Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from transformers import pipeline
|
| 3 |
+
|
| 4 |
+
# Load the pre-trained model and tokenizer
|
| 5 |
+
qa_pipeline = pipeline("question-answering", model="distilbert-base-uncased-distilled-squad")
|
| 6 |
+
|
| 7 |
+
def answer_question(context: str, question: str) -> str:
|
| 8 |
+
result = qa_pipeline(question=question, context=context)
|
| 9 |
+
return result['answer']
|
| 10 |
+
|
| 11 |
+
# Streamlit app
|
| 12 |
+
st.title("Question-Answering Bot")
|
| 13 |
+
st.write("Enter the context text and ask a question about it.")
|
| 14 |
+
|
| 15 |
+
context = st.text_area("Context", height=300)
|
| 16 |
+
question = st.text_input("Question")
|
| 17 |
+
|
| 18 |
+
if st.button("Get Answer"):
|
| 19 |
+
if context and question:
|
| 20 |
+
answer = answer_question(context, question)
|
| 21 |
+
st.write(f"**Question:** {question}")
|
| 22 |
+
st.write(f"**Answer:** {answer}")
|
| 23 |
+
else:
|
| 24 |
+
st.write("Please enter both the context and the question.")
|