Update predictive_model and requirements
Browse files- predictive_model.py +83 -1
- requirements.txt +2 -1
predictive_model.py
CHANGED
|
@@ -66,4 +66,86 @@ def predict_readmission_risk(model, patient_data: dict) -> float:
|
|
| 66 |
# If it's a classifier with predict_proba
|
| 67 |
prob = model.predict_proba(X)[0,1]
|
| 68 |
return float(prob)
|
| 69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
# If it's a classifier with predict_proba
|
| 67 |
prob = model.predict_proba(X)[0,1]
|
| 68 |
return float(prob)
|
| 69 |
+
|
| 70 |
+
# Add this main function
|
| 71 |
+
if __name__ == "__main__":
|
| 72 |
+
# Set up logging
|
| 73 |
+
logging.basicConfig(level=logging.INFO,
|
| 74 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
| 75 |
+
|
| 76 |
+
print("==== Discharge Guard Readmission Risk Prediction Demo ====")
|
| 77 |
+
|
| 78 |
+
# Create test patient data
|
| 79 |
+
test_patients = [
|
| 80 |
+
{
|
| 81 |
+
"id": "P001",
|
| 82 |
+
"name": "John Doe",
|
| 83 |
+
"age": 45,
|
| 84 |
+
"num_conditions": 1,
|
| 85 |
+
"num_medications": 2
|
| 86 |
+
},
|
| 87 |
+
{
|
| 88 |
+
"id": "P002",
|
| 89 |
+
"name": "Jane Smith",
|
| 90 |
+
"age": 72,
|
| 91 |
+
"num_conditions": 4,
|
| 92 |
+
"num_medications": 7
|
| 93 |
+
},
|
| 94 |
+
{
|
| 95 |
+
"id": "P003",
|
| 96 |
+
"name": "Bob Johnson",
|
| 97 |
+
"age": 65,
|
| 98 |
+
"num_conditions": 3,
|
| 99 |
+
"num_medications": 5
|
| 100 |
+
}
|
| 101 |
+
]
|
| 102 |
+
|
| 103 |
+
# Create an instance of the SimpleReadmissionModel
|
| 104 |
+
print("\n1. Testing SimpleReadmissionModel:")
|
| 105 |
+
simple_model = SimpleReadmissionModel()
|
| 106 |
+
|
| 107 |
+
# Test with each patient
|
| 108 |
+
for patient in test_patients:
|
| 109 |
+
risk_score = simple_model.predict(patient)
|
| 110 |
+
risk_percent = risk_score * 100
|
| 111 |
+
print(f" Patient {patient['id']} ({patient['name']}): Risk Score = {risk_percent:.1f}%")
|
| 112 |
+
|
| 113 |
+
# Try to create and save a sample model for demonstration
|
| 114 |
+
try:
|
| 115 |
+
from sklearn.ensemble import RandomForestClassifier
|
| 116 |
+
from sklearn.datasets import make_classification
|
| 117 |
+
|
| 118 |
+
print("\n2. Creating sample RandomForest model for demonstration:")
|
| 119 |
+
# Generate synthetic data
|
| 120 |
+
X, y = make_classification(n_samples=1000, n_features=3,
|
| 121 |
+
n_informative=3, n_redundant=0,
|
| 122 |
+
random_state=42)
|
| 123 |
+
|
| 124 |
+
# Create and fit a simple model
|
| 125 |
+
rf_model = RandomForestClassifier(n_estimators=10, random_state=42)
|
| 126 |
+
rf_model.fit(X, y)
|
| 127 |
+
|
| 128 |
+
# Save the model
|
| 129 |
+
model_path = "model.joblib"
|
| 130 |
+
joblib.dump(rf_model, model_path)
|
| 131 |
+
print(f" Sample model created and saved to {model_path}")
|
| 132 |
+
|
| 133 |
+
# Now load and use the model
|
| 134 |
+
loaded_model = load_model(model_path)
|
| 135 |
+
|
| 136 |
+
print("\n3. Testing loaded model predictions:")
|
| 137 |
+
for patient in test_patients:
|
| 138 |
+
risk_score = predict_readmission_risk(loaded_model, patient)
|
| 139 |
+
risk_percent = risk_score * 100
|
| 140 |
+
print(f" Patient {patient['id']} ({patient['name']}): Risk Score = {risk_percent:.1f}%")
|
| 141 |
+
|
| 142 |
+
except ImportError:
|
| 143 |
+
print("\nSkipping sklearn model creation (sklearn not available).")
|
| 144 |
+
print("Using dummy prediction function instead:")
|
| 145 |
+
|
| 146 |
+
for patient in test_patients:
|
| 147 |
+
risk_score = predict_readmission_risk(None, patient)
|
| 148 |
+
risk_percent = risk_score * 100
|
| 149 |
+
print(f" Patient {patient['id']} ({patient['name']}): Risk Score = {risk_percent:.1f}%")
|
| 150 |
+
|
| 151 |
+
print("\nDemo complete. Implement this model in your discharge workflow to identify high-risk patients.")
|
requirements.txt
CHANGED
|
@@ -2,4 +2,5 @@ openai
|
|
| 2 |
reportlab
|
| 3 |
numpy
|
| 4 |
pandas
|
| 5 |
-
joblib
|
|
|
|
|
|
| 2 |
reportlab
|
| 3 |
numpy
|
| 4 |
pandas
|
| 5 |
+
joblib
|
| 6 |
+
scikit-learn
|