1. Select "Pepe + LCM (FAST)" model
2. Use 6 steps (optimal for LCM)
3. Set guidance scale to 1.5
4. Generate in ~30 seconds!
#### **Adding Text Overlays**
1. Expand "Add Text" section
2. Enter top and bottom text
3. Text automatically styled in Impact font
4. Signature "MJ" added to corner
#### **Reproducible Generations**
1. Enable "Fixed Seed" in Advanced Settings
2. Set a seed number (e.g., 42)
3. Same seed + prompt = same image
---
## ๐ค Model Information
### Fine-Tuned LoRA Model
**Model ID**: `MJaheen/Pepe_The_Frog_model_v1_lora`
**Training Details**:
- **Base Model**: Stable Diffusion v1.5
- **Method**: LoRA (Low-Rank Adaptation)
- **Dataset**: [iresidentevil/pepe_the_frog](https://huggingface.co/datasets/iresidentevil/pepe_the_frog)
- **Training Steps**: 2000
- **Resolution**: 512x512
- **Batch Size**: 1 (4 gradient accumulation)
- **Learning Rate**: 1e-4 (cosine schedule)
- **LoRA Rank**: 16
- **Precision**: Mixed FP16
- **Trigger Word**: `pepe_style_frog`
**Performance**:
- Quality: โญโญโญ (Good)
- Speed (CPU): ~4 minutes (25 steps)
- Speed (GPU): ~15 seconds (25 steps)
---
## ๐ Project Structure
```
pepe-meme-generator/
โโโ src/ # Source code
โ โโโ app.py # Main Streamlit application
โ โโโ Fonts/ # Font files
โ โโโ model/ # Model management
โ โ โโโ __init__.py
โ โ โโโ config.py # Model configurations
โ โ โโโ generator.py # Image generation logic
โ โโโ utils/ # Utility functions
โ โโโ __init__.py
โ โโโ image_processor.py # Image processing utilities
โโโ docs/ # Documentation
โ โโโTRAINING.md # Model training guide
โโโ models/ # Downloaded models (gitignored)
โโโ outputs/ # Generated images (gitignored)
โโโ diffusion_model_finetuning.ipynb # Training notebook
โโโ requirements.txt # Python dependencies
โโโ .gitignore # Git ignore rules
โโโ .dockerignore # Docker ignore rules
โโโ Dockerfile # Docker configuration
โโโ LICENSE # MIT License
โโโ README.md # This file
```
---
## ๐ Training Your Own Model
Want to fine-tune your own Pepe model or create a different character?
### Quick Training Overview
```bash
# 1. Prepare your dataset (images + captions)
# 2. Run the training script
accelerator launch train_text_to_image_lora.py \
--pretrained_model_name_or_path="runwayml/stable-diffusion-v1-5" \
--train_data_dir="./your-data" \
--resolution=512 \
--train_batch_size=1 \
--gradient_accumulation_steps=4 \
--max_train_steps=2000 \
--learning_rate=1e-4 \
--lr_scheduler="cosine" \
--output_dir="./output" \
--rank=16
```
### Complete Training Guide
See **[docs/TRAINING.md] for:
- Dataset preparation
- Training configuration
- Hyperparameter tuning
- Validation and testing
- Model upload to Hugging Face
Or check out the **[diffusion_model_finetuning.ipynb](./diffusion_model_finetuning.ipynb)** notebook!
---
## ๐ ๏ธ Technology Stack
### Core Technologies
- **[PyTorch](https://pytorch.org/)** - Deep learning framework
- **[Diffusers](https://github.com/huggingface/diffusers)** - Diffusion models library
- **[Transformers](https://github.com/huggingface/transformers)** - NLP models
- **[PEFT](https://github.com/huggingface/peft)** - Parameter-efficient fine-tuning (LoRA)
- **[Streamlit](https://streamlit.io/)** - Web UI framework
### AI/ML Components
- **Stable Diffusion 1.5** - Base diffusion model
- **LoRA** - Low-Rank Adaptation for efficient fine-tuning
- **LCM** - Latent Consistency Model for fast inference
### Image Processing
- **Pillow (PIL)** - Image manipulation
- **NumPy** - Numerical operations
- **SciPy** - Scientific computing
---
## ๐ค Contributing
Contributions are welcome! Here's how you can help:
### Ways to Contribute
- ๐ Report bugs
- ๐ก Suggest new features
- ๐ Improve documentation
- ๐จ Add new style presets
- โก Optimize performance
- ๐งช Add tests
---
### Development Setup
```bash
# Clone and setup
git clone https://https://github.com/MJaheen/-Pepe-Meme-Generator-
cd pepe-meme-generator
python -m venv venv
source venv/bin/activate
pip install -r requirements.txt
# Make your changes
# Test locally
streamlit run src/app.py
```
# Submit pull request
---
## ๐ Troubleshooting
### Common Issues
**Issue**: Out of memory error
**Solution**: Reduce resolution to 512x512, use CPU mode, or enable memory optimizations
**Issue**: Slow generation on CPU
**Solution**: Use "Pepe + LCM (FAST)" model with 6 steps
**Issue**: Import errors
**Solution**: Reinstall dependencies: `pip install -r requirements.txt --force-reinstall`
---
## ๐ License
This project is licensed under the **MIT License** - see the [LICENSE](LICENSE) file for details.
### Model Licenses
- **Stable Diffusion 1.5**: CreativeML Open RAIL-M License
- **Pepe LoRA**: MIT License
- **Training Dataset**: Check [iresidentevil/pepe_the_frog](https://huggingface.co/datasets/iresidentevil/pepe_the_frog)
---
## ๐ Acknowledgments
### Special Thanks
- **[WorldQuant University](https://www.wqu.edu/ai-lab-computer-vision)** - AI/ML education and resources
- **[Hugging Face](https://huggingface.co/)** - Model hosting and diffusers library
- **[Stability AI](https://stability.ai/)** - Stable Diffusion model
- **[Microsoft](https://github.com/microsoft/LoRA)** - LoRA technique
- **[iresidentevil](https://huggingface.co/iresidentevil)** - Pepe dataset
---
## ๐ Contact & Support
- **Issues**: [email protected]
---
## ๐ Star History
If you find this project useful, please consider giving it a โญ star on GitHub!
---
<div align="center">
**Made with โค๏ธ by MJaheen**
*Generate Pepes responsibly! ๐ธ*
</div> |