Upload app.py
Browse files
app.py
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
import cv2 as cv
|
| 2 |
import numpy as np
|
| 3 |
import gradio as gr
|
|
@@ -48,18 +49,15 @@ EN_TO_NL = {
|
|
| 48 |
}
|
| 49 |
|
| 50 |
def to_dutch_lower(label: str) -> str:
|
| 51 |
-
"""Zet emotielabel om naar NL en lowercase (fallback: originele lowercase)."""
|
| 52 |
if not label:
|
| 53 |
return "onbekend"
|
| 54 |
key = label.strip().lower()
|
| 55 |
return EN_TO_NL.get(key, key)
|
| 56 |
|
| 57 |
-
# In-memory statistieken
|
| 58 |
emotion_stats = defaultdict(int)
|
| 59 |
|
| 60 |
-
#
|
| 61 |
def _format_pct(conf):
|
| 62 |
-
"""Format confidence naar '82%' (int). Conf kan in [0,1] of [0,100] of None."""
|
| 63 |
if conf is None:
|
| 64 |
return None
|
| 65 |
try:
|
|
@@ -72,14 +70,6 @@ def _format_pct(conf):
|
|
| 72 |
return f"{int(round(c))}%"
|
| 73 |
|
| 74 |
def _parse_infer_output(result):
|
| 75 |
-
"""
|
| 76 |
-
Probeer robuust (label_idx, confidence) uit infer-output te halen.
|
| 77 |
-
Ondersteunt:
|
| 78 |
-
- (label, score) tuple/list
|
| 79 |
-
- [probs...] ndarray (neemt argmax + max)
|
| 80 |
-
- [label] of scalar -> (label, None)
|
| 81 |
-
"""
|
| 82 |
-
# numpy array?
|
| 83 |
if isinstance(result, np.ndarray):
|
| 84 |
arr = result
|
| 85 |
if arr.ndim == 1 and arr.size > 1:
|
|
@@ -89,14 +79,12 @@ def _parse_infer_output(result):
|
|
| 89 |
elif arr.size == 1:
|
| 90 |
return int(arr.flat[0]), None
|
| 91 |
else:
|
| 92 |
-
# onbekende vorm
|
| 93 |
try:
|
| 94 |
idx = int(arr[0])
|
| 95 |
return idx, None
|
| 96 |
except Exception:
|
| 97 |
return 0, None
|
| 98 |
|
| 99 |
-
# list/tuple?
|
| 100 |
if isinstance(result, (list, tuple)):
|
| 101 |
if len(result) >= 2 and isinstance(result[1], (float, np.floating, int, np.integer)):
|
| 102 |
try:
|
|
@@ -109,15 +97,12 @@ def _parse_infer_output(result):
|
|
| 109 |
except Exception:
|
| 110 |
return 0, None
|
| 111 |
|
| 112 |
-
# scalar label
|
| 113 |
try:
|
| 114 |
return int(result), None
|
| 115 |
except Exception:
|
| 116 |
return 0, None
|
| 117 |
-
# ---------------------------------------
|
| 118 |
|
| 119 |
def visualize(image, det_res, labels, confs):
|
| 120 |
-
"""Tekent bbox + NL-lowercase emotielabel + confidence op de output."""
|
| 121 |
output = image.copy()
|
| 122 |
landmark_color = [(255, 0, 0), (0, 0, 255), (0, 255, 0), (255, 0, 255), (0, 255, 255)]
|
| 123 |
for i, (det, lab) in enumerate(zip(det_res, labels)):
|
|
@@ -128,16 +113,7 @@ def visualize(image, det_res, labels, confs):
|
|
| 128 |
txt = f"{fer_type_str_nl}" + (f" {pct}" if pct else "")
|
| 129 |
|
| 130 |
cv.rectangle(output, (bbox[0], bbox[1]), (bbox[0]+bbox[2], bbox[1]+bbox[3]), (0, 255, 0), 2)
|
| 131 |
-
cv.putText(
|
| 132 |
-
output,
|
| 133 |
-
txt,
|
| 134 |
-
(bbox[0], max(0, bbox[1] - 10)),
|
| 135 |
-
cv.FONT_HERSHEY_SIMPLEX,
|
| 136 |
-
0.7,
|
| 137 |
-
(0, 0, 255),
|
| 138 |
-
2,
|
| 139 |
-
cv.LINE_AA
|
| 140 |
-
)
|
| 141 |
|
| 142 |
landmarks = det[4:14].astype(np.int32).reshape((5, 2))
|
| 143 |
for idx, landmark in enumerate(landmarks):
|
|
@@ -145,27 +121,18 @@ def visualize(image, det_res, labels, confs):
|
|
| 145 |
return output
|
| 146 |
|
| 147 |
def summarize_emotions(labels, confs):
|
| 148 |
-
"""Maakt de grote groene NL-lowercase samenvatting met gemiddelden per emotie."""
|
| 149 |
if not labels:
|
| 150 |
return "## **geen gezicht gedetecteerd**"
|
| 151 |
|
| 152 |
-
names_nl = []
|
| 153 |
-
for lab in labels:
|
| 154 |
-
names_nl.append(to_dutch_lower(FacialExpressionRecog.getDesc(lab)))
|
| 155 |
-
|
| 156 |
-
# tel per emotie + verzamel confidences
|
| 157 |
counts = Counter(names_nl)
|
| 158 |
conf_bucket = defaultdict(list)
|
| 159 |
for i, name in enumerate(names_nl):
|
| 160 |
if i < len(confs) and confs[i] is not None:
|
| 161 |
conf_bucket[name].append(float(confs[i]))
|
| 162 |
|
| 163 |
-
# top-emotie op basis van count
|
| 164 |
top = counts.most_common(1)[0][0]
|
| 165 |
-
|
| 166 |
-
# details: "blij (2, gem. 79%)"
|
| 167 |
parts = []
|
| 168 |
-
# sorteer op frequentie aflopend, dan alfabetisch
|
| 169 |
for name, n in sorted(counts.items(), key=lambda kv: (-kv[1], kv[0])):
|
| 170 |
if conf_bucket[name]:
|
| 171 |
avg = sum(conf_bucket[name]) / len(conf_bucket[name])
|
|
@@ -177,7 +144,6 @@ def summarize_emotions(labels, confs):
|
|
| 177 |
return f"# **{top}**\n\n_Gedetecteerde emoties: {details}_"
|
| 178 |
|
| 179 |
def process_image(input_image):
|
| 180 |
-
"""Helper: run detectie en retourneer (output_img, labels[int], confs[float|None])."""
|
| 181 |
image = cv.cvtColor(input_image, cv.COLOR_RGB2BGR)
|
| 182 |
h, w, _ = image.shape
|
| 183 |
detect_model.setInputSize([w, h])
|
|
@@ -194,10 +160,8 @@ def process_image(input_image):
|
|
| 194 |
return cv.cvtColor(output, cv.COLOR_BGR2RGB), labels, confs, dets
|
| 195 |
|
| 196 |
def detect_expression(input_image):
|
| 197 |
-
"""Versie die WÉL statistieken bijwerkt (gebruik voor 'Verstuur')."""
|
| 198 |
output_img, labels, confs, _ = process_image(input_image)
|
| 199 |
emotion_md = summarize_emotions(labels, confs)
|
| 200 |
-
# update stats in NL-lowercase
|
| 201 |
for lab in labels:
|
| 202 |
name_nl = to_dutch_lower(FacialExpressionRecog.getDesc(lab))
|
| 203 |
emotion_stats[name_nl] += 1
|
|
@@ -205,13 +169,10 @@ def detect_expression(input_image):
|
|
| 205 |
return output_img, emotion_md, stats_plot
|
| 206 |
|
| 207 |
def detect_expression_no_stats(input_image):
|
| 208 |
-
"""Versie die GEEN statistieken bijwerkt (gebruik voor gr.Examples & caching)."""
|
| 209 |
output_img, labels, confs, _ = process_image(input_image)
|
| 210 |
emotion_md = summarize_emotions(labels, confs)
|
| 211 |
-
# géén stats update en ook géén stats_image teruggeven
|
| 212 |
return output_img, emotion_md
|
| 213 |
|
| 214 |
-
# --- Staafdiagram tekenen met OpenCV (geen matplotlib nodig) ---
|
| 215 |
def draw_bar_chart_cv(stats: dict, width=640, height=320):
|
| 216 |
img = np.full((height, width, 3), 255, dtype=np.uint8)
|
| 217 |
cv.putText(img, "Live emotie-statistieken", (12, 28), cv.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 0), 2, cv.LINE_AA)
|
|
@@ -224,8 +185,8 @@ def draw_bar_chart_cv(stats: dict, width=640, height=320):
|
|
| 224 |
plot_h = height - top - bottom
|
| 225 |
origin = (left, height - bottom)
|
| 226 |
|
| 227 |
-
cv.line(img, origin, (left + plot_w, height - bottom), (0, 0, 0), 2)
|
| 228 |
-
cv.line(img, origin, (left, height - bottom - plot_h), (0, 0, 0), 2)
|
| 229 |
|
| 230 |
labels = list(stats.keys())
|
| 231 |
values = [stats[k] for k in labels]
|
|
@@ -241,7 +202,7 @@ def draw_bar_chart_cv(stats: dict, width=640, height=320):
|
|
| 241 |
h_px = int((val / max_val) * (plot_h - 10))
|
| 242 |
y1 = height - bottom - h_px
|
| 243 |
y2 = height - bottom - 1
|
| 244 |
-
cv.rectangle(img, (x1, y1), (x2, y2), (0, 170, 60), -1)
|
| 245 |
cv.putText(img, str(val), (x1 + 2, y1 - 6), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 90, 30), 1, cv.LINE_AA)
|
| 246 |
|
| 247 |
show_lab = lab if len(lab) <= 12 else lab[:11] + "…"
|
|
@@ -252,7 +213,6 @@ def draw_bar_chart_cv(stats: dict, width=640, height=320):
|
|
| 252 |
|
| 253 |
return cv.cvtColor(img, cv.COLOR_BGR2RGB)
|
| 254 |
|
| 255 |
-
# Voorbeelden automatisch laden
|
| 256 |
IMAGE_EXTS = {".jpg", ".jpeg", ".png", ".bmp", ".webp"}
|
| 257 |
EXAMPLES_DIR = Path("examples")
|
| 258 |
if EXAMPLES_DIR.exists() and EXAMPLES_DIR.is_dir():
|
|
@@ -262,7 +222,6 @@ else:
|
|
| 262 |
example_list = [[p] for p in example_paths]
|
| 263 |
CACHE_EXAMPLES = bool(example_list)
|
| 264 |
|
| 265 |
-
# Uitlegblok (HTML) – netjes opgemaakt
|
| 266 |
INFO_HTML = """
|
| 267 |
<div>
|
| 268 |
<h3>Hoe werkt deze gezichtsuitdrukking-herkenner?</h3>
|
|
@@ -288,15 +247,12 @@ INFO_HTML = """
|
|
| 288 |
</div>
|
| 289 |
"""
|
| 290 |
|
| 291 |
-
# CSS (groene emotietekst + uitlegblok styling)
|
| 292 |
custom_css = """
|
| 293 |
#emotie-uitslag { color: #16a34a; }
|
| 294 |
#emotie-uitslag h1, #emotie-uitslag h2, #emotie-uitslag h3 { margin: 0.25rem 0; }
|
| 295 |
-
|
| 296 |
-
/* Uitlegblok onder de mugshots */
|
| 297 |
#uitleg-blok {
|
| 298 |
-
background: #f3f4f6;
|
| 299 |
-
border: 1px solid #e5e7eb;
|
| 300 |
border-radius: 10px;
|
| 301 |
padding: 12px 14px;
|
| 302 |
}
|
|
@@ -310,7 +266,6 @@ with gr.Blocks(css=custom_css) as demo:
|
|
| 310 |
gr.Markdown("## Herkenning van gezichtsuitdrukkingen (FER) met OpenCV DNN")
|
| 311 |
gr.Markdown("Detecteert gezichten en herkent gezichtsuitdrukkingen met YuNet + MobileFaceNet (ONNX).")
|
| 312 |
|
| 313 |
-
# Rij 1: Links upload/knoppen, Rechts output + emotie
|
| 314 |
with gr.Row():
|
| 315 |
with gr.Column():
|
| 316 |
input_image = gr.Image(type="numpy", label="Afbeelding uploaden")
|
|
@@ -321,41 +276,34 @@ with gr.Blocks(css=custom_css) as demo:
|
|
| 321 |
output_image = gr.Image(type="numpy", label="Resultaat gezichtsuitdrukking")
|
| 322 |
emotion_md = gr.Markdown("## **Nog geen resultaat**", elem_id="emotie-uitslag")
|
| 323 |
|
| 324 |
-
# Rij 2: Links mugshots (Examples + uitleg), Rechts statistieken
|
| 325 |
with gr.Row():
|
| 326 |
with gr.Column():
|
| 327 |
gr.Markdown("**Voorbeelden (klik om te testen):**")
|
| 328 |
gr.Examples(
|
| 329 |
examples=example_list,
|
| 330 |
inputs=input_image,
|
| 331 |
-
outputs=[output_image, emotion_md],
|
| 332 |
-
fn=detect_expression_no_stats,
|
| 333 |
examples_per_page=20,
|
| 334 |
cache_examples=CACHE_EXAMPLES
|
| 335 |
)
|
| 336 |
-
# Uitlegblok onder de mugshots
|
| 337 |
gr.HTML(INFO_HTML, elem_id="uitleg-blok")
|
| 338 |
|
| 339 |
with gr.Column():
|
| 340 |
stats_image = gr.Image(
|
| 341 |
label="Statistieken",
|
| 342 |
type="numpy",
|
| 343 |
-
value=draw_bar_chart_cv(emotion_stats)
|
| 344 |
)
|
| 345 |
|
| 346 |
-
# Clear-helpers
|
| 347 |
def clear_all_on_new():
|
| 348 |
return None, "## **Nog geen resultaat**"
|
| 349 |
|
| 350 |
def clear_all_button():
|
| 351 |
-
# reset inputs/outputs; statistieken blijven behouden
|
| 352 |
return None, None, "## **Nog geen resultaat**", draw_bar_chart_cv(emotion_stats)
|
| 353 |
|
| 354 |
-
# Nieuwe upload wist output + emotietekst (grafiek blijft staan)
|
| 355 |
input_image.change(fn=clear_all_on_new, outputs=[output_image, emotion_md])
|
| 356 |
-
# Verwerken
|
| 357 |
submit_btn.click(fn=detect_expression, inputs=input_image, outputs=[output_image, emotion_md, stats_image])
|
| 358 |
-
# Wissen-knop: ook grafiek opnieuw tekenen (maar stats niet resetten)
|
| 359 |
clear_btn.click(fn=clear_all_button, outputs=[input_image, output_image, emotion_md, stats_image])
|
| 360 |
|
| 361 |
if __name__ == "__main__":
|
|
|
|
| 1 |
+
|
| 2 |
import cv2 as cv
|
| 3 |
import numpy as np
|
| 4 |
import gradio as gr
|
|
|
|
| 49 |
}
|
| 50 |
|
| 51 |
def to_dutch_lower(label: str) -> str:
|
|
|
|
| 52 |
if not label:
|
| 53 |
return "onbekend"
|
| 54 |
key = label.strip().lower()
|
| 55 |
return EN_TO_NL.get(key, key)
|
| 56 |
|
|
|
|
| 57 |
emotion_stats = defaultdict(int)
|
| 58 |
|
| 59 |
+
# Confidence helpers
|
| 60 |
def _format_pct(conf):
|
|
|
|
| 61 |
if conf is None:
|
| 62 |
return None
|
| 63 |
try:
|
|
|
|
| 70 |
return f"{int(round(c))}%"
|
| 71 |
|
| 72 |
def _parse_infer_output(result):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
if isinstance(result, np.ndarray):
|
| 74 |
arr = result
|
| 75 |
if arr.ndim == 1 and arr.size > 1:
|
|
|
|
| 79 |
elif arr.size == 1:
|
| 80 |
return int(arr.flat[0]), None
|
| 81 |
else:
|
|
|
|
| 82 |
try:
|
| 83 |
idx = int(arr[0])
|
| 84 |
return idx, None
|
| 85 |
except Exception:
|
| 86 |
return 0, None
|
| 87 |
|
|
|
|
| 88 |
if isinstance(result, (list, tuple)):
|
| 89 |
if len(result) >= 2 and isinstance(result[1], (float, np.floating, int, np.integer)):
|
| 90 |
try:
|
|
|
|
| 97 |
except Exception:
|
| 98 |
return 0, None
|
| 99 |
|
|
|
|
| 100 |
try:
|
| 101 |
return int(result), None
|
| 102 |
except Exception:
|
| 103 |
return 0, None
|
|
|
|
| 104 |
|
| 105 |
def visualize(image, det_res, labels, confs):
|
|
|
|
| 106 |
output = image.copy()
|
| 107 |
landmark_color = [(255, 0, 0), (0, 0, 255), (0, 255, 0), (255, 0, 255), (0, 255, 255)]
|
| 108 |
for i, (det, lab) in enumerate(zip(det_res, labels)):
|
|
|
|
| 113 |
txt = f"{fer_type_str_nl}" + (f" {pct}" if pct else "")
|
| 114 |
|
| 115 |
cv.rectangle(output, (bbox[0], bbox[1]), (bbox[0]+bbox[2], bbox[1]+bbox[3]), (0, 255, 0), 2)
|
| 116 |
+
cv.putText(output, txt, (bbox[0], max(0, bbox[1] - 10)), cv.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2, cv.LINE_AA)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
|
| 118 |
landmarks = det[4:14].astype(np.int32).reshape((5, 2))
|
| 119 |
for idx, landmark in enumerate(landmarks):
|
|
|
|
| 121 |
return output
|
| 122 |
|
| 123 |
def summarize_emotions(labels, confs):
|
|
|
|
| 124 |
if not labels:
|
| 125 |
return "## **geen gezicht gedetecteerd**"
|
| 126 |
|
| 127 |
+
names_nl = [to_dutch_lower(FacialExpressionRecog.getDesc(lab)) for lab in labels]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
counts = Counter(names_nl)
|
| 129 |
conf_bucket = defaultdict(list)
|
| 130 |
for i, name in enumerate(names_nl):
|
| 131 |
if i < len(confs) and confs[i] is not None:
|
| 132 |
conf_bucket[name].append(float(confs[i]))
|
| 133 |
|
|
|
|
| 134 |
top = counts.most_common(1)[0][0]
|
|
|
|
|
|
|
| 135 |
parts = []
|
|
|
|
| 136 |
for name, n in sorted(counts.items(), key=lambda kv: (-kv[1], kv[0])):
|
| 137 |
if conf_bucket[name]:
|
| 138 |
avg = sum(conf_bucket[name]) / len(conf_bucket[name])
|
|
|
|
| 144 |
return f"# **{top}**\n\n_Gedetecteerde emoties: {details}_"
|
| 145 |
|
| 146 |
def process_image(input_image):
|
|
|
|
| 147 |
image = cv.cvtColor(input_image, cv.COLOR_RGB2BGR)
|
| 148 |
h, w, _ = image.shape
|
| 149 |
detect_model.setInputSize([w, h])
|
|
|
|
| 160 |
return cv.cvtColor(output, cv.COLOR_BGR2RGB), labels, confs, dets
|
| 161 |
|
| 162 |
def detect_expression(input_image):
|
|
|
|
| 163 |
output_img, labels, confs, _ = process_image(input_image)
|
| 164 |
emotion_md = summarize_emotions(labels, confs)
|
|
|
|
| 165 |
for lab in labels:
|
| 166 |
name_nl = to_dutch_lower(FacialExpressionRecog.getDesc(lab))
|
| 167 |
emotion_stats[name_nl] += 1
|
|
|
|
| 169 |
return output_img, emotion_md, stats_plot
|
| 170 |
|
| 171 |
def detect_expression_no_stats(input_image):
|
|
|
|
| 172 |
output_img, labels, confs, _ = process_image(input_image)
|
| 173 |
emotion_md = summarize_emotions(labels, confs)
|
|
|
|
| 174 |
return output_img, emotion_md
|
| 175 |
|
|
|
|
| 176 |
def draw_bar_chart_cv(stats: dict, width=640, height=320):
|
| 177 |
img = np.full((height, width, 3), 255, dtype=np.uint8)
|
| 178 |
cv.putText(img, "Live emotie-statistieken", (12, 28), cv.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 0), 2, cv.LINE_AA)
|
|
|
|
| 185 |
plot_h = height - top - bottom
|
| 186 |
origin = (left, height - bottom)
|
| 187 |
|
| 188 |
+
cv.line(img, origin, (left + plot_w, height - bottom), (0, 0, 0), 2)
|
| 189 |
+
cv.line(img, origin, (left, height - bottom - plot_h), (0, 0, 0), 2)
|
| 190 |
|
| 191 |
labels = list(stats.keys())
|
| 192 |
values = [stats[k] for k in labels]
|
|
|
|
| 202 |
h_px = int((val / max_val) * (plot_h - 10))
|
| 203 |
y1 = height - bottom - h_px
|
| 204 |
y2 = height - bottom - 1
|
| 205 |
+
cv.rectangle(img, (x1, y1), (x2, y2), (0, 170, 60), -1)
|
| 206 |
cv.putText(img, str(val), (x1 + 2, y1 - 6), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 90, 30), 1, cv.LINE_AA)
|
| 207 |
|
| 208 |
show_lab = lab if len(lab) <= 12 else lab[:11] + "…"
|
|
|
|
| 213 |
|
| 214 |
return cv.cvtColor(img, cv.COLOR_BGR2RGB)
|
| 215 |
|
|
|
|
| 216 |
IMAGE_EXTS = {".jpg", ".jpeg", ".png", ".bmp", ".webp"}
|
| 217 |
EXAMPLES_DIR = Path("examples")
|
| 218 |
if EXAMPLES_DIR.exists() and EXAMPLES_DIR.is_dir():
|
|
|
|
| 222 |
example_list = [[p] for p in example_paths]
|
| 223 |
CACHE_EXAMPLES = bool(example_list)
|
| 224 |
|
|
|
|
| 225 |
INFO_HTML = """
|
| 226 |
<div>
|
| 227 |
<h3>Hoe werkt deze gezichtsuitdrukking-herkenner?</h3>
|
|
|
|
| 247 |
</div>
|
| 248 |
"""
|
| 249 |
|
|
|
|
| 250 |
custom_css = """
|
| 251 |
#emotie-uitslag { color: #16a34a; }
|
| 252 |
#emotie-uitslag h1, #emotie-uitslag h2, #emotie-uitslag h3 { margin: 0.25rem 0; }
|
|
|
|
|
|
|
| 253 |
#uitleg-blok {
|
| 254 |
+
background: #f3f4f6;
|
| 255 |
+
border: 1px solid #e5e7eb;
|
| 256 |
border-radius: 10px;
|
| 257 |
padding: 12px 14px;
|
| 258 |
}
|
|
|
|
| 266 |
gr.Markdown("## Herkenning van gezichtsuitdrukkingen (FER) met OpenCV DNN")
|
| 267 |
gr.Markdown("Detecteert gezichten en herkent gezichtsuitdrukkingen met YuNet + MobileFaceNet (ONNX).")
|
| 268 |
|
|
|
|
| 269 |
with gr.Row():
|
| 270 |
with gr.Column():
|
| 271 |
input_image = gr.Image(type="numpy", label="Afbeelding uploaden")
|
|
|
|
| 276 |
output_image = gr.Image(type="numpy", label="Resultaat gezichtsuitdrukking")
|
| 277 |
emotion_md = gr.Markdown("## **Nog geen resultaat**", elem_id="emotie-uitslag")
|
| 278 |
|
|
|
|
| 279 |
with gr.Row():
|
| 280 |
with gr.Column():
|
| 281 |
gr.Markdown("**Voorbeelden (klik om te testen):**")
|
| 282 |
gr.Examples(
|
| 283 |
examples=example_list,
|
| 284 |
inputs=input_image,
|
| 285 |
+
outputs=[output_image, emotion_md],
|
| 286 |
+
fn=detect_expression_no_stats,
|
| 287 |
examples_per_page=20,
|
| 288 |
cache_examples=CACHE_EXAMPLES
|
| 289 |
)
|
|
|
|
| 290 |
gr.HTML(INFO_HTML, elem_id="uitleg-blok")
|
| 291 |
|
| 292 |
with gr.Column():
|
| 293 |
stats_image = gr.Image(
|
| 294 |
label="Statistieken",
|
| 295 |
type="numpy",
|
| 296 |
+
value=draw_bar_chart_cv(emotion_stats)
|
| 297 |
)
|
| 298 |
|
|
|
|
| 299 |
def clear_all_on_new():
|
| 300 |
return None, "## **Nog geen resultaat**"
|
| 301 |
|
| 302 |
def clear_all_button():
|
|
|
|
| 303 |
return None, None, "## **Nog geen resultaat**", draw_bar_chart_cv(emotion_stats)
|
| 304 |
|
|
|
|
| 305 |
input_image.change(fn=clear_all_on_new, outputs=[output_image, emotion_md])
|
|
|
|
| 306 |
submit_btn.click(fn=detect_expression, inputs=input_image, outputs=[output_image, emotion_md, stats_image])
|
|
|
|
| 307 |
clear_btn.click(fn=clear_all_button, outputs=[input_image, output_image, emotion_md, stats_image])
|
| 308 |
|
| 309 |
if __name__ == "__main__":
|