Spaces:
Runtime error
Runtime error
Commit
·
a5af814
1
Parent(s):
5112289
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,485 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
|
| 3 |
+
import os
|
| 4 |
+
|
| 5 |
+
from PIL import Image, ImageOps
|
| 6 |
+
|
| 7 |
+
import matplotlib.pyplot as plt
|
| 8 |
+
|
| 9 |
+
import numpy as np
|
| 10 |
+
|
| 11 |
+
import torch
|
| 12 |
+
|
| 13 |
+
import requests
|
| 14 |
+
|
| 15 |
+
from tqdm import tqdm
|
| 16 |
+
|
| 17 |
+
from io import BytesIO
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
from diffusers import StableDiffusionImg2ImgPipeline, StableDiffusionInpaintPipeline
|
| 22 |
+
|
| 23 |
+
import torchvision.transforms as T
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
from utils import preprocess,prepare_mask_and_masked_image, recover_image
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
to_pil = T.ToPILImage()
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
model_id_or_path = "runwayml/stable-diffusion-v1-5"
|
| 36 |
+
|
| 37 |
+
# model_id_or_path = "CompVis/stable-diffusion-v1-4"
|
| 38 |
+
|
| 39 |
+
# model_id_or_path = "CompVis/stable-diffusion-v1-3"
|
| 40 |
+
|
| 41 |
+
# model_id_or_path = "CompVis/stable-diffusion-v1-2"
|
| 42 |
+
|
| 43 |
+
# model_id_or_path = "CompVis/stable-diffusion-v1-1"
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
pipe_img2img = StableDiffusionImg2ImgPipeline.from_pretrained(
|
| 48 |
+
|
| 49 |
+
model_id_or_path,
|
| 50 |
+
|
| 51 |
+
revision="fp16",
|
| 52 |
+
|
| 53 |
+
torch_dtype=torch.float16,
|
| 54 |
+
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
pipe_img2img = pipe_img2img.to("cuda")
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
pipe_inpaint = StableDiffusionInpaintPipeline.from_pretrained(
|
| 62 |
+
|
| 63 |
+
"runwayml/stable-diffusion-inpainting",
|
| 64 |
+
|
| 65 |
+
revision="fp16",
|
| 66 |
+
|
| 67 |
+
torch_dtype=torch.float16,
|
| 68 |
+
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
pipe_inpaint = pipe_inpaint.to("cuda")
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
def pgd(X, model, eps=0.1, step_size=0.015, iters=40, clamp_min=0, clamp_max=1, mask=None):
|
| 76 |
+
|
| 77 |
+
X_adv = X.clone().detach() + (torch.rand(*X.shape)*2*eps-eps).cuda()
|
| 78 |
+
|
| 79 |
+
pbar = tqdm(range(iters))
|
| 80 |
+
|
| 81 |
+
for i in pbar:
|
| 82 |
+
|
| 83 |
+
actual_step_size = step_size - (step_size - step_size / 100) / iters * i
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
X_adv.requires_grad_(True)
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
loss = (model(X_adv).latent_dist.mean).norm()
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
pbar.set_description(f"[Running attack]: Loss {loss.item():.5f} | step size: {actual_step_size:.4}")
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
grad, = torch.autograd.grad(loss, [X_adv])
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
X_adv = X_adv - grad.detach().sign() * actual_step_size
|
| 104 |
+
|
| 105 |
+
X_adv = torch.minimum(torch.maximum(X_adv, X - eps), X + eps)
|
| 106 |
+
|
| 107 |
+
X_adv.data = torch.clamp(X_adv, min=clamp_min, max=clamp_max)
|
| 108 |
+
|
| 109 |
+
X_adv.grad = None
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
if mask is not None:
|
| 114 |
+
|
| 115 |
+
X_adv.data *= mask
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
return X_adv
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
def pgd_inpaint(X, target, model, criterion, eps=0.1, step_size=0.015, iters=40, clamp_min=0, clamp_max=1, mask=None):
|
| 124 |
+
|
| 125 |
+
X_adv = X.clone().detach() + (torch.rand(*X.shape)*2*eps-eps).cuda()
|
| 126 |
+
|
| 127 |
+
pbar = tqdm(range(iters))
|
| 128 |
+
|
| 129 |
+
for i in pbar:
|
| 130 |
+
|
| 131 |
+
actual_step_size = step_size - (step_size - step_size / 100) / iters * i
|
| 132 |
+
|
| 133 |
+
X_adv.requires_grad_(True)
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
loss = (model(X_adv).latent_dist.mean - target).norm()
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
pbar.set_description(f"[Running attack]: Loss {loss.item():.5f} | step size: {actual_step_size:.4}")
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
grad, = torch.autograd.grad(loss, [X_adv])
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
X_adv = X_adv - grad.detach().sign() * actual_step_size
|
| 150 |
+
|
| 151 |
+
X_adv = torch.minimum(torch.maximum(X_adv, X - eps), X + eps)
|
| 152 |
+
|
| 153 |
+
X_adv.data = torch.clamp(X_adv, min=clamp_min, max=clamp_max)
|
| 154 |
+
|
| 155 |
+
X_adv.grad = None
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
|
| 159 |
+
if mask is not None:
|
| 160 |
+
|
| 161 |
+
X_adv.data *= mask
|
| 162 |
+
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
return X_adv
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
def process_image_img2img(raw_image,prompt, scale, num_steps, seed):
|
| 170 |
+
|
| 171 |
+
resize = T.transforms.Resize(512)
|
| 172 |
+
|
| 173 |
+
center_crop = T.transforms.CenterCrop(512)
|
| 174 |
+
|
| 175 |
+
init_image = center_crop(resize(raw_image))
|
| 176 |
+
|
| 177 |
+
with torch.autocast('cuda'):
|
| 178 |
+
|
| 179 |
+
X = preprocess(init_image).half().cuda()
|
| 180 |
+
|
| 181 |
+
adv_X = pgd(X,
|
| 182 |
+
|
| 183 |
+
model=pipe_img2img.vae.encode,
|
| 184 |
+
|
| 185 |
+
clamp_min=-1,
|
| 186 |
+
|
| 187 |
+
clamp_max=1,
|
| 188 |
+
|
| 189 |
+
eps=0.06, # The higher, the less imperceptible the attack is
|
| 190 |
+
|
| 191 |
+
step_size=0.02, # Set smaller than eps
|
| 192 |
+
|
| 193 |
+
iters=100, # The higher, the stronger your attack will be
|
| 194 |
+
|
| 195 |
+
)
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
|
| 199 |
+
# convert pixels back to [0,1] range
|
| 200 |
+
|
| 201 |
+
adv_X = (adv_X / 2 + 0.5).clamp(0, 1)
|
| 202 |
+
|
| 203 |
+
|
| 204 |
+
|
| 205 |
+
adv_image = to_pil(adv_X[0]).convert("RGB")
|
| 206 |
+
|
| 207 |
+
|
| 208 |
+
|
| 209 |
+
# a good seed (uncomment the line below to generate new images)
|
| 210 |
+
|
| 211 |
+
SEED = seed# Default is 9222
|
| 212 |
+
|
| 213 |
+
# SEED = np.random.randint(low=0, high=10000)
|
| 214 |
+
|
| 215 |
+
|
| 216 |
+
|
| 217 |
+
# Play with these for improving generated image quality
|
| 218 |
+
|
| 219 |
+
STRENGTH = 0.5
|
| 220 |
+
|
| 221 |
+
GUIDANCE = scale # Default is 7.5
|
| 222 |
+
|
| 223 |
+
NUM_STEPS = num_steps # Default is 50
|
| 224 |
+
|
| 225 |
+
|
| 226 |
+
|
| 227 |
+
with torch.autocast('cuda'):
|
| 228 |
+
|
| 229 |
+
torch.manual_seed(SEED)
|
| 230 |
+
|
| 231 |
+
image_nat = pipe_img2img(prompt=prompt, image=init_image, strength=STRENGTH, guidance_scale=GUIDANCE, num_inference_steps=NUM_STEPS).images[0]
|
| 232 |
+
|
| 233 |
+
torch.manual_seed(SEED)
|
| 234 |
+
|
| 235 |
+
image_adv = pipe_img2img(prompt=prompt, image=adv_image, strength=STRENGTH, guidance_scale=GUIDANCE, num_inference_steps=NUM_STEPS).images[0]
|
| 236 |
+
|
| 237 |
+
|
| 238 |
+
|
| 239 |
+
return [(init_image,"Source Image"), (adv_image, "Adv Image"), (image_nat,"Gen. Image Nat"), (image_adv, "Gen. Image Adv")]
|
| 240 |
+
|
| 241 |
+
|
| 242 |
+
|
| 243 |
+
def process_image_inpaint(raw_image,mask, prompt,scale, num_steps, seed):
|
| 244 |
+
|
| 245 |
+
init_image = raw_image.convert('RGB').resize((512,512))
|
| 246 |
+
|
| 247 |
+
mask_image = mask.convert('RGB')
|
| 248 |
+
|
| 249 |
+
mask_image = ImageOps.invert(mask_image).resize((512,512))
|
| 250 |
+
|
| 251 |
+
|
| 252 |
+
|
| 253 |
+
# Attack using embedding of random image from internet
|
| 254 |
+
|
| 255 |
+
target_url = "https://bostonglobe-prod.cdn.arcpublishing.com/resizer/2-ZvyQ3aRNl_VNo7ja51BM5-Kpk=/960x0/cloudfront-us-east-1.images.arcpublishing.com/bostonglobe/CZOXE32LQQX5UNAB42AOA3SUY4.jpg"
|
| 256 |
+
|
| 257 |
+
response = requests.get(target_url)
|
| 258 |
+
|
| 259 |
+
target_image = Image.open(BytesIO(response.content)).convert("RGB")
|
| 260 |
+
|
| 261 |
+
target_image = target_image.resize((512, 512))
|
| 262 |
+
|
| 263 |
+
|
| 264 |
+
|
| 265 |
+
with torch.autocast('cuda'):
|
| 266 |
+
|
| 267 |
+
mask, X = prepare_mask_and_masked_image(init_image, mask_image)
|
| 268 |
+
|
| 269 |
+
X = X.half().cuda()
|
| 270 |
+
|
| 271 |
+
mask = mask.half().cuda()
|
| 272 |
+
|
| 273 |
+
|
| 274 |
+
|
| 275 |
+
# Here we attack towards the embedding of a random target image. You can also simply attack towards an embedding of zeros!
|
| 276 |
+
|
| 277 |
+
target = pipe_inpaint.vae.encode(preprocess(target_image).half().cuda()).latent_dist.mean
|
| 278 |
+
|
| 279 |
+
|
| 280 |
+
|
| 281 |
+
adv_X = pgd_inpaint(X,
|
| 282 |
+
|
| 283 |
+
target = target,
|
| 284 |
+
|
| 285 |
+
model=pipe_inpaint.vae.encode,
|
| 286 |
+
|
| 287 |
+
criterion=torch.nn.MSELoss(),
|
| 288 |
+
|
| 289 |
+
clamp_min=-1,
|
| 290 |
+
|
| 291 |
+
clamp_max=1,
|
| 292 |
+
|
| 293 |
+
eps=0.06,
|
| 294 |
+
|
| 295 |
+
step_size=0.01,
|
| 296 |
+
|
| 297 |
+
iters=1000,
|
| 298 |
+
|
| 299 |
+
mask=1-mask
|
| 300 |
+
|
| 301 |
+
)
|
| 302 |
+
|
| 303 |
+
|
| 304 |
+
|
| 305 |
+
adv_X = (adv_X / 2 + 0.5).clamp(0, 1)
|
| 306 |
+
|
| 307 |
+
|
| 308 |
+
|
| 309 |
+
adv_image = to_pil(adv_X[0]).convert("RGB")
|
| 310 |
+
|
| 311 |
+
adv_image = recover_image(adv_image, init_image, mask_image, background=True)
|
| 312 |
+
|
| 313 |
+
|
| 314 |
+
|
| 315 |
+
# A good seed
|
| 316 |
+
|
| 317 |
+
SEED = seed #Default is 9209
|
| 318 |
+
|
| 319 |
+
|
| 320 |
+
|
| 321 |
+
# Uncomment the below to generated other images
|
| 322 |
+
|
| 323 |
+
# SEED = np.random.randint(low=0, high=100000)
|
| 324 |
+
|
| 325 |
+
|
| 326 |
+
|
| 327 |
+
torch.manual_seed(SEED)
|
| 328 |
+
|
| 329 |
+
print(SEED)
|
| 330 |
+
|
| 331 |
+
|
| 332 |
+
|
| 333 |
+
#strength = 0.7
|
| 334 |
+
|
| 335 |
+
guidance_scale = scale# Default is 7.5
|
| 336 |
+
|
| 337 |
+
num_inference_steps = num_steps # Default is 100
|
| 338 |
+
|
| 339 |
+
|
| 340 |
+
|
| 341 |
+
image_nat = pipe_inpaint(prompt=prompt,
|
| 342 |
+
|
| 343 |
+
image=init_image,
|
| 344 |
+
|
| 345 |
+
mask_image=mask_image,
|
| 346 |
+
|
| 347 |
+
eta=1,
|
| 348 |
+
|
| 349 |
+
num_inference_steps=num_inference_steps,
|
| 350 |
+
|
| 351 |
+
guidance_scale=guidance_scale
|
| 352 |
+
|
| 353 |
+
#strength=strength
|
| 354 |
+
|
| 355 |
+
).images[0]
|
| 356 |
+
|
| 357 |
+
image_nat = recover_image(image_nat, init_image, mask_image)
|
| 358 |
+
|
| 359 |
+
|
| 360 |
+
|
| 361 |
+
torch.manual_seed(SEED)
|
| 362 |
+
|
| 363 |
+
image_adv = pipe_inpaint(prompt=prompt,
|
| 364 |
+
|
| 365 |
+
image=adv_image,
|
| 366 |
+
|
| 367 |
+
mask_image=mask_image,
|
| 368 |
+
|
| 369 |
+
eta=1,
|
| 370 |
+
|
| 371 |
+
num_inference_steps=num_inference_steps,
|
| 372 |
+
|
| 373 |
+
guidance_scale=guidance_scale
|
| 374 |
+
|
| 375 |
+
#strength=strength
|
| 376 |
+
|
| 377 |
+
).images[0]
|
| 378 |
+
|
| 379 |
+
image_adv = recover_image(image_adv, init_image, mask_image)
|
| 380 |
+
|
| 381 |
+
|
| 382 |
+
|
| 383 |
+
return [(init_image,"Source Image"), (adv_image, "Adv Image"), (image_nat,"Gen. Image Nat"), (image_adv, "Gen. Image Adv")]
|
| 384 |
+
|
| 385 |
+
|
| 386 |
+
|
| 387 |
+
|
| 388 |
+
|
| 389 |
+
examples_list = [["dog.png", "dog under heavy rain and muddy ground real", 7.5, 50, 9222]]
|
| 390 |
+
|
| 391 |
+
|
| 392 |
+
|
| 393 |
+
|
| 394 |
+
|
| 395 |
+
with gr.Blocks() as demo:
|
| 396 |
+
|
| 397 |
+
gr.Markdown("""
|
| 398 |
+
|
| 399 |
+
## Interactive demo: Raising the Cost of Malicious AI-Powered Image Editing
|
| 400 |
+
|
| 401 |
+
""")
|
| 402 |
+
|
| 403 |
+
gr.HTML('''
|
| 404 |
+
|
| 405 |
+
<p style="margin-bottom: 10px; font-size: 94%">This is an unofficial demo for Photoguard, which is an approach to safeguarding images against manipulation by ML-powered photo-editing models such as stable diffusion through immunization of images. The demo is based on the <a href='https://github.com/MadryLab/photoguard' style='text-decoration: underline;' target='_blank'> Github </a> implementation provided by the authors.</p>
|
| 406 |
+
|
| 407 |
+
''')
|
| 408 |
+
|
| 409 |
+
gr.HTML('''
|
| 410 |
+
|
| 411 |
+
<p align="center"><img src="https://raw.githubusercontent.com/MadryLab/photoguard/main/assets/hero_fig.PNG" style="width:60%"/></p>
|
| 412 |
+
|
| 413 |
+
''')
|
| 414 |
+
|
| 415 |
+
gr.HTML('''
|
| 416 |
+
|
| 417 |
+
<p style="margin-bottom: 10px; font-size: 94%"> A malevolent actor might download
|
| 418 |
+
|
| 419 |
+
photos of people posted online and edit them maliciously using an off-the-shelf diffusion model. The adversary
|
| 420 |
+
|
| 421 |
+
describes via a textual prompt the desired changes and then uses a diffusion model to generate a realistic
|
| 422 |
+
|
| 423 |
+
image that matches the prompt (similar to the top row in the image). By immunizing the original image before the adversary can access it,
|
| 424 |
+
|
| 425 |
+
we disrupt their ability to successfully perform such edits forcing them to generate unrealistic images (similar to the bottom row in the image). For a more detailed explanation, please read the accompanying <a href='https://arxiv.org/abs/2302.06588' style='text-decoration: underline;' target='_blank'> Paper </a> or <a href='https://gradientscience.org/photoguard/' style='text-decoration: underline;' target='_blank'> Blogpost </a>
|
| 426 |
+
|
| 427 |
+
''')
|
| 428 |
+
|
| 429 |
+
|
| 430 |
+
|
| 431 |
+
with gr.Column():
|
| 432 |
+
|
| 433 |
+
with gr.Tab("Simple Image to Image"):
|
| 434 |
+
|
| 435 |
+
input_image_img2img = gr.Image(type="pil", label = "Source Image")
|
| 436 |
+
|
| 437 |
+
input_prompt_img2img = gr.Textbox(label="Prompt")
|
| 438 |
+
|
| 439 |
+
run_btn_img2img = gr.Button('Run')
|
| 440 |
+
|
| 441 |
+
|
| 442 |
+
|
| 443 |
+
with gr.Tab("Simple Inpainting"):
|
| 444 |
+
|
| 445 |
+
input_image_inpaint = gr.Image(type="pil", label = "Source Image")
|
| 446 |
+
|
| 447 |
+
mask_image_inpaint = gr.Image(type="pil", label = "Mask")
|
| 448 |
+
|
| 449 |
+
input_prompt_inpaint = gr.Textbox(label="Prompt")
|
| 450 |
+
|
| 451 |
+
run_btn_inpaint = gr.Button('Run')
|
| 452 |
+
|
| 453 |
+
|
| 454 |
+
|
| 455 |
+
with gr.Accordion("Advanced options", open=False):
|
| 456 |
+
|
| 457 |
+
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=7.5, step=0.1)
|
| 458 |
+
|
| 459 |
+
num_steps = gr.Slider(label="Number of Inference Steps", minimum=5, maximum=125, value=100, step=5)
|
| 460 |
+
|
| 461 |
+
seed = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, randomize=True)
|
| 462 |
+
|
| 463 |
+
|
| 464 |
+
|
| 465 |
+
with gr.Row():
|
| 466 |
+
|
| 467 |
+
result_gallery = gr.Gallery(
|
| 468 |
+
|
| 469 |
+
label="Generated images", show_label=False, elem_id="gallery"
|
| 470 |
+
|
| 471 |
+
).style(grid=[2], height="auto")
|
| 472 |
+
|
| 473 |
+
|
| 474 |
+
|
| 475 |
+
run_btn_img2img.click(process_image_img2img, inputs = [input_image_img2img,input_prompt_img2img, scale, num_steps, seed], outputs = [result_gallery])
|
| 476 |
+
|
| 477 |
+
examples = gr.Examples(examples=examples_list,inputs = [input_image_img2img,input_prompt_img2img,scale, num_steps, seed], outputs = [result_gallery], cache_examples = True, fn = process_image_img2img)
|
| 478 |
+
|
| 479 |
+
run_btn_inpaint.click(process_image_inpaint, inputs = [input_image_inpaint,mask_image_inpaint,input_prompt_inpaint,scale, num_steps, seed], outputs = [result_gallery])
|
| 480 |
+
|
| 481 |
+
|
| 482 |
+
|
| 483 |
+
|
| 484 |
+
|
| 485 |
+
demo.launch(debug=True)
|