prompt_refiner / app.py
MurtazaKhan101's picture
Upload 3 files
ad364eb verified
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
app = FastAPI()
# Load model and tokenizer
model_name = "alibaba-pai/Qwen2-1.5B-Instruct-Refine"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name).to("cuda" if torch.cuda.is_available() else "cpu")
# Define request model
class UserPrompt(BaseModel):
prompt: str
@app.post("/refine-prompt")
async def refine_prompt(user_prompt: UserPrompt):
if model is None or tokenizer is None:
raise HTTPException(status_code=500, detail="Model not loaded.")
system_prompt = (
"You are a professional prompt refiner. Your task is to take a user's prompt and improve it by correcting "
"grammar, spelling, and sentence structure. Enhance fluency, clarity, and natural tone without changing "
"the original intent. Add slight descriptive detail only if it improves understanding. Do not over-extend, "
"repeat, or remove any important information. Return only the refined prompt, nothing else."
)
formatted_prompt = f"<|im_start|>system\n{system_prompt}<|im_end|>\n<|im_start|>user\n{user_prompt.prompt}<|im_end|>\n<|im_start|>assistant\n"
inputs = tokenizer(formatted_prompt, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=40)
refined_prompt = tokenizer.decode(outputs[0][inputs["input_ids"].shape[-1]:], skip_special_tokens=True)
return {"refined_prompt": refined_prompt}