Update app.py
Browse files
app.py
CHANGED
|
@@ -2,7 +2,6 @@ import gradio as gr
|
|
| 2 |
from transformers import pipeline
|
| 3 |
import requests, re, datetime
|
| 4 |
from concurrent.futures import ThreadPoolExecutor
|
| 5 |
-
from sentence_transformers import SentenceTransformer, util
|
| 6 |
|
| 7 |
# ---------------------------
|
| 8 |
# Load Models
|
|
@@ -16,14 +15,11 @@ claim_labels = ["factual claim", "opinion", "personal anecdote", "other"]
|
|
| 16 |
ai_detect_model_name = "roberta-base-openai-detector"
|
| 17 |
ai_detector = pipeline("text-classification", model=ai_detect_model_name, device=-1)
|
| 18 |
|
| 19 |
-
# Semantic similarity model
|
| 20 |
-
sem_model = SentenceTransformer('all-MiniLM-L6-v2')
|
| 21 |
-
|
| 22 |
# ---------------------------
|
| 23 |
# Google Search Config
|
| 24 |
# ---------------------------
|
| 25 |
-
GOOGLE_API_KEY = "
|
| 26 |
-
GOOGLE_CX = "
|
| 27 |
|
| 28 |
google_quota = {"count": 0, "date": datetime.date.today()}
|
| 29 |
GOOGLE_DAILY_LIMIT = 100
|
|
@@ -42,9 +38,15 @@ def safe_split_text(text):
|
|
| 42 |
# ---------------------------
|
| 43 |
# Claim Extraction
|
| 44 |
# ---------------------------
|
| 45 |
-
def extract_claims(page_text, max_claims=20):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
sentences = safe_split_text(page_text)
|
| 47 |
|
|
|
|
| 48 |
def classify_sentence(s):
|
| 49 |
out = claim_classifier(s, claim_labels)
|
| 50 |
label_priority = ["factual claim", "opinion", "personal anecdote"]
|
|
@@ -53,12 +55,14 @@ def extract_claims(page_text, max_claims=20):
|
|
| 53 |
return {"text": s, "label": lbl, "score": round(out["scores"][out["labels"].index(lbl)], 3)}
|
| 54 |
return None
|
| 55 |
|
|
|
|
| 56 |
results = []
|
| 57 |
with ThreadPoolExecutor() as executor:
|
| 58 |
for r in executor.map(classify_sentence, sentences):
|
| 59 |
if r:
|
| 60 |
results.append(r)
|
| 61 |
|
|
|
|
| 62 |
results = sorted(results, key=lambda x: -len(x["text"]))[:max_claims]
|
| 63 |
return results
|
| 64 |
|
|
@@ -66,6 +70,7 @@ def extract_claims(page_text, max_claims=20):
|
|
| 66 |
# AI Text Detection
|
| 67 |
# ---------------------------
|
| 68 |
def detect_ai(texts):
|
|
|
|
| 69 |
if isinstance(texts, str):
|
| 70 |
texts = [texts]
|
| 71 |
results = []
|
|
@@ -79,56 +84,40 @@ def detect_ai(texts):
|
|
| 79 |
# ---------------------------
|
| 80 |
# Google Evidence Gathering
|
| 81 |
# ---------------------------
|
| 82 |
-
def fetch_google_search(claim
|
| 83 |
-
"""
|
| 84 |
-
Returns top 3 keyword results as before
|
| 85 |
-
and top 3 semantic results
|
| 86 |
-
"""
|
| 87 |
global google_quota
|
| 88 |
today = datetime.date.today()
|
| 89 |
if google_quota["date"] != today:
|
| 90 |
google_quota = {"count": 0, "date": today}
|
| 91 |
|
| 92 |
if google_quota["count"] >= GOOGLE_DAILY_LIMIT:
|
| 93 |
-
return
|
| 94 |
-
"keyword_results": ["[Google] Daily quota reached (100 queries)."],
|
| 95 |
-
"semantic_results": ["[Google] Daily quota reached (100 queries)."]
|
| 96 |
-
}
|
| 97 |
|
| 98 |
try:
|
| 99 |
-
url = f"https://www.googleapis.com/customsearch/v1?q={requests.utils.quote(claim)}&key={GOOGLE_API_KEY}&cx={GOOGLE_CX}
|
| 100 |
r = requests.get(url).json()
|
| 101 |
google_quota["count"] += 1
|
| 102 |
items = r.get("items", [])
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
# Semantic-based results (top 3 by similarity)
|
| 108 |
-
semantic_results = []
|
| 109 |
-
if items:
|
| 110 |
-
claim_emb = sem_model.encode(claim, convert_to_tensor=True)
|
| 111 |
-
snippets = [f"{item['title']}: {item['snippet']}" for item in items]
|
| 112 |
-
snippet_embs = sem_model.encode(snippets, convert_to_tensor=True)
|
| 113 |
-
sims = util.cos_sim(claim_emb, snippet_embs)[0]
|
| 114 |
-
top_indices = sims.argsort(descending=True)[:3]
|
| 115 |
-
semantic_results = [snippets[i] for i in top_indices]
|
| 116 |
-
|
| 117 |
-
return {"keyword_results": keyword_results, "semantic_results": semantic_results}
|
| 118 |
-
|
| 119 |
-
except Exception as e:
|
| 120 |
-
return {"keyword_results": [], "semantic_results": []}
|
| 121 |
|
| 122 |
# ---------------------------
|
| 123 |
# Unified Predict Function
|
| 124 |
# ---------------------------
|
| 125 |
def predict(user_text=""):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
if not user_text.strip():
|
| 127 |
return {"error": "No text provided."}
|
| 128 |
|
| 129 |
# --- Full text analysis ---
|
| 130 |
full_ai_result = detect_ai(user_text)
|
| 131 |
-
|
|
|
|
| 132 |
dot_sentences = [s.strip() for s in user_text.split('.') if s.strip()]
|
| 133 |
full_fact_checking = {s: fetch_google_search(s) for s in dot_sentences}
|
| 134 |
|
|
@@ -136,7 +125,7 @@ def predict(user_text=""):
|
|
| 136 |
claims_data = extract_claims(user_text)
|
| 137 |
claims_texts = [c["text"] for c in claims_data]
|
| 138 |
claims_ai_results = detect_ai(claims_texts) if claims_texts else []
|
| 139 |
-
|
| 140 |
|
| 141 |
return {
|
| 142 |
"full_text": {
|
|
@@ -146,7 +135,7 @@ def predict(user_text=""):
|
|
| 146 |
},
|
| 147 |
"claims": claims_data,
|
| 148 |
"claims_ai_detection": claims_ai_results,
|
| 149 |
-
"claims_fact_checking":
|
| 150 |
"google_quota_used": google_quota["count"],
|
| 151 |
"google_quota_reset": str(datetime.datetime.combine(
|
| 152 |
google_quota["date"] + datetime.timedelta(days=1),
|
|
|
|
| 2 |
from transformers import pipeline
|
| 3 |
import requests, re, datetime
|
| 4 |
from concurrent.futures import ThreadPoolExecutor
|
|
|
|
| 5 |
|
| 6 |
# ---------------------------
|
| 7 |
# Load Models
|
|
|
|
| 15 |
ai_detect_model_name = "roberta-base-openai-detector"
|
| 16 |
ai_detector = pipeline("text-classification", model=ai_detect_model_name, device=-1)
|
| 17 |
|
|
|
|
|
|
|
|
|
|
| 18 |
# ---------------------------
|
| 19 |
# Google Search Config
|
| 20 |
# ---------------------------
|
| 21 |
+
GOOGLE_API_KEY = "AIzaSyAC56onKwR17zd_djUPEfGXQACy9qRjDxw"
|
| 22 |
+
GOOGLE_CX = "87391aed073954cae"
|
| 23 |
|
| 24 |
google_quota = {"count": 0, "date": datetime.date.today()}
|
| 25 |
GOOGLE_DAILY_LIMIT = 100
|
|
|
|
| 38 |
# ---------------------------
|
| 39 |
# Claim Extraction
|
| 40 |
# ---------------------------
|
| 41 |
+
def extract_claims(page_text, max_claims=20, batch_size=50):
|
| 42 |
+
"""
|
| 43 |
+
Extract top claims from text:
|
| 44 |
+
- Uses safe_split_text for splitting.
|
| 45 |
+
- Classifies each piece into factual claim, opinion, or anecdote.
|
| 46 |
+
"""
|
| 47 |
sentences = safe_split_text(page_text)
|
| 48 |
|
| 49 |
+
# Step 1: Function to classify a single sentence
|
| 50 |
def classify_sentence(s):
|
| 51 |
out = claim_classifier(s, claim_labels)
|
| 52 |
label_priority = ["factual claim", "opinion", "personal anecdote"]
|
|
|
|
| 55 |
return {"text": s, "label": lbl, "score": round(out["scores"][out["labels"].index(lbl)], 3)}
|
| 56 |
return None
|
| 57 |
|
| 58 |
+
# Step 2: Threaded classification
|
| 59 |
results = []
|
| 60 |
with ThreadPoolExecutor() as executor:
|
| 61 |
for r in executor.map(classify_sentence, sentences):
|
| 62 |
if r:
|
| 63 |
results.append(r)
|
| 64 |
|
| 65 |
+
# Step 3: Limit top claims
|
| 66 |
results = sorted(results, key=lambda x: -len(x["text"]))[:max_claims]
|
| 67 |
return results
|
| 68 |
|
|
|
|
| 70 |
# AI Text Detection
|
| 71 |
# ---------------------------
|
| 72 |
def detect_ai(texts):
|
| 73 |
+
"""Detect whether input text is AI-generated or human-written."""
|
| 74 |
if isinstance(texts, str):
|
| 75 |
texts = [texts]
|
| 76 |
results = []
|
|
|
|
| 84 |
# ---------------------------
|
| 85 |
# Google Evidence Gathering
|
| 86 |
# ---------------------------
|
| 87 |
+
def fetch_google_search(claim):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
global google_quota
|
| 89 |
today = datetime.date.today()
|
| 90 |
if google_quota["date"] != today:
|
| 91 |
google_quota = {"count": 0, "date": today}
|
| 92 |
|
| 93 |
if google_quota["count"] >= GOOGLE_DAILY_LIMIT:
|
| 94 |
+
return ["[Google] Daily quota reached (100 queries)."]
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
try:
|
| 97 |
+
url = f"https://www.googleapis.com/customsearch/v1?q={requests.utils.quote(claim)}&key={GOOGLE_API_KEY}&cx={GOOGLE_CX}"
|
| 98 |
r = requests.get(url).json()
|
| 99 |
google_quota["count"] += 1
|
| 100 |
items = r.get("items", [])
|
| 101 |
+
return [f"{item['title']}: {item['snippet']}" for item in items[:3]] # top 3 results
|
| 102 |
+
except Exception:
|
| 103 |
+
return []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
|
| 105 |
# ---------------------------
|
| 106 |
# Unified Predict Function
|
| 107 |
# ---------------------------
|
| 108 |
def predict(user_text=""):
|
| 109 |
+
"""
|
| 110 |
+
Runs both:
|
| 111 |
+
1. Full-text analysis (AI detection on entire input + sentence-based fact-check)
|
| 112 |
+
2. Claim-extracted analysis (claim split + AI detection + fact-check)
|
| 113 |
+
"""
|
| 114 |
if not user_text.strip():
|
| 115 |
return {"error": "No text provided."}
|
| 116 |
|
| 117 |
# --- Full text analysis ---
|
| 118 |
full_ai_result = detect_ai(user_text)
|
| 119 |
+
|
| 120 |
+
# NEW: Split strictly by '.' to preserve full user input sentences
|
| 121 |
dot_sentences = [s.strip() for s in user_text.split('.') if s.strip()]
|
| 122 |
full_fact_checking = {s: fetch_google_search(s) for s in dot_sentences}
|
| 123 |
|
|
|
|
| 125 |
claims_data = extract_claims(user_text)
|
| 126 |
claims_texts = [c["text"] for c in claims_data]
|
| 127 |
claims_ai_results = detect_ai(claims_texts) if claims_texts else []
|
| 128 |
+
fact_checking = {c["text"]: fetch_google_search(c["text"]) for c in claims_data}
|
| 129 |
|
| 130 |
return {
|
| 131 |
"full_text": {
|
|
|
|
| 135 |
},
|
| 136 |
"claims": claims_data,
|
| 137 |
"claims_ai_detection": claims_ai_results,
|
| 138 |
+
"claims_fact_checking": fact_checking,
|
| 139 |
"google_quota_used": google_quota["count"],
|
| 140 |
"google_quota_reset": str(datetime.datetime.combine(
|
| 141 |
google_quota["date"] + datetime.timedelta(days=1),
|