File size: 5,673 Bytes
450a421
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8cbe59
 
 
 
450a421
c8cbe59
450a421
 
 
 
 
 
 
 
c8cbe59
450a421
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8cbe59
 
450a421
c8cbe59
450a421
 
 
 
 
 
 
 
 
c8cbe59
450a421
c8cbe59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
450a421
c8cbe59
 
 
450a421
c8cbe59
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import gradio as gr
import os
import numpy as np
from scipy.special import expit
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from PyPDF2 import PdfReader
from docx import Document

# Load Model and Tokenizer

MODEL = "cardiffnlp/tweet-topic-21-multi"
tokenizer = AutoTokenizer.from_pretrained(MODEL)
model = AutoModelForSequenceClassification.from_pretrained(MODEL)
class_mapping = model.config.id2label


# Text Analyzer 

def analyze_topics(text):
    detected_topics = []
    inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512)
    outputs = model(**inputs)

    scores = outputs.logits[0].detach().numpy()
    scores = expit(scores)
    predictions = (scores >= 0.5).astype(int)

    for i, pred in enumerate(predictions):
        if pred:
            topic_name = class_mapping[i]
            confidence = scores[i]
            detected_topics.append(f"• {topic_name} ({confidence:.2f})")

    if detected_topics:
        return "\n".join(detected_topics)
    else:
        return "No specific topics detected."


# Document Analyzer Helpers

def extract_text_from_file(file_path):
    ext = os.path.splitext(file_path)[1].lower()

    if ext == ".pdf":
        reader = PdfReader(file_path)
        text = " ".join([page.extract_text() for page in reader.pages if page.extract_text()])
    elif ext == ".docx":
        doc = Document(file_path)
        text = "\n".join([p.text for p in doc.paragraphs])
    elif ext == ".txt":
        with open(file_path, "r", encoding="utf-8") as f:
            text = f.read()
    else:
        raise ValueError("Unsupported file format. Please upload a PDF, DOCX, or TXT file.")

    return text.strip()


def analyze_document(file):
    if file is None:
        return "Please upload a document first."

    text = extract_text_from_file(file.name)
    if not text:
        return "No readable text found in document."

    # Split into chunks for large docs
    words = text.split()
    chunks = [" ".join(words[i:i + 400]) for i in range(0, len(words), 400)]

    all_detected_topics = {}

    for chunk in chunks:
        inputs = tokenizer(chunk, return_tensors="pt", truncation=True, max_length=512)
        outputs = model(**inputs)
        scores = outputs.logits[0].detach().numpy()
        scores = expit(scores)
        predictions = (scores >= 0.5).astype(int)

        for i, pred in enumerate(predictions):
            if pred:
                topic_name = class_mapping[i]
                confidence = scores[i]
                all_detected_topics.setdefault(topic_name, []).append(confidence)

    if all_detected_topics:
        summary = [
            f"• {topic} (avg confidence: {np.mean(confs):.2f})"
            for topic, confs in all_detected_topics.items()
        ]
        summary.sort(key=lambda x: float(x.split(': ')[-1].rstrip(')')), reverse=True)
        return "\n".join(summary)
    else:
        return "No specific topics detected in document."
    
# -------------------------
# Custom CSS for Dark Theme
# -------------------------
css = """
body, .gradio-container {
    background-color: #1a1a1a !important;
    color: #f5f5f5 !important;
    font-family: 'Inter', sans-serif !important;
}
h1, h2, h3, label {
    color: #ff9900 !important;
    font-weight: 600 !important;
}
textarea, input, .upload-box, .gr-box {
    background-color: #2a2a2a !important;
    color: #f5f5f5 !important;
    border: 1px solid #3a3a3a !important;
    border-radius: 10px !important;
}
button {
    background-color: #ff9900 !important;
    color: #1a1a1a !important;
    font-weight: 600 !important;
    border-radius: 8px !important;
    border: none !important;
    transition: 0.25s ease-in-out;
}
button:hover {
    background-color: #ffb84d !important;
}
.output-textbox {
    background-color: #252525 !important;
    color: #ffd480 !important;
    border: 1px solid #3a3a3a !important;
    border-radius: 10px !important;
}
.gr-tabs, .tabitem {
    background-color: transparent !important;
}
footer, .footer, .svelte-1xdkkgx {
    background: none !important;
    border: none !important;
    box-shadow: none !important;
    color: #888 !important;
    text-align: center !important;
}
"""

# -------------------------
# Layout Using Blocks
# -------------------------
with gr.Blocks(css=css, theme=gr.themes.Base(primary_hue="orange")) as app:
    gr.Markdown("<h1 style='text-align:center;'>🧠 AI Topic Analyzer</h1>")
    gr.Markdown(
        "Analyze text or upload a document to detect key topics using CardiffNLP’s Tweet Topic model."
    )

    with gr.Tabs():
        with gr.Tab("💬 Text Analyzer"):
            text_input = gr.Textbox(
                label="📝 Enter Text", placeholder="Type or paste text here...", lines=4
            )
            text_output = gr.Textbox(label="🎯 Detected Topics", elem_classes=["output-textbox"])
            analyze_text_btn = gr.Button("Analyze Text")
            analyze_text_btn.click(analyze_topics, inputs=text_input, outputs=text_output)

        with gr.Tab("📄 Document Analyzer"):
            file_input = gr.File(label="📄 Upload PDF, DOCX, or TXT", file_types=[".pdf", ".docx", ".txt"])
            doc_output = gr.Textbox(label="📘 Detected Topics", elem_classes=["output-textbox"])
            analyze_doc_btn = gr.Button("Analyze Document")
            analyze_doc_btn.click(analyze_document, inputs=file_input, outputs=doc_output)

    gr.Markdown("<p style='text-align:center; color:#888;'>Built with ❤️ using Gradio & Transformers</p>")

# -------------------------
# Launch
# -------------------------
if __name__ == "__main__":
    app.launch()