Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	Commit 
							
							·
						
						3680e02
	
1
								Parent(s):
							
							c3e50d5
								
Add application file
Browse files- app/model.py +25 -50
    	
        app/model.py
    CHANGED
    
    | @@ -1,79 +1,54 @@ | |
| 1 | 
            -
            from  | 
|  | |
| 2 | 
             
            from keras.models import load_model
         | 
| 3 | 
             
            import pickle
         | 
| 4 | 
             
            import numpy as np
         | 
| 5 | 
             
            from keras.preprocessing.sequence import pad_sequences
         | 
| 6 |  | 
| 7 | 
            -
            app =  | 
| 8 |  | 
| 9 | 
             
            max_sequence_length = 180
         | 
| 10 |  | 
| 11 | 
            -
            #  | 
| 12 | 
             
            try:
         | 
| 13 | 
             
                model = load_model('word_prediction_model.h5')
         | 
| 14 | 
             
            except Exception as e:
         | 
| 15 | 
            -
                print(f" | 
| 16 | 
             
                model = None
         | 
| 17 |  | 
| 18 | 
            -
            #  | 
| 19 | 
             
            try:
         | 
| 20 | 
             
                with open('tokenizer.pickle', 'rb') as handle:
         | 
| 21 | 
             
                    tokenizer = pickle.load(handle)
         | 
| 22 | 
             
            except Exception as e:
         | 
| 23 | 
            -
                print(f" | 
| 24 | 
             
                tokenizer = None
         | 
| 25 |  | 
| 26 | 
            -
             | 
| 27 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 28 | 
             
                if tokenizer is None or model is None:
         | 
| 29 | 
            -
                     | 
|  | |
|  | |
|  | |
| 30 |  | 
| 31 | 
            -
                # Tokeniser la phrase d'entrée
         | 
| 32 | 
             
                input_sequence = tokenizer.texts_to_sequences([input_phrase])[0]
         | 
| 33 | 
            -
                
         | 
| 34 | 
            -
                # Remplir la séquence à la longueur maximale de séquence
         | 
| 35 | 
             
                padded_sequence = pad_sequences([input_sequence], maxlen=max_sequence_length-1, padding='pre')
         | 
| 36 | 
            -
                
         | 
| 37 | 
            -
                # Prédire les probabilités des mots suivants
         | 
| 38 | 
             
                predicted_probs = model.predict(padded_sequence)[0]
         | 
| 39 | 
            -
                
         | 
| 40 | 
            -
                # Obtenir les indices des mots avec les probabilités les plus élevées
         | 
| 41 | 
             
                top_indices = predicted_probs.argsort()[-top_n:][::-1]
         | 
| 42 | 
            -
                
         | 
| 43 | 
            -
                # Obtenir les mots correspondants aux indices
         | 
| 44 | 
             
                top_words = [tokenizer.index_word[index] for index in top_indices]
         | 
| 45 | 
            -
                
         | 
| 46 | 
            -
                # Obtenir les probabilités correspondantes
         | 
| 47 | 
             
                top_probabilities = predicted_probs[top_indices]
         | 
| 48 | 
            -
                
         | 
| 49 | 
            -
                return top_words, top_probabilities
         | 
| 50 | 
            -
            @app.route('/test', methods=['GET'])
         | 
| 51 | 
            -
            def test():
         | 
| 52 | 
            -
                    data = request.get_json()
         | 
| 53 | 
            -
                    input_phrase = data['input_phrase']
         | 
| 54 |  | 
| 55 | 
            -
             | 
| 56 | 
            -
                    response = {
         | 
| 57 | 
            -
                        "top_words": "test",
         | 
| 58 | 
            -
                        "top_probabilities": input_phrase
         | 
| 59 | 
            -
                    }
         | 
| 60 | 
            -
                    
         | 
| 61 | 
            -
                    return jsonify(response)
         | 
| 62 | 
            -
            @app.route('/predict', methods=['POST'])
         | 
| 63 | 
            -
            def predict():
         | 
| 64 | 
            -
                try:
         | 
| 65 | 
            -
                    data = request.get_json()
         | 
| 66 | 
            -
                    input_phrase = data['input_phrase']
         | 
| 67 | 
            -
                    top_n = data.get('top_n', 5)  # Par défaut, retourne les 5 meilleurs mots
         | 
| 68 | 
            -
                    
         | 
| 69 | 
            -
                    top_words, top_probabilities = predict_next_words_with_proba(input_phrase, top_n)
         | 
| 70 | 
            -
                    
         | 
| 71 | 
            -
                    response = {
         | 
| 72 | 
            -
                        "top_words": top_words,
         | 
| 73 | 
            -
                        "top_probabilities": top_probabilities.tolist()
         | 
| 74 | 
            -
                    }
         | 
| 75 | 
            -
                    
         | 
| 76 | 
            -
                    return jsonify(response)
         | 
| 77 | 
            -
                except Exception as e:
         | 
| 78 | 
            -
                    return jsonify(error=str(e)), 500
         | 
| 79 |  | 
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            from fastapi import FastAPI, HTTPException
         | 
| 2 | 
            +
            from pydantic import BaseModel
         | 
| 3 | 
             
            from keras.models import load_model
         | 
| 4 | 
             
            import pickle
         | 
| 5 | 
             
            import numpy as np
         | 
| 6 | 
             
            from keras.preprocessing.sequence import pad_sequences
         | 
| 7 |  | 
| 8 | 
            +
            app = FastAPI()
         | 
| 9 |  | 
| 10 | 
             
            max_sequence_length = 180
         | 
| 11 |  | 
| 12 | 
            +
            # Load the trained model
         | 
| 13 | 
             
            try:
         | 
| 14 | 
             
                model = load_model('word_prediction_model.h5')
         | 
| 15 | 
             
            except Exception as e:
         | 
| 16 | 
            +
                print(f"Error loading the model: {str(e)}")
         | 
| 17 | 
             
                model = None
         | 
| 18 |  | 
| 19 | 
            +
            # Load the tokenizer
         | 
| 20 | 
             
            try:
         | 
| 21 | 
             
                with open('tokenizer.pickle', 'rb') as handle:
         | 
| 22 | 
             
                    tokenizer = pickle.load(handle)
         | 
| 23 | 
             
            except Exception as e:
         | 
| 24 | 
            +
                print(f"Error loading the tokenizer: {str(e)}")
         | 
| 25 | 
             
                tokenizer = None
         | 
| 26 |  | 
| 27 | 
            +
            class PredictionRequest(BaseModel):
         | 
| 28 | 
            +
                input_phrase: str
         | 
| 29 | 
            +
                top_n: int = 5
         | 
| 30 | 
            +
             | 
| 31 | 
            +
            class PredictionResponse(BaseModel):
         | 
| 32 | 
            +
                top_words: list
         | 
| 33 | 
            +
                top_probabilities: list
         | 
| 34 | 
            +
             | 
| 35 | 
            +
            @app.post("/predict", response_model=PredictionResponse)
         | 
| 36 | 
            +
            def predict(request: PredictionRequest):
         | 
| 37 | 
             
                if tokenizer is None or model is None:
         | 
| 38 | 
            +
                    raise HTTPException(status_code=500, detail="Model or tokenizer not loaded")
         | 
| 39 | 
            +
             | 
| 40 | 
            +
                input_phrase = request.input_phrase
         | 
| 41 | 
            +
                top_n = request.top_n
         | 
| 42 |  | 
|  | |
| 43 | 
             
                input_sequence = tokenizer.texts_to_sequences([input_phrase])[0]
         | 
|  | |
|  | |
| 44 | 
             
                padded_sequence = pad_sequences([input_sequence], maxlen=max_sequence_length-1, padding='pre')
         | 
|  | |
|  | |
| 45 | 
             
                predicted_probs = model.predict(padded_sequence)[0]
         | 
|  | |
|  | |
| 46 | 
             
                top_indices = predicted_probs.argsort()[-top_n:][::-1]
         | 
|  | |
|  | |
| 47 | 
             
                top_words = [tokenizer.index_word[index] for index in top_indices]
         | 
|  | |
|  | |
| 48 | 
             
                top_probabilities = predicted_probs[top_indices]
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 49 |  | 
| 50 | 
            +
                return {"top_words": top_words, "top_probabilities": top_probabilities.tolist()}
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 51 |  | 
| 52 | 
            +
            @app.get("/")
         | 
| 53 | 
            +
            def read_root():
         | 
| 54 | 
            +
                return {"message": "Hello from MDS Darija Prediction Team!"}
         | 
