Spaces:
Running
on
Zero
Running
on
Zero
File size: 35,116 Bytes
a5c4c58 60f587b a5c4c58 60f587b a5c4c58 60f587b a5c4c58 60f587b a5c4c58 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Main wrapper class for Rex Omni
"""
import json
import time
from typing import Any, Dict, List, Optional, Tuple, Union
import torch
from PIL import Image
from qwen_vl_utils import process_vision_info, smart_resize
from .parser import convert_boxes_to_normalized_bins, parse_prediction
from .tasks import TASK_CONFIGS, TaskType, get_keypoint_config, get_task_config
class RexOmniWrapper:
"""
High-level wrapper for Rex-Omni
"""
def __init__(
self,
model_path: str,
backend: str = "transformers",
system_prompt: str = "You are a helpful assistant",
min_pixels: int = 16 * 28 * 28,
max_pixels: int = 2560 * 28 * 28,
max_tokens: int = 4096,
temperature: float = 0.0,
top_p: float = 0.8,
top_k: int = 1,
repetition_penalty: float = 1.05,
skip_special_tokens: bool = False,
stop: Optional[List[str]] = None,
**kwargs,
):
"""
Initialize the wrapper
Args:
model_path: Path to the model directory
backend: Backend type ("transformers" or "vllm")
system_prompt: System prompt for the model
min_pixels: Minimum pixels for image processing
max_pixels: Maximum pixels for image processing
max_tokens: Maximum number of tokens to generate
temperature: Controls randomness in generation
top_p: Nucleus sampling parameter
top_k: Top-k sampling parameter
repetition_penalty: Penalty for repetition
skip_special_tokens: Whether to skip special tokens in output
stop: Stop sequences for generation
**kwargs: Additional arguments for model initialization
"""
self.model_path = model_path
self.backend = backend.lower()
self.system_prompt = system_prompt
self.min_pixels = min_pixels
self.max_pixels = max_pixels
# Store generation parameters
self.max_tokens = max_tokens
self.temperature = temperature
self.top_p = top_p
self.top_k = top_k
self.repetition_penalty = repetition_penalty
self.skip_special_tokens = skip_special_tokens
self.stop = stop or ["<|im_end|>"]
# Initialize model and processor
self._initialize_model(**kwargs)
def _initialize_model(self, **kwargs):
"""Initialize model and processor based on backend type"""
print(f"Initializing {self.backend} backend...")
if self.backend == "vllm":
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
# Initialize VLLM model
self.model = LLM(
model=self.model_path,
tokenizer=self.model_path,
tokenizer_mode=kwargs.get("tokenizer_mode", "slow"),
limit_mm_per_prompt=kwargs.get(
"limit_mm_per_prompt", {"image": 10, "video": 10}
),
max_model_len=kwargs.get("max_model_len", 4096),
gpu_memory_utilization=kwargs.get("gpu_memory_utilization", 0.8),
tensor_parallel_size=kwargs.get("tensor_parallel_size", 1),
trust_remote_code=kwargs.get("trust_remote_code", True),
**{
k: v
for k, v in kwargs.items()
if k
not in [
"tokenizer_mode",
"limit_mm_per_prompt",
"max_model_len",
"gpu_memory_utilization",
"tensor_parallel_size",
"trust_remote_code",
]
},
)
# Initialize processor
self.processor = AutoProcessor.from_pretrained(
self.model_path,
min_pixels=self.min_pixels,
max_pixels=self.max_pixels,
)
# Set padding side to left for batch inference with Flash Attention
self.processor.tokenizer.padding_side = "left"
# Set up sampling parameters
self.sampling_params = SamplingParams(
max_tokens=self.max_tokens,
top_p=self.top_p,
repetition_penalty=self.repetition_penalty,
top_k=self.top_k,
temperature=self.temperature,
skip_special_tokens=self.skip_special_tokens,
stop=self.stop,
)
self.model_type = "vllm"
elif self.backend == "transformers":
import torch
from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration
# Initialize transformers model
self.model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
self.model_path,
torch_dtype=kwargs.get("torch_dtype", torch.bfloat16),
attn_implementation=kwargs.get(
"attn_implementation", "flash_attention_2"
),
device_map=kwargs.get("device_map", "auto"),
trust_remote_code=kwargs.get("trust_remote_code", True),
**{
k: v
for k, v in kwargs.items()
if k
not in [
"torch_dtype",
"attn_implementation",
"device_map",
"trust_remote_code",
]
},
)
# Initialize processor
self.processor = AutoProcessor.from_pretrained(
self.model_path,
min_pixels=self.min_pixels,
max_pixels=self.max_pixels,
use_fast=False,
)
# Set padding side to left for batch inference with Flash Attention
self.processor.tokenizer.padding_side = "left"
self.model_type = "transformers"
else:
raise ValueError(
f"Unsupported backend: {self.backend}. Choose 'transformers' or 'vllm'."
)
def inference(
self,
images: Union[Image.Image, List[Image.Image]],
task: Union[str, TaskType, List[Union[str, TaskType]]],
categories: Optional[Union[str, List[str], List[List[str]]]] = None,
keypoint_type: Optional[Union[str, List[str]]] = None,
visual_prompt_boxes: Optional[
Union[List[List[float]], List[List[List[float]]]]
] = None,
**kwargs,
) -> List[Dict[str, Any]]:
"""
Perform batch inference on images for various vision tasks.
Args:
images: Input image(s) in PIL.Image format. Can be single image or list of images.
task: Task type(s). Can be single task or list of tasks for batch processing.
Available options:
- "detection": Object detection with bounding boxes
- "pointing": Point to objects with coordinates
- "visual_prompting": Find similar objects based on reference boxes
- "keypoint": Detect keypoints for persons/hands/animals
- "ocr_box": Detect and recognize text in bounding boxes
- "ocr_polygon": Detect and recognize text in polygons
- "gui_grounding": Detect gui element and return in box format
- "gui_pointing": Point to gui element and return in point format
categories: Object categories to detect/locate. Can be:
- Single string: "person"
- List of strings: ["person", "car"] (applied to all images)
- List of lists: [["person"], ["car", "dog"]] (per-image categories)
keypoint_type: Type of keypoints for keypoint detection task.
Can be single string or list of strings for batch processing.
Options: "person", "hand", "animal"
visual_prompt_boxes: Reference bounding boxes for visual prompting task.
Can be single list or list of lists for batch processing.
Format: [[x0, y0, x1, y1], ...] or [[[x0, y0, x1, y1], ...], ...]
**kwargs: Additional arguments (reserved for future use)
Returns:
List of prediction dictionaries, one for each input image. Each dictionary contains:
- success (bool): Whether inference succeeded
- extracted_predictions (dict): Parsed predictions by category
- raw_output (str): Raw model output text
- inference_time (float): Total inference time in seconds
- num_output_tokens (int): Number of generated tokens
- num_prompt_tokens (int): Number of input tokens
- tokens_per_second (float): Generation speed
- image_size (tuple): Input image dimensions (width, height)
- task (str): Task type used
- prompt (str): Generated prompt sent to model
Examples:
# Single image object detection
results = model.inference(
images=image,
task="detection",
categories=["person", "car", "dog"]
)
# Batch processing with same task and categories
results = model.inference(
images=[img1, img2, img3],
task="detection",
categories=["person", "car"]
)
# Batch processing with different tasks per image
results = model.inference(
images=[img1, img2, img3],
task=["detection", "pointing", "keypoint"],
categories=[["person", "car"], ["dog"], ["person"]],
keypoint_type=[None, None, "person"]
)
# Batch keypoint detection with different types
results = model.inference(
images=[img1, img2],
task=["keypoint", "keypoint"],
categories=[["person"], ["hand"]],
keypoint_type=["person", "hand"]
)
# Batch visual prompting
results = model.inference(
images=[img1, img2],
task="visual_prompting",
visual_prompt_boxes=[
[[100, 100, 200, 200]],
[[50, 50, 150, 150], [300, 300, 400, 400]]
]
)
# Mixed batch processing
results = model.inference(
images=[img1, img2, img3],
task=["detection", "ocr_box", "pointing"],
categories=[["person", "car"], ["text"], ["dog"]]
)
"""
# Convert single image to list
if isinstance(images, Image.Image):
images = [images]
batch_size = len(images)
# Normalize inputs to batch format
tasks, categories_list, keypoint_types, visual_prompt_boxes_list = (
self._normalize_batch_inputs(
task, categories, keypoint_type, visual_prompt_boxes, batch_size
)
)
# Perform batch inference
return self._inference_batch(
images=images,
tasks=tasks,
categories_list=categories_list,
keypoint_types=keypoint_types,
visual_prompt_boxes_list=visual_prompt_boxes_list,
**kwargs,
)
def _normalize_batch_inputs(
self,
task: Union[str, TaskType, List[Union[str, TaskType]]],
categories: Optional[Union[str, List[str], List[List[str]]]],
keypoint_type: Optional[Union[str, List[str]]],
visual_prompt_boxes: Optional[
Union[List[List[float]], List[List[List[float]]]]
],
batch_size: int,
) -> Tuple[
List[TaskType],
List[Optional[List[str]]],
List[Optional[str]],
List[Optional[List[List[float]]]],
]:
"""Normalize all inputs to batch format"""
# Normalize tasks
if isinstance(task, (str, TaskType)):
# Single task for all images
if isinstance(task, str):
task = TaskType(task.lower())
tasks = [task] * batch_size
else:
# List of tasks
tasks = []
for t in task:
if isinstance(t, str):
tasks.append(TaskType(t.lower()))
else:
tasks.append(t)
if len(tasks) != batch_size:
raise ValueError(
f"Number of tasks ({len(tasks)}) must match number of images ({batch_size})"
)
# Normalize categories
if categories is None:
categories_list = [None] * batch_size
elif isinstance(categories, str):
# Single string for all images
categories_list = [[categories]] * batch_size
elif isinstance(categories, list):
if len(categories) == 0:
categories_list = [None] * batch_size
elif isinstance(categories[0], str):
# List of strings for all images
categories_list = [categories] * batch_size
else:
# List of lists (per-image categories)
categories_list = categories
if len(categories_list) != batch_size:
raise ValueError(
f"Number of category lists ({len(categories_list)}) must match number of images ({batch_size})"
)
else:
categories_list = [None] * batch_size
# Normalize keypoint_type
if keypoint_type is None:
keypoint_types = [None] * batch_size
elif isinstance(keypoint_type, str):
# Single keypoint type for all images
keypoint_types = [keypoint_type] * batch_size
else:
# List of keypoint types
keypoint_types = keypoint_type
if len(keypoint_types) != batch_size:
raise ValueError(
f"Number of keypoint types ({len(keypoint_types)}) must match number of images ({batch_size})"
)
# Normalize visual_prompt_boxes
if visual_prompt_boxes is None:
visual_prompt_boxes_list = [None] * batch_size
elif isinstance(visual_prompt_boxes, list):
if len(visual_prompt_boxes) == 0:
visual_prompt_boxes_list = [None] * batch_size
elif isinstance(visual_prompt_boxes[0], (int, float)):
# Single box for all images: [x0, y0, x1, y1]
visual_prompt_boxes_list = [[visual_prompt_boxes]] * batch_size
elif isinstance(visual_prompt_boxes[0], list):
if len(visual_prompt_boxes[0]) == 4 and isinstance(
visual_prompt_boxes[0][0], (int, float)
):
# List of boxes for all images: [[x0, y0, x1, y1], ...]
visual_prompt_boxes_list = [visual_prompt_boxes] * batch_size
else:
# List of lists of boxes (per-image boxes): [[[x0, y0, x1, y1], ...], ...]
visual_prompt_boxes_list = visual_prompt_boxes
if len(visual_prompt_boxes_list) != batch_size:
raise ValueError(
f"Number of visual prompt box lists ({len(visual_prompt_boxes_list)}) must match number of images ({batch_size})"
)
else:
visual_prompt_boxes_list = [None] * batch_size
else:
visual_prompt_boxes_list = [None] * batch_size
return tasks, categories_list, keypoint_types, visual_prompt_boxes_list
def _inference_batch(
self,
images: List[Image.Image],
tasks: List[TaskType],
categories_list: List[Optional[List[str]]],
keypoint_types: List[Optional[str]],
visual_prompt_boxes_list: List[Optional[List[List[float]]]],
**kwargs,
) -> List[Dict[str, Any]]:
"""Perform true batch inference"""
start_time = time.time()
batch_size = len(images)
# Prepare batch data
batch_messages = []
batch_prompts = []
batch_image_sizes = []
for i in range(batch_size):
image = images[i]
task = tasks[i]
categories = categories_list[i]
keypoint_type = keypoint_types[i]
visual_prompt_boxes = visual_prompt_boxes_list[i]
# Get image dimensions
w, h = image.size
batch_image_sizes.append((w, h))
# Generate prompt
prompt = self._generate_prompt(
task=task,
categories=categories,
keypoint_type=keypoint_type,
visual_prompt_boxes=visual_prompt_boxes,
image_width=w,
image_height=h,
)
batch_prompts.append(prompt)
# Calculate resized dimensions
resized_height, resized_width = smart_resize(
h,
w,
28,
min_pixels=self.min_pixels,
max_pixels=self.max_pixels,
)
# Prepare messages
if self.model_type == "transformers":
messages = [
{"role": "system", "content": self.system_prompt},
{
"role": "user",
"content": [
{
"type": "image",
"image": image,
"resized_height": resized_height,
"resized_width": resized_width,
},
{"type": "text", "text": prompt},
],
},
]
else:
messages = [
{"role": "system", "content": self.system_prompt},
{
"role": "user",
"content": [
{
"type": "image",
"image": image,
"min_pixels": self.min_pixels,
"max_pixels": self.max_pixels,
},
{"type": "text", "text": prompt},
],
},
]
batch_messages.append(messages)
# Perform batch generation
if self.model_type == "vllm":
batch_outputs, batch_generation_info = self._generate_vllm_batch(
batch_messages
)
else:
batch_outputs, batch_generation_info = self._generate_transformers_batch(
batch_messages, images
)
# Parse results
results = []
total_time = time.time() - start_time
for i in range(batch_size):
raw_output = batch_outputs[i]
generation_info = batch_generation_info[i]
w, h = batch_image_sizes[i]
task = tasks[i]
prompt = batch_prompts[i]
# Parse predictions
extracted_predictions = parse_prediction(
text=raw_output,
w=w,
h=h,
task_type=task.value,
)
# Calculate resized dimensions for result
resized_height, resized_width = smart_resize(
h,
w,
28,
min_pixels=self.min_pixels,
max_pixels=self.max_pixels,
)
result = {
"success": True,
"image_size": (w, h),
"resized_size": (resized_width, resized_height),
"task": task.value,
"prompt": prompt,
"raw_output": raw_output,
"extracted_predictions": extracted_predictions,
"inference_time": total_time, # Total batch time
**generation_info,
}
results.append(result)
return results
def _inference_single(
self,
image: Image.Image,
task: TaskType,
categories: Optional[Union[str, List[str]]] = None,
keypoint_type: Optional[str] = None,
visual_prompt_boxes: Optional[List[List[float]]] = None,
**kwargs,
) -> Dict[str, Any]:
"""Perform inference on a single image"""
start_time = time.time()
# Get image dimensions
w, h = image.size
# Generate prompt based on task
final_prompt = self._generate_prompt(
task=task,
categories=categories,
keypoint_type=keypoint_type,
visual_prompt_boxes=visual_prompt_boxes,
image_width=w,
image_height=h,
)
# Calculate resized dimensions using smart_resize
resized_height, resized_width = smart_resize(
h,
w,
28,
min_pixels=self.min_pixels,
max_pixels=self.max_pixels,
)
# Prepare messages
if self.model_type == "transformers":
# For transformers, use resized_height and resized_width
messages = [
{"role": "system", "content": self.system_prompt},
{
"role": "user",
"content": [
{
"type": "image",
"image": image,
"resized_height": resized_height,
"resized_width": resized_width,
},
{"type": "text", "text": final_prompt},
],
},
]
else:
# For VLLM, use min_pixels and max_pixels
messages = [
{"role": "system", "content": self.system_prompt},
{
"role": "user",
"content": [
{
"type": "image",
"image": image,
"min_pixels": self.min_pixels,
"max_pixels": self.max_pixels,
},
{"type": "text", "text": final_prompt},
],
},
]
# Generate response
if self.model_type == "vllm":
raw_output, generation_info = self._generate_vllm(messages)
else:
raw_output, generation_info = self._generate_transformers(messages)
# Parse predictions
extracted_predictions = parse_prediction(
text=raw_output,
w=w,
h=h,
task_type=task.value,
)
# Calculate timing
total_time = time.time() - start_time
return {
"success": True,
"image_size": (w, h),
"resized_size": (resized_width, resized_height),
"task": task.value,
"prompt": final_prompt,
"raw_output": raw_output,
"extracted_predictions": extracted_predictions,
"inference_time": total_time,
**generation_info,
}
def _generate_prompt(
self,
task: TaskType,
categories: Optional[Union[str, List[str]]] = None,
keypoint_type: Optional[str] = None,
visual_prompt_boxes: Optional[List[List[float]]] = None,
image_width: int = None,
image_height: int = None,
) -> str:
"""Generate prompt based on task configuration"""
task_config = get_task_config(task)
if task == TaskType.VISUAL_PROMPTING:
if visual_prompt_boxes is None:
raise ValueError(
"Visual prompt boxes are required for visual prompting task"
)
# Convert boxes to normalized bins format
word_mapped_boxes = convert_boxes_to_normalized_bins(
visual_prompt_boxes, image_width, image_height
)
visual_prompt_dict = {"object_1": word_mapped_boxes}
visual_prompt_json = json.dumps(visual_prompt_dict)
return task_config.prompt_template.format(visual_prompt=visual_prompt_json)
elif task == TaskType.KEYPOINT:
if categories is None:
raise ValueError("Categories are required for keypoint task")
if keypoint_type is None:
raise ValueError("Keypoint type is required for keypoint task")
keypoints_list = get_keypoint_config(keypoint_type)
if keypoints_list is None:
raise ValueError(f"Unknown keypoint type: {keypoint_type}")
keypoints_str = ", ".join(keypoints_list)
categories_str = (
", ".join(categories) if isinstance(categories, list) else categories
)
return task_config.prompt_template.format(
categories=categories_str, keypoints=keypoints_str
)
else:
# Standard tasks (detection, pointing, OCR, etc.)
if task_config.requires_categories and categories is None:
raise ValueError(f"Categories are required for {task.value} task")
if categories is not None:
categories_str = (
", ".join(categories)
if isinstance(categories, list)
else categories
)
return task_config.prompt_template.format(categories=categories_str)
else:
return task_config.prompt_template.format(categories="objects")
def _generate_vllm(self, messages: List[Dict]) -> Tuple[str, Dict]:
"""Generate using VLLM model"""
# Process vision info
image_inputs, video_inputs = process_vision_info(messages)
mm_data = {"image": image_inputs}
prompt = self.processor.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
)
llm_inputs = {
"prompt": prompt,
"multi_modal_data": mm_data,
}
# Generate
generation_start = time.time()
outputs = self.model.generate(
[llm_inputs], sampling_params=self.sampling_params
)
generation_time = time.time() - generation_start
generated_text = outputs[0].outputs[0].text
# Extract token information
output_tokens = outputs[0].outputs[0].token_ids
num_output_tokens = len(output_tokens) if output_tokens else 0
prompt_token_ids = outputs[0].prompt_token_ids
num_prompt_tokens = len(prompt_token_ids) if prompt_token_ids else 0
tokens_per_second = (
num_output_tokens / generation_time if generation_time > 0 else 0
)
return generated_text, {
"num_output_tokens": num_output_tokens,
"num_prompt_tokens": num_prompt_tokens,
"generation_time": generation_time,
"tokens_per_second": tokens_per_second,
}
def _generate_vllm_batch(
self, batch_messages: List[List[Dict]]
) -> Tuple[List[str], List[Dict]]:
"""Generate using VLLM model for batch processing"""
# Process all messages
batch_inputs = []
for messages in batch_messages:
# Process vision info
image_inputs, video_inputs = process_vision_info(messages)
mm_data = {"image": image_inputs}
prompt = self.processor.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
)
llm_inputs = {
"prompt": prompt,
"multi_modal_data": mm_data,
}
batch_inputs.append(llm_inputs)
# Generate for entire batch
generation_start = time.time()
outputs = self.model.generate(
batch_inputs, sampling_params=self.sampling_params
)
generation_time = time.time() - generation_start
# Extract results
batch_outputs = []
batch_generation_info = []
for output in outputs:
generated_text = output.outputs[0].text
batch_outputs.append(generated_text)
# Extract token information
output_tokens = output.outputs[0].token_ids
num_output_tokens = len(output_tokens) if output_tokens else 0
prompt_token_ids = output.prompt_token_ids
num_prompt_tokens = len(prompt_token_ids) if prompt_token_ids else 0
tokens_per_second = (
num_output_tokens / generation_time if generation_time > 0 else 0
)
generation_info = {
"num_output_tokens": num_output_tokens,
"num_prompt_tokens": num_prompt_tokens,
"generation_time": generation_time,
"tokens_per_second": tokens_per_second,
}
batch_generation_info.append(generation_info)
return batch_outputs, batch_generation_info
def _generate_transformers(self, messages: List[Dict]) -> Tuple[str, Dict]:
"""Generate using Transformers model"""
# Apply chat template
text = self.processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
# Process inputs
generation_start = time.time()
inputs = self.processor(
text=[text],
images=[messages[1]["content"][0]["image"]],
padding=True,
return_tensors="pt",
).to(self.model.device)
# Prepare generation kwargs
generation_kwargs = {
"max_new_tokens": self.max_tokens,
"temperature": self.temperature,
"top_p": self.top_p,
"top_k": self.top_k,
"repetition_penalty": self.repetition_penalty,
"do_sample": self.temperature > 0, # Enable sampling if temperature > 0
"pad_token_id": self.processor.tokenizer.eos_token_id,
}
# Generate
with torch.no_grad():
generated_ids = self.model.generate(**inputs, **generation_kwargs)
generation_time = time.time() - generation_start
# Decode
generated_ids_trimmed = [
out_ids[len(in_ids) :]
for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = self.processor.batch_decode(
generated_ids_trimmed,
skip_special_tokens=self.skip_special_tokens,
clean_up_tokenization_spaces=False,
)[0]
num_output_tokens = len(generated_ids_trimmed[0])
num_prompt_tokens = len(inputs.input_ids[0])
tokens_per_second = (
num_output_tokens / generation_time if generation_time > 0 else 0
)
return output_text, {
"num_output_tokens": num_output_tokens,
"num_prompt_tokens": num_prompt_tokens,
"generation_time": generation_time,
"tokens_per_second": tokens_per_second,
}
def _generate_transformers_batch(
self, batch_messages: List[List[Dict]], batch_images: List[Image.Image]
) -> Tuple[List[str], List[Dict]]:
"""Generate using Transformers model for batch processing"""
# Prepare batch inputs
batch_texts = []
for messages in batch_messages:
text = self.processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
batch_texts.append(text)
# Process inputs for batch
generation_start = time.time()
inputs = self.processor(
text=batch_texts,
images=batch_images,
padding=True,
return_tensors="pt",
).to(self.model.device)
# Prepare generation kwargs
generation_kwargs = {
"max_new_tokens": self.max_tokens,
"temperature": self.temperature,
"top_p": self.top_p,
"top_k": self.top_k,
"repetition_penalty": self.repetition_penalty,
"do_sample": self.temperature > 0,
"pad_token_id": self.processor.tokenizer.eos_token_id,
}
# Generate for entire batch
with torch.no_grad():
generated_ids = self.model.generate(**inputs, **generation_kwargs)
generation_time = time.time() - generation_start
# Decode batch results
generated_ids_trimmed = [
out_ids[len(in_ids) :]
for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
batch_outputs = self.processor.batch_decode(
generated_ids_trimmed,
skip_special_tokens=self.skip_special_tokens,
clean_up_tokenization_spaces=False,
)
# Prepare generation info for each item
batch_generation_info = []
for i, output_ids in enumerate(generated_ids_trimmed):
num_output_tokens = len(output_ids)
num_prompt_tokens = len(inputs.input_ids[i])
tokens_per_second = (
num_output_tokens / generation_time if generation_time > 0 else 0
)
generation_info = {
"num_output_tokens": num_output_tokens,
"num_prompt_tokens": num_prompt_tokens,
"generation_time": generation_time,
"tokens_per_second": tokens_per_second,
}
batch_generation_info.append(generation_info)
return batch_outputs, batch_generation_info
def get_supported_tasks(self) -> List[str]:
"""Get list of supported tasks"""
return [task.value for task in TaskType]
def get_task_info(self, task: Union[str, TaskType]) -> Dict[str, Any]:
"""Get information about a specific task"""
if isinstance(task, str):
task = TaskType(task.lower())
config = get_task_config(task)
return {
"name": config.name,
"description": config.description,
"output_format": config.output_format,
"requires_categories": config.requires_categories,
"requires_visual_prompt": config.requires_visual_prompt,
"requires_keypoint_type": config.requires_keypoint_type,
"prompt_template": config.prompt_template,
}
|