Spaces:
Runtime error
Runtime error
model respnsive
Browse files
app.py
CHANGED
|
@@ -2,6 +2,7 @@ import gradio as gr
|
|
| 2 |
import torch
|
| 3 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 4 |
import logging
|
|
|
|
| 5 |
|
| 6 |
# Configure logging
|
| 7 |
logging.basicConfig(level=logging.INFO)
|
|
@@ -21,33 +22,68 @@ def load_model():
|
|
| 21 |
logger.info("Loading model and tokenizer...")
|
| 22 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 23 |
model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
logger.info("Model loaded successfully!")
|
| 25 |
return True
|
| 26 |
except Exception as e:
|
| 27 |
logger.error(f"Error loading model: {e}")
|
| 28 |
return False
|
| 29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
def predict_email(email_text):
|
| 31 |
"""
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
Args:
|
| 35 |
-
email_text (str): The email content to analyze
|
| 36 |
-
|
| 37 |
-
Returns:
|
| 38 |
-
str: Formatted prediction results
|
| 39 |
"""
|
| 40 |
# Input validation
|
| 41 |
if not email_text or not email_text.strip():
|
| 42 |
return "⚠️ **Error**: Please enter some email text to analyze."
|
| 43 |
|
| 44 |
-
if len(email_text.strip()) <
|
| 45 |
-
return "⚠️ **Warning**: Email text
|
| 46 |
|
| 47 |
# Check if model is loaded
|
| 48 |
if tokenizer is None or model is None:
|
| 49 |
if not load_model():
|
| 50 |
-
return "❌ **Error**: Failed to load the model.
|
| 51 |
|
| 52 |
try:
|
| 53 |
# Preprocess and tokenize
|
|
@@ -59,32 +95,61 @@ def predict_email(email_text):
|
|
| 59 |
padding=True
|
| 60 |
)
|
| 61 |
|
| 62 |
-
# Get prediction
|
| 63 |
with torch.no_grad():
|
| 64 |
outputs = model(**inputs)
|
| 65 |
-
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
-
# Get probabilities
|
| 68 |
probs = predictions[0].tolist()
|
| 69 |
|
| 70 |
-
#
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
-
#
|
| 80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
|
| 82 |
-
#
|
| 83 |
max_label = max(labels.items(), key=lambda x: x[1])
|
| 84 |
|
| 85 |
# Determine risk level and emoji
|
| 86 |
confidence = max_label[1]
|
| 87 |
-
|
|
|
|
|
|
|
| 88 |
if confidence > 0.8:
|
| 89 |
risk_emoji = "🚨"
|
| 90 |
risk_level = "HIGH RISK"
|
|
@@ -95,145 +160,145 @@ def predict_email(email_text):
|
|
| 95 |
risk_emoji = "⚡"
|
| 96 |
risk_level = "LOW RISK"
|
| 97 |
else:
|
| 98 |
-
|
| 99 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
|
| 101 |
-
# Format output
|
| 102 |
result = f"{risk_emoji} **{risk_level}**\n\n"
|
| 103 |
-
result += f"**Primary Classification**: {
|
| 104 |
result += f"**Confidence**: {confidence:.1%}\n\n"
|
| 105 |
result += f"**Detailed Analysis**:\n"
|
| 106 |
|
|
|
|
| 107 |
for label, prob in sorted(labels.items(), key=lambda x: x[1], reverse=True):
|
| 108 |
percentage = prob * 100
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
else:
|
| 119 |
-
result += f"\n
|
| 120 |
|
| 121 |
return result
|
| 122 |
|
| 123 |
except Exception as e:
|
| 124 |
-
logger.error(f"Error during prediction: {e}")
|
| 125 |
-
return f"❌ **Error**:
|
| 126 |
|
| 127 |
-
# Example emails for
|
| 128 |
example_legitimate = """Dear Customer,
|
| 129 |
|
| 130 |
-
Thank you for your recent purchase from
|
| 131 |
|
| 132 |
Order Details:
|
| 133 |
-
- Product: Wireless Headphones
|
| 134 |
- Amount: $79.99
|
| 135 |
-
-
|
| 136 |
|
| 137 |
-
You
|
| 138 |
-
|
| 139 |
-
If you have any questions, please contact our customer service team.
|
| 140 |
|
| 141 |
Best regards,
|
| 142 |
-
Customer Service
|
| 143 |
-
|
|
|
|
| 144 |
|
| 145 |
-
|
| 146 |
|
| 147 |
-
|
| 148 |
|
| 149 |
-
|
| 150 |
|
| 151 |
-
|
| 152 |
|
| 153 |
-
|
| 154 |
|
| 155 |
-
|
| 156 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 157 |
|
| 158 |
# Load model on startup
|
| 159 |
load_model()
|
| 160 |
|
| 161 |
-
# Create Gradio interface
|
| 162 |
-
with gr.Blocks(title="
|
| 163 |
gr.Markdown("""
|
| 164 |
-
# 🛡️
|
| 165 |
-
|
| 166 |
-
This tool uses a DistilBERT model to analyze email content and detect potential phishing attempts.
|
| 167 |
-
Simply paste the email text below and get an instant security assessment.
|
| 168 |
|
| 169 |
-
|
| 170 |
""")
|
| 171 |
|
| 172 |
with gr.Row():
|
| 173 |
with gr.Column(scale=2):
|
| 174 |
email_input = gr.Textbox(
|
| 175 |
lines=10,
|
| 176 |
-
placeholder="Paste
|
| 177 |
-
label="Email
|
| 178 |
-
info="Enter the complete email text
|
| 179 |
)
|
| 180 |
|
| 181 |
with gr.Row():
|
| 182 |
analyze_btn = gr.Button("🔍 Analyze Email", variant="primary", size="lg")
|
| 183 |
clear_btn = gr.Button("🗑️ Clear", variant="secondary")
|
| 184 |
|
| 185 |
-
with gr.Column(scale=
|
| 186 |
output = gr.Textbox(
|
| 187 |
-
label="Analysis Results",
|
| 188 |
-
lines=
|
| 189 |
-
interactive=False
|
|
|
|
| 190 |
)
|
| 191 |
|
| 192 |
-
# Example section
|
| 193 |
-
gr.Markdown("### 📝
|
| 194 |
with gr.Row():
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
with gr.Column():
|
| 199 |
-
gr.Markdown("**Phishing Email Example:**")
|
| 200 |
-
phishing_btn = gr.Button("Load Phishing Email", size="sm")
|
| 201 |
|
| 202 |
# Event handlers
|
| 203 |
-
analyze_btn.click(
|
| 204 |
-
|
| 205 |
-
inputs=email_input,
|
| 206 |
-
outputs=output
|
| 207 |
-
)
|
| 208 |
-
|
| 209 |
-
clear_btn.click(
|
| 210 |
-
fn=lambda: ("", ""),
|
| 211 |
-
outputs=[email_input, output]
|
| 212 |
-
)
|
| 213 |
-
|
| 214 |
-
legitimate_btn.click(
|
| 215 |
-
fn=lambda: example_legitimate,
|
| 216 |
-
outputs=email_input
|
| 217 |
-
)
|
| 218 |
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
)
|
| 223 |
|
| 224 |
-
# Footer
|
| 225 |
gr.Markdown("""
|
| 226 |
---
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
""")
|
| 231 |
|
| 232 |
-
# Launch the interface
|
| 233 |
if __name__ == "__main__":
|
| 234 |
iface.launch(
|
| 235 |
share=True,
|
| 236 |
-
server_name="0.0.0.0",
|
| 237 |
server_port=7860,
|
| 238 |
-
show_error=True
|
|
|
|
| 239 |
)
|
|
|
|
| 2 |
import torch
|
| 3 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 4 |
import logging
|
| 5 |
+
import numpy as np
|
| 6 |
|
| 7 |
# Configure logging
|
| 8 |
logging.basicConfig(level=logging.INFO)
|
|
|
|
| 22 |
logger.info("Loading model and tokenizer...")
|
| 23 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 24 |
model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME)
|
| 25 |
+
|
| 26 |
+
# Debug: Print model configuration
|
| 27 |
+
logger.info(f"Model config: {model.config}")
|
| 28 |
+
logger.info(f"Number of labels: {model.config.num_labels}")
|
| 29 |
+
if hasattr(model.config, 'id2label'):
|
| 30 |
+
logger.info(f"Label mapping: {model.config.id2label}")
|
| 31 |
+
|
| 32 |
+
# Test model with simple input to check if it's working
|
| 33 |
+
test_input = "Hello world"
|
| 34 |
+
inputs = tokenizer(test_input, return_tensors="pt", truncation=True, max_length=512)
|
| 35 |
+
with torch.no_grad():
|
| 36 |
+
outputs = model(**inputs)
|
| 37 |
+
test_probs = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
| 38 |
+
logger.info(f"Test probabilities: {test_probs[0].tolist()}")
|
| 39 |
+
|
| 40 |
logger.info("Model loaded successfully!")
|
| 41 |
return True
|
| 42 |
except Exception as e:
|
| 43 |
logger.error(f"Error loading model: {e}")
|
| 44 |
return False
|
| 45 |
|
| 46 |
+
def get_colored_bar(percentage, label):
|
| 47 |
+
"""Create colored progress bar based on percentage and label type"""
|
| 48 |
+
# Determine color based on percentage and label
|
| 49 |
+
if "phishing" in label.lower() or "suspicious" in label.lower():
|
| 50 |
+
# Red scale for dangerous content
|
| 51 |
+
if percentage >= 70:
|
| 52 |
+
color = "🟥" # High danger - red
|
| 53 |
+
elif percentage >= 40:
|
| 54 |
+
color = "🟠" # Medium danger - orange
|
| 55 |
+
else:
|
| 56 |
+
color = "🟡" # Low danger - yellow
|
| 57 |
+
else:
|
| 58 |
+
# Green scale for legitimate content
|
| 59 |
+
if percentage >= 70:
|
| 60 |
+
color = "🟢" # High confidence - green
|
| 61 |
+
elif percentage >= 40:
|
| 62 |
+
color = "🟡" # Medium confidence - yellow
|
| 63 |
+
else:
|
| 64 |
+
color = "⚪" # Low confidence - white
|
| 65 |
+
|
| 66 |
+
# Create bar (scale to 20 characters)
|
| 67 |
+
bar_length = max(1, int(percentage / 5)) # Ensure at least 1 if percentage > 0
|
| 68 |
+
bar = color * bar_length + "⚪" * (20 - bar_length)
|
| 69 |
+
|
| 70 |
+
return bar
|
| 71 |
+
|
| 72 |
def predict_email(email_text):
|
| 73 |
"""
|
| 74 |
+
Enhanced prediction function with proper model output handling
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
"""
|
| 76 |
# Input validation
|
| 77 |
if not email_text or not email_text.strip():
|
| 78 |
return "⚠️ **Error**: Please enter some email text to analyze."
|
| 79 |
|
| 80 |
+
if len(email_text.strip()) < 5:
|
| 81 |
+
return "⚠️ **Warning**: Email text too short for reliable analysis."
|
| 82 |
|
| 83 |
# Check if model is loaded
|
| 84 |
if tokenizer is None or model is None:
|
| 85 |
if not load_model():
|
| 86 |
+
return "❌ **Error**: Failed to load the model."
|
| 87 |
|
| 88 |
try:
|
| 89 |
# Preprocess and tokenize
|
|
|
|
| 95 |
padding=True
|
| 96 |
)
|
| 97 |
|
| 98 |
+
# Get prediction with proper handling
|
| 99 |
with torch.no_grad():
|
| 100 |
outputs = model(**inputs)
|
| 101 |
+
# Apply temperature scaling to prevent overconfidence
|
| 102 |
+
temperature = 1.5
|
| 103 |
+
scaled_logits = outputs.logits / temperature
|
| 104 |
+
predictions = torch.nn.functional.softmax(scaled_logits, dim=-1)
|
| 105 |
|
| 106 |
+
# Get probabilities
|
| 107 |
probs = predictions[0].tolist()
|
| 108 |
|
| 109 |
+
# Log raw outputs for debugging
|
| 110 |
+
logger.info(f"Raw logits: {outputs.logits[0].tolist()}")
|
| 111 |
+
logger.info(f"Scaled probabilities: {probs}")
|
| 112 |
+
|
| 113 |
+
# Get proper labels from model config or use fallback
|
| 114 |
+
if hasattr(model.config, 'id2label') and model.config.id2label:
|
| 115 |
+
labels = {model.config.id2label[i]: probs[i] for i in range(len(probs))}
|
| 116 |
+
else:
|
| 117 |
+
# Fallback - check the actual model output dimension
|
| 118 |
+
if len(probs) == 2:
|
| 119 |
+
labels = {
|
| 120 |
+
"Legitimate Email": probs[0],
|
| 121 |
+
"Phishing Email": probs[1]
|
| 122 |
+
}
|
| 123 |
+
elif len(probs) == 4:
|
| 124 |
+
labels = {
|
| 125 |
+
"Legitimate Email": probs[0],
|
| 126 |
+
"Phishing Email": probs[1],
|
| 127 |
+
"Suspicious Content": probs[2],
|
| 128 |
+
"Spam Email": probs[3]
|
| 129 |
+
}
|
| 130 |
+
else:
|
| 131 |
+
# Generic labels
|
| 132 |
+
labels = {f"Class {i}": probs[i] for i in range(len(probs))}
|
| 133 |
+
|
| 134 |
+
# Check if model is giving reasonable outputs
|
| 135 |
+
prob_variance = np.var(probs)
|
| 136 |
+
max_prob = max(probs)
|
| 137 |
|
| 138 |
+
# If variance is too low, the model might not be working properly
|
| 139 |
+
if prob_variance < 0.01 and max_prob > 0.99:
|
| 140 |
+
logger.warning("Model showing signs of overconfidence or poor calibration")
|
| 141 |
+
# Apply smoothing
|
| 142 |
+
smoothed_probs = [(p * 0.8 + 0.2/len(probs)) for p in probs]
|
| 143 |
+
labels = {list(labels.keys())[i]: smoothed_probs[i] for i in range(len(smoothed_probs))}
|
| 144 |
|
| 145 |
+
# Find prediction
|
| 146 |
max_label = max(labels.items(), key=lambda x: x[1])
|
| 147 |
|
| 148 |
# Determine risk level and emoji
|
| 149 |
confidence = max_label[1]
|
| 150 |
+
prediction_name = max_label[0]
|
| 151 |
+
|
| 152 |
+
if any(word in prediction_name.lower() for word in ['phishing', 'suspicious', 'spam']):
|
| 153 |
if confidence > 0.8:
|
| 154 |
risk_emoji = "🚨"
|
| 155 |
risk_level = "HIGH RISK"
|
|
|
|
| 160 |
risk_emoji = "⚡"
|
| 161 |
risk_level = "LOW RISK"
|
| 162 |
else:
|
| 163 |
+
if confidence > 0.8:
|
| 164 |
+
risk_emoji = "✅"
|
| 165 |
+
risk_level = "SAFE"
|
| 166 |
+
elif confidence > 0.6:
|
| 167 |
+
risk_emoji = "✅"
|
| 168 |
+
risk_level = "LIKELY SAFE"
|
| 169 |
+
else:
|
| 170 |
+
risk_emoji = "❓"
|
| 171 |
+
risk_level = "UNCERTAIN"
|
| 172 |
|
| 173 |
+
# Format output with colored bars
|
| 174 |
result = f"{risk_emoji} **{risk_level}**\n\n"
|
| 175 |
+
result += f"**Primary Classification**: {prediction_name}\n"
|
| 176 |
result += f"**Confidence**: {confidence:.1%}\n\n"
|
| 177 |
result += f"**Detailed Analysis**:\n"
|
| 178 |
|
| 179 |
+
# Sort by probability and add colored bars
|
| 180 |
for label, prob in sorted(labels.items(), key=lambda x: x[1], reverse=True):
|
| 181 |
percentage = prob * 100
|
| 182 |
+
colored_bar = get_colored_bar(percentage, label)
|
| 183 |
+
result += f"{label}: {percentage:.1f}% {colored_bar}\n"
|
| 184 |
+
|
| 185 |
+
# Add debug info
|
| 186 |
+
result += f"\n**Debug Info**:\n"
|
| 187 |
+
result += f"Model Variance: {prob_variance:.4f}\n"
|
| 188 |
+
result += f"Raw Probabilities: {[f'{p:.3f}' for p in probs]}\n"
|
| 189 |
+
|
| 190 |
+
# Add recommendations based on actual classification
|
| 191 |
+
if any(word in prediction_name.lower() for word in ['phishing', 'suspicious']) and confidence > 0.6:
|
| 192 |
+
result += f"\n⚠️ **Recommendation**: This email shows signs of being malicious. Avoid clicking links or providing personal information."
|
| 193 |
+
elif 'spam' in prediction_name.lower():
|
| 194 |
+
result += f"\n🗑️ **Recommendation**: This appears to be spam. Consider deleting or marking as junk."
|
| 195 |
+
elif confidence > 0.7:
|
| 196 |
+
result += f"\n✅ **Recommendation**: This email appears legitimate, but always remain vigilant."
|
| 197 |
else:
|
| 198 |
+
result += f"\n❓ **Recommendation**: Classification uncertain. Exercise caution and verify sender if needed."
|
| 199 |
|
| 200 |
return result
|
| 201 |
|
| 202 |
except Exception as e:
|
| 203 |
+
logger.error(f"Error during prediction: {e}", exc_info=True)
|
| 204 |
+
return f"❌ **Error**: Analysis failed - {str(e)}"
|
| 205 |
|
| 206 |
+
# Example emails for testing
|
| 207 |
example_legitimate = """Dear Customer,
|
| 208 |
|
| 209 |
+
Thank you for your recent purchase from TechStore. Your order #ORD-2024-001234 has been successfully processed.
|
| 210 |
|
| 211 |
Order Details:
|
| 212 |
+
- Product: Wireless Headphones
|
| 213 |
- Amount: $79.99
|
| 214 |
+
- Estimated delivery: 3-5 business days
|
| 215 |
|
| 216 |
+
You will receive a tracking number once your item ships.
|
|
|
|
|
|
|
| 217 |
|
| 218 |
Best regards,
|
| 219 |
+
TechStore Customer Service"""
|
| 220 |
+
|
| 221 |
+
example_phishing = """URGENT SECURITY ALERT!!!
|
| 222 |
|
| 223 |
+
Your account has been COMPROMISED! Immediate action required!
|
| 224 |
|
| 225 |
+
Click here NOW to secure your account: http://fake-security-site.malicious.com/urgent-verify
|
| 226 |
|
| 227 |
+
WARNING: You have only 24 hours before your account is permanently suspended!
|
| 228 |
|
| 229 |
+
This is your FINAL notice - act immediately!
|
| 230 |
|
| 231 |
+
Security Department"""
|
| 232 |
|
| 233 |
+
example_neutral = """Hi team,
|
| 234 |
+
|
| 235 |
+
Hope everyone is doing well. Just wanted to remind you about the meeting scheduled for tomorrow at 2 PM in the conference room.
|
| 236 |
+
|
| 237 |
+
Please bring your project updates and any questions you might have.
|
| 238 |
+
|
| 239 |
+
Thanks,
|
| 240 |
+
Sarah"""
|
| 241 |
|
| 242 |
# Load model on startup
|
| 243 |
load_model()
|
| 244 |
|
| 245 |
+
# Create enhanced Gradio interface
|
| 246 |
+
with gr.Blocks(title="PhishGuardian AI", theme=gr.themes.Soft()) as iface:
|
| 247 |
gr.Markdown("""
|
| 248 |
+
# 🛡️ PhishGuardian AI - Enhanced Detection
|
|
|
|
|
|
|
|
|
|
| 249 |
|
| 250 |
+
Advanced phishing email detection with colored risk indicators and improved model handling.
|
| 251 |
""")
|
| 252 |
|
| 253 |
with gr.Row():
|
| 254 |
with gr.Column(scale=2):
|
| 255 |
email_input = gr.Textbox(
|
| 256 |
lines=10,
|
| 257 |
+
placeholder="Paste your email content here for analysis...",
|
| 258 |
+
label="📧 Email Content",
|
| 259 |
+
info="Enter the complete email text for comprehensive analysis"
|
| 260 |
)
|
| 261 |
|
| 262 |
with gr.Row():
|
| 263 |
analyze_btn = gr.Button("🔍 Analyze Email", variant="primary", size="lg")
|
| 264 |
clear_btn = gr.Button("🗑️ Clear", variant="secondary")
|
| 265 |
|
| 266 |
+
with gr.Column(scale=2):
|
| 267 |
output = gr.Textbox(
|
| 268 |
+
label="🛡️ Security Analysis Results",
|
| 269 |
+
lines=20,
|
| 270 |
+
interactive=False,
|
| 271 |
+
show_copy_button=True
|
| 272 |
)
|
| 273 |
|
| 274 |
+
# Example section with better examples
|
| 275 |
+
gr.Markdown("### 📝 Test Examples")
|
| 276 |
with gr.Row():
|
| 277 |
+
legit_btn = gr.Button("✅ Legitimate Email", size="sm")
|
| 278 |
+
phish_btn = gr.Button("🚨 Phishing Email", size="sm")
|
| 279 |
+
neutral_btn = gr.Button("📄 Neutral Text", size="sm")
|
|
|
|
|
|
|
|
|
|
| 280 |
|
| 281 |
# Event handlers
|
| 282 |
+
analyze_btn.click(predict_email, inputs=email_input, outputs=output)
|
| 283 |
+
clear_btn.click(lambda: ("", ""), outputs=[email_input, output])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 284 |
|
| 285 |
+
legit_btn.click(lambda: example_legitimate, outputs=email_input)
|
| 286 |
+
phish_btn.click(lambda: example_phishing, outputs=email_input)
|
| 287 |
+
neutral_btn.click(lambda: example_neutral, outputs=email_input)
|
|
|
|
| 288 |
|
| 289 |
+
# Footer with model info
|
| 290 |
gr.Markdown("""
|
| 291 |
---
|
| 292 |
+
**🔧 Model**: cybersectony/phishing-email-detection-distilbert_v2.4.1
|
| 293 |
+
**🎯 Features**: Temperature scaling, colored risk bars, enhanced debugging
|
| 294 |
+
**🏛️ Institution**: University of Dar es Salaam (UDSM)
|
| 295 |
""")
|
| 296 |
|
|
|
|
| 297 |
if __name__ == "__main__":
|
| 298 |
iface.launch(
|
| 299 |
share=True,
|
| 300 |
+
server_name="0.0.0.0",
|
| 301 |
server_port=7860,
|
| 302 |
+
show_error=True,
|
| 303 |
+
debug=True
|
| 304 |
)
|