Spaces:
Running
on
Zero
Running
on
Zero
| import spaces | |
| import torch | |
| from diffusers import StableDiffusion3Pipeline, StableDiffusionPipeline, StableDiffusionXLPipeline, DPMSolverSinglestepScheduler, StableCascadePriorPipeline, StableCascadeDecoderPipeline | |
| import gradio as gr | |
| import os | |
| import random | |
| import numpy | |
| from PIL import Image | |
| import gc # free up memory | |
| HF_TOKEN = os.getenv("HF_TOKEN") # login with hf read token to access sd gated models | |
| if torch.cuda.is_available(): | |
| device = "cuda" | |
| print("Using GPU") | |
| else: | |
| device = "cpu" | |
| print("Using CPU") | |
| MAX_SEED = numpy.iinfo(numpy.int32).max | |
| CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "0") == "1" | |
| # Global dictionary to store pipelines | |
| PIPELINES = {} | |
| def load_pipeline(model_choice): | |
| """Loads the specified pipeline and stores it in the PIPELINES dictionary.""" | |
| if model_choice not in PIPELINES: | |
| if model_choice == "sd3 medium": | |
| PIPELINES[model_choice] = StableDiffusion3Pipeline.from_pretrained( | |
| "stabilityai/stable-diffusion-3-medium-diffusers", torch_dtype=torch.float16 | |
| ) | |
| elif model_choice == "sd2.1": | |
| PIPELINES[model_choice] = StableDiffusionPipeline.from_pretrained( | |
| "stabilityai/stable-diffusion-2-1", torch_dtype=torch.float16 | |
| ) | |
| elif model_choice == "sdxl": | |
| PIPELINES[model_choice] = StableDiffusionXLPipeline.from_pretrained( | |
| "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 | |
| ) | |
| elif model_choice == "sdxl flash": | |
| PIPELINES[model_choice] = StableDiffusionXLPipeline.from_pretrained( | |
| "sd-community/sdxl-flash", torch_dtype=torch.float16 | |
| ) | |
| # Store the original scheduler for resetting | |
| PIPELINES[model_choice].original_scheduler = PIPELINES[model_choice].scheduler | |
| elif model_choice == "stable cascade": | |
| # Store both prior and decoder pipelines under 'stable cascade' | |
| PIPELINES[model_choice] = { | |
| 'prior': StableCascadePriorPipeline.from_pretrained( | |
| "stabilityai/stable-cascade-prior", variant="bf16", torch_dtype=torch.bfloat16 | |
| ), | |
| 'decoder': StableCascadeDecoderPipeline.from_pretrained( | |
| "stabilityai/stable-cascade", variant="bf16", torch_dtype=torch.float16 | |
| ) | |
| } | |
| elif model_choice == "sd1.5": | |
| PIPELINES[model_choice] = StableDiffusionPipeline.from_pretrained( | |
| "runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16 | |
| ) | |
| else: | |
| raise ValueError(f"Invalid model choice: {model_choice}") | |
| return PIPELINES[model_choice] | |
| def unload_pipeline(model_choice): | |
| """Unloads the specified pipeline from the PIPELINES dictionary and frees GPU memory.""" | |
| if model_choice in PIPELINES: | |
| del PIPELINES[model_choice] | |
| torch.cuda.empty_cache() | |
| gc.collect() | |
| def run_inference( | |
| prompt, | |
| pipe, | |
| negative_prompt, | |
| num_inference_steps, | |
| guidance_scale, | |
| height, | |
| width, | |
| seed, | |
| num_images_per_prompt, | |
| prior_num_inference_steps=None, | |
| prior_guidance_scale=None, | |
| decoder_num_inference_steps=None, | |
| decoder_guidance_scale=None, | |
| ): | |
| """Runs inference with the specified pipeline and parameters.""" | |
| # Enable CPU offloading only if a GPU is available, for saving up RAM | |
| if torch.cuda.is_available(): | |
| if isinstance(pipe, dict): # Special handling for stable cascade | |
| pipe['prior'].enable_model_cpu_offload() | |
| pipe['decoder'].enable_model_cpu_offload() | |
| else: | |
| pipe.enable_model_cpu_offload() | |
| # Reset the sampler if the model is NOT SDXL Flash | |
| if model_choice != "sdxl flash" and "sdxl flash" in PIPELINES: | |
| PIPELINES["sdxl flash"].scheduler = PIPELINES["sdxl flash"].original_scheduler | |
| # Apply SDXL Flash sampler ONLY if model_choice is 'sdxl flash' | |
| if model_choice == "sdxl flash": | |
| pipe.scheduler = DPMSolverSinglestepScheduler.from_config( | |
| pipe.scheduler.config, timestep_spacing="trailing" | |
| ) | |
| if seed == 0: | |
| seed = random.randint(1, MAX_SEED) | |
| generator = torch.Generator().manual_seed(seed) | |
| if isinstance(pipe, dict): # Stable Cascade | |
| with torch.inference_mode(): | |
| prior_output = pipe['prior']( | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| num_inference_steps=prior_num_inference_steps, | |
| guidance_scale=prior_guidance_scale, | |
| height=height, | |
| width=width, | |
| generator=generator, | |
| num_images_per_prompt=num_images_per_prompt, | |
| ) | |
| with torch.inference_mode(): | |
| output = pipe['decoder']( | |
| image_embeddings=prior_output.image_embeddings.to(torch.float16), | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| num_inference_steps=decoder_num_inference_steps, | |
| guidance_scale=decoder_guidance_scale, | |
| ).images | |
| else: # Other pipelines | |
| with torch.inference_mode(): | |
| output = pipe( | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| num_inference_steps=num_inference_steps, | |
| guidance_scale=guidance_scale, | |
| height=height, | |
| width=width, | |
| generator=generator, | |
| num_images_per_prompt=num_images_per_prompt, | |
| ).images | |
| return output | |
| # Helper function to generate images for a single model | |
| def generate_single_image( | |
| prompt, | |
| model_choice, | |
| negative_prompt, | |
| num_inference_steps, | |
| guidance_scale, | |
| height, | |
| width, | |
| seed, | |
| num_images_per_prompt, | |
| prior_num_inference_steps=None, | |
| prior_guidance_scale=None, | |
| decoder_num_inference_steps=None, | |
| decoder_guidance_scale=None, | |
| ): | |
| # Load the pipeline | |
| pipe = load_pipeline(model_choice) | |
| # Run inference | |
| output = run_inference( | |
| prompt, | |
| pipe, | |
| negative_prompt, | |
| num_inference_steps, | |
| guidance_scale, | |
| height, | |
| width, | |
| seed, | |
| num_images_per_prompt, | |
| prior_num_inference_steps, | |
| prior_guidance_scale, | |
| decoder_num_inference_steps, | |
| decoder_guidance_scale, | |
| ) | |
| # Unload the pipeline | |
| unload_pipeline(model_choice) | |
| return output | |
| # Define the image generation function for the Arena tab | |
| def generate_arena_images( | |
| prompt, | |
| negative_prompt, | |
| num_models_to_compare, | |
| num_inference_steps_a, | |
| guidance_scale_a, | |
| num_inference_steps_b, | |
| guidance_scale_b, | |
| num_inference_steps_c, | |
| guidance_scale_c, | |
| num_inference_steps_d, | |
| guidance_scale_d, | |
| height_a, | |
| width_a, | |
| height_b, | |
| width_b, | |
| height_c, | |
| width_c, | |
| height_d, | |
| width_d, | |
| seed, | |
| num_images_per_prompt, | |
| model_choice_a, | |
| model_choice_b, | |
| model_choice_c, | |
| model_choice_d, | |
| prior_num_inference_steps_a, | |
| prior_guidance_scale_a, | |
| decoder_num_inference_steps_a, | |
| decoder_guidance_scale_a, | |
| prior_num_inference_steps_b, | |
| prior_guidance_scale_b, | |
| decoder_num_inference_steps_b, | |
| decoder_guidance_scale_b, | |
| prior_num_inference_steps_c, | |
| prior_guidance_scale_c, | |
| decoder_num_inference_steps_c, | |
| decoder_guidance_scale_c, | |
| prior_num_inference_steps_d, | |
| prior_guidance_scale_d, | |
| decoder_num_inference_steps_d, | |
| decoder_guidance_scale_d, | |
| progress=gr.Progress(track_tqdm=True), | |
| ): | |
| # Generate images for selected models | |
| if num_models_to_compare >= 2: | |
| images_a = generate_single_image( | |
| prompt, | |
| model_choice_a, | |
| negative_prompt, | |
| num_inference_steps_a, | |
| guidance_scale_a, | |
| height_a, | |
| width_a, | |
| seed, | |
| num_images_per_prompt, | |
| prior_num_inference_steps_a, | |
| prior_guidance_scale_a, | |
| decoder_num_inference_steps_a, | |
| decoder_guidance_scale_a, | |
| ) | |
| images_b = generate_single_image( | |
| prompt, | |
| model_choice_b, | |
| negative_prompt, | |
| num_inference_steps_b, | |
| guidance_scale_b, | |
| height_b, | |
| width_b, | |
| seed, | |
| num_images_per_prompt, | |
| prior_num_inference_steps_b, | |
| prior_guidance_scale_b, | |
| decoder_num_inference_steps_b, | |
| decoder_guidance_scale_b, | |
| ) | |
| output_arena_images = images_a, images_b, None, None | |
| if num_models_to_compare >= 3: | |
| images_c = generate_single_image( | |
| prompt, | |
| model_choice_c, | |
| negative_prompt, | |
| num_inference_steps_c, | |
| guidance_scale_c, | |
| height_c, | |
| width_c, | |
| seed, | |
| num_images_per_prompt, | |
| prior_num_inference_steps_c, | |
| prior_guidance_scale_c, | |
| decoder_num_inference_steps_c, | |
| decoder_guidance_scale_c, | |
| ) | |
| output_arena_images = images_a, images_b, images_c, None | |
| if num_models_to_compare >= 4: | |
| images_d = generate_single_image( | |
| prompt, | |
| model_choice_d, | |
| negative_prompt, | |
| num_inference_steps_d, | |
| guidance_scale_d, | |
| height_d, | |
| width_d, | |
| seed, | |
| num_images_per_prompt, | |
| prior_num_inference_steps_d, | |
| prior_guidance_scale_d, | |
| decoder_num_inference_steps_d, | |
| decoder_guidance_scale_d, | |
| ) | |
| output_arena_images = images_a, images_b, images_c, images_d | |
| return output_arena_images | |
| # Define the image generation function for the Individual tab | |
| def generate_individual_image( | |
| prompt, | |
| model_choice, | |
| negative_prompt, | |
| num_inference_steps, | |
| guidance_scale, | |
| height, | |
| width, | |
| seed, | |
| num_images_per_prompt, | |
| prior_num_inference_steps, | |
| prior_guidance_scale, | |
| decoder_num_inference_steps, | |
| decoder_guidance_scale, | |
| progress=gr.Progress(track_tqdm=True), | |
| ): | |
| output = generate_single_image( | |
| prompt, | |
| model_choice, | |
| negative_prompt, | |
| num_inference_steps, | |
| guidance_scale, | |
| height, | |
| width, | |
| seed, | |
| num_images_per_prompt, | |
| prior_num_inference_steps, | |
| prior_guidance_scale, | |
| decoder_num_inference_steps, | |
| decoder_guidance_scale, | |
| ) | |
| return output | |
| # Gradio interface | |
| examples_arena = [ | |
| [ | |
| "A woman in a red dress singing on top of a building.", | |
| "deformed, distorted, disfigured, poorly drawn, bad anatomy, incorrect anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation", | |
| 2, # num_models_to_compare | |
| 25, | |
| 7.5, | |
| 25, | |
| 7.5, | |
| 25, | |
| 7.5, | |
| 25, | |
| 7.5, | |
| 1024, | |
| 1024, | |
| 1024, | |
| 1024, | |
| 1024, | |
| 1024, | |
| 1024, | |
| 1024, | |
| 42, | |
| 2, | |
| "sd3 medium", | |
| "sdxl", | |
| "sdxl flash", | |
| "stable cascade", | |
| 25, # prior_num_inference_steps_a | |
| 4.0, # prior_guidance_scale_a | |
| 12, # decoder_num_inference_steps_a | |
| 0.0, # decoder_guidance_scale_a | |
| 25, # prior_num_inference_steps_b | |
| 4.0, # prior_guidance_scale_b | |
| 12, # decoder_num_inference_steps_b | |
| 0.0, # decoder_guidance_scale_b | |
| 25, # prior_num_inference_steps_c | |
| 4.0, # prior_guidance_scale_c | |
| 12, # decoder_num_inference_steps_c | |
| 0.0, # decoder_guidance_scale_c | |
| 25, # prior_num_inference_steps_d | |
| 4.0, # prior_guidance_scale_d | |
| 12, # decoder_num_inference_steps_d | |
| 0.0, # decoder_guidance_scale_d | |
| ], | |
| [ | |
| "An astronaut on mars in a futuristic cyborg suit.", | |
| "deformed, distorted, disfigured, poorly drawn, bad anatomy, incorrect anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation", | |
| 2, # num_models_to_compare | |
| 25, | |
| 7.5, | |
| 25, | |
| 7.5, | |
| 25, | |
| 7.5, | |
| 25, | |
| 7.5, | |
| 1024, | |
| 1024, | |
| 1024, | |
| 1024, | |
| 1024, | |
| 1024, | |
| 1024, | |
| 1024, | |
| 42, | |
| 2, | |
| "sd3 medium", | |
| "sdxl", | |
| "sd3 medium", | |
| "sdxl", | |
| 25, # prior_num_inference_steps_a | |
| 4.0, # prior_guidance_scale_a | |
| 12, # decoder_num_inference_steps_a | |
| 0.0, # decoder_guidance_scale_a | |
| 25, # prior_num_inference_steps_b | |
| 4.0, # prior_guidance_scale_b | |
| 12, # decoder_num_inference_steps_b | |
| 0.0, # decoder_guidance_scale_b | |
| 25, # prior_num_inference_steps_c | |
| 4.0, # prior_guidance_scale_c | |
| 12, # decoder_num_inference_steps_c | |
| 0.0, # decoder_guidance_scale_c | |
| 25, # prior_num_inference_steps_d | |
| 4.0, # prior_guidance_scale_d | |
| 12, # decoder_num_inference_steps_d | |
| 0.0, # decoder_guidance_scale_d | |
| ], | |
| ] | |
| examples_individual = [ | |
| [ | |
| "A woman in a red dress singing on top of a building.", | |
| "sdxl", | |
| "deformed, distorted, disfigured, poorly drawn, bad anatomy, incorrect anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation", | |
| 25, | |
| 7.5, | |
| 1024, | |
| 1024, | |
| 42, | |
| 2, | |
| 25, # prior_num_inference_steps | |
| 4.0, # prior_guidance_scale | |
| 12, # decoder_num_inference_steps | |
| 0.0, # decoder_guidance_scale | |
| ], | |
| [ | |
| "An astronaut on mars in a futuristic cyborg suit.", | |
| "sdxl", | |
| "deformed, distorted, disfigured, poorly drawn, bad anatomy, incorrect anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation", | |
| 25, | |
| 7.5, | |
| 1024, | |
| 1024, | |
| 42, | |
| 2, | |
| 25, # prior_num_inference_steps | |
| 4.0, # prior_guidance_scale | |
| 12, # decoder_num_inference_steps | |
| 0.0, # decoder_guidance_scale | |
| ], | |
| ] | |
| theme = gr.themes.Soft( | |
| primary_hue="emerald", | |
| secondary_hue="blue", | |
| ).set( | |
| border_color_primary='*neutral_300', | |
| block_border_width='1px', | |
| block_border_width_dark='1px', | |
| block_title_border_color='*secondary_100', | |
| block_title_border_color_dark='*secondary_200', | |
| input_background_fill_focus='*secondary_300', | |
| input_border_color='*border_color_primary', | |
| input_border_color_focus='*secondary_500', | |
| input_border_width='1px', | |
| input_border_width_dark='1px', | |
| slider_color='*secondary_500', | |
| slider_color_dark='*secondary_600' | |
| ) | |
| css = """ | |
| .gradio-container{max-width: 1400px !important} | |
| h1{text-align:center} | |
| .extra-option { | |
| display: none; | |
| } | |
| .extra-option.visible { | |
| display: block; | |
| } | |
| """ | |
| with gr.Blocks(theme=theme, css=css) as demo: | |
| with gr.Row(): | |
| with gr.Column(): | |
| gr.HTML( | |
| """ | |
| <h1 style='text-align: center'> | |
| Stable Diffusion Arena | |
| </h1> | |
| """ | |
| ) | |
| gr.HTML( | |
| """ | |
| Made by <a href='https://linktr.ee/Nick088' target='_blank'>Nick088</a> | |
| <br> <a href="https://discord.gg/AQsmBmgEPy"> <img src="https://img.shields.io/discord/1198701940511617164?color=%23738ADB&label=Discord&style=for-the-badge" alt="Discord"> </a> | |
| """ | |
| ) | |
| with gr.Tabs(): | |
| with gr.TabItem("Arena"): | |
| with gr.Group(): | |
| with gr.Column(): | |
| prompt = gr.Textbox( | |
| label="Prompt", | |
| info="Describe the image you want", | |
| placeholder="A cat...", | |
| ) | |
| num_models_to_compare = gr.Dropdown( | |
| label="How many models to compare", | |
| choices=[2, 3, 4], | |
| value=2, | |
| ) | |
| model_choice_a = gr.Dropdown( | |
| label="Stable Diffusion Model A", | |
| choices=[ | |
| "sd3 medium", | |
| "sd2.1", | |
| "sdxl", | |
| "sdxl flash", | |
| "stable cascade", | |
| "sd1.5", | |
| ], | |
| value="sd3 medium", | |
| ) | |
| model_choice_b = gr.Dropdown( | |
| label="Stable Diffusion Model B", | |
| choices=[ | |
| "sd3 medium", | |
| "sd2.1", | |
| "sdxl", | |
| "sdxl flash", | |
| "stable cascade", | |
| "sd1.5", | |
| ], | |
| value="sdxl", | |
| ) | |
| model_choice_c = gr.Dropdown( | |
| label="Stable Diffusion Model C", | |
| choices=[ | |
| "sd3 medium", | |
| "sd2.1", | |
| "sdxl", | |
| "sdxl flash", | |
| "stable cascade", | |
| "sd1.5", | |
| ], | |
| value=None, | |
| visible=False, | |
| ) | |
| model_choice_d = gr.Dropdown( | |
| label="Stable Diffusion Model D", | |
| choices=[ | |
| "sd3 medium", | |
| "sd2.1", | |
| "sdxl", | |
| "sdxl flash", | |
| "stable cascade", | |
| "sd1.5", | |
| ], | |
| value=None, | |
| visible=False, | |
| ) | |
| run_button = gr.Button("Run") | |
| result_1 = gr.Gallery( | |
| label="Generated Images (Model A)", elem_id="gallery_1" | |
| ) | |
| result_2 = gr.Gallery( | |
| label="Generated Images (Model B)", elem_id="gallery_2" | |
| ) | |
| result_3 = gr.Gallery( | |
| label="Generated Images (Model C)", | |
| elem_id="gallery_3", | |
| visible=False, | |
| ) | |
| result_4 = gr.Gallery( | |
| label="Generated Images (Model D)", | |
| elem_id="gallery_4", | |
| visible=False, | |
| ) | |
| with gr.Accordion("Advanced options", open=False): | |
| negative_prompt = gr.Textbox( | |
| label="Negative Prompt", | |
| info="Describe what you don't want in the image", | |
| value="deformed, distorted, disfigured, poorly drawn, bad anatomy, incorrect anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation", | |
| placeholder="Ugly, bad anatomy...", | |
| ) | |
| with gr.Row(): | |
| with gr.Column(): | |
| num_inference_steps_a = gr.Slider( | |
| label="Inference Steps (Model A)", | |
| info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference", | |
| minimum=1, | |
| maximum=50, | |
| value=25, | |
| step=1, | |
| visible=True, | |
| ) | |
| guidance_scale_a = gr.Slider( | |
| label="Guidance Scale (Model A)", | |
| info="Controls how much the image generation process follows the text prompt. Higher values make the image stick more closely to the input text.", | |
| minimum=0.0, | |
| maximum=10.0, | |
| value=7.5, | |
| step=0.1, | |
| visible=True, | |
| ) | |
| prior_num_inference_steps_a = gr.Slider( | |
| label="Prior Inference Steps (Model A)", | |
| info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference", | |
| minimum=1, | |
| maximum=50, | |
| value=25, | |
| step=1, | |
| visible=False, | |
| ) | |
| prior_guidance_scale_a = gr.Slider( | |
| label="Prior Guidance Scale (Model A)", | |
| info="Controls how much the image generation process follows the text prompt. Higher values make the image stick more closely to the input text.", | |
| minimum=0.0, | |
| maximum=10.0, | |
| value=4.0, | |
| step=0.1, | |
| visible=False, | |
| ) | |
| decoder_num_inference_steps_a = gr.Slider( | |
| label="Decoder Inference Steps (Model A)", | |
| info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference", | |
| minimum=1, | |
| maximum=15, | |
| value=15, | |
| step=1, | |
| visible=False, | |
| ) | |
| decoder_guidance_scale_a = gr.Slider( | |
| label="Decoder Guidance Scale (Model A)", | |
| info="Controls how much the image generation process follows the text prompt. Higher values make the image stick more closely to the input text.", | |
| minimum=0.0, | |
| maximum=10.0, | |
| value=0.0, | |
| step=0.1, | |
| visible=False, | |
| ) | |
| width_a = gr.Slider( | |
| label="Width (Model A)", | |
| info="Width of the Image", | |
| minimum=512, | |
| maximum=1280, | |
| value=1024, | |
| step=32, | |
| ) | |
| height_a = gr.Slider( | |
| label="Height (Model A)", | |
| info="Height of the Image", | |
| minimum=512, | |
| maximum=1280, | |
| value=1024, | |
| step=32, | |
| ) | |
| with gr.Column(): | |
| num_inference_steps_b = gr.Slider( | |
| label="Inference Steps (Model B)", | |
| info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference", | |
| minimum=1, | |
| maximum=50, | |
| value=25, | |
| step=32, | |
| visible=True, | |
| ) | |
| guidance_scale_b = gr.Slider( | |
| label="Guidance Scale (Model B)", | |
| info="Controls how much the image generation process follows the text prompt. Higher values make the image stick more closely to the input text.", | |
| minimum=0.0, | |
| maximum=10.0, | |
| value=7.5, | |
| step=0.1, | |
| visible=True, | |
| ) | |
| prior_num_inference_steps_b = gr.Slider( | |
| label="Prior Inference Steps (Model B)", | |
| info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference", | |
| minimum=1, | |
| maximum=50, | |
| value=25, | |
| step=1, | |
| visible=False, | |
| ) | |
| prior_guidance_scale_b = gr.Slider( | |
| label="Prior Guidance Scale (Model B)", | |
| info="Controls how much the image generation process follows the text prompt. Higher values make the image stick more closely to the input text.", | |
| minimum=0.0, | |
| maximum=10.0, | |
| value=4.0, | |
| step=0.1, | |
| visible=False, | |
| ) | |
| decoder_num_inference_steps_b = gr.Slider( | |
| label="Decoder Inference Steps (Model B)", | |
| info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference", | |
| minimum=1, | |
| maximum=15, | |
| value=12, | |
| step=1, | |
| visible=False, | |
| ) | |
| decoder_guidance_scale_b = gr.Slider( | |
| label="Decoder Guidance Scale (Model B)", | |
| info="Controls how much the image generation process follows the text prompt. Higher values make the image stick more closely to the input text.", | |
| minimum=0.0, | |
| maximum=10.0, | |
| value=0.0, | |
| step=0.1, | |
| visible=False, | |
| ) | |
| width_b = gr.Slider( | |
| label="Width (Model B)", | |
| info="Width of the Image", | |
| minimum=512, | |
| maximum=1280, | |
| value=1024, | |
| step=32, | |
| ) | |
| height_b = gr.Slider( | |
| label="Height (Model B)", | |
| info="Height of the Image", | |
| minimum=512, | |
| maximum=1280, | |
| value=1024, | |
| step=32, | |
| ) | |
| with gr.Column(visible=False) as model_c_options: | |
| num_inference_steps_c = gr.Slider( | |
| label="Inference Steps (Model C)", | |
| info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference", | |
| minimum=1, | |
| maximum=50, | |
| value=25, | |
| step=1, | |
| visible=True, | |
| ) | |
| guidance_scale_c = gr.Slider( | |
| label="Guidance Scale (Model C)", | |
| info="Controls how much the image generation process follows the text prompt. Higher values make the image stick more closely to the input text.", | |
| minimum=0.0, | |
| maximum=10.0, | |
| value=7.5, | |
| step=0.1, | |
| visible=True, | |
| ) | |
| prior_num_inference_steps_c = gr.Slider( | |
| label="Prior Inference Steps (Model C)", | |
| info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference", | |
| minimum=1, | |
| maximum=50, | |
| value=25, | |
| step=1, | |
| visible=False, | |
| ) | |
| prior_guidance_scale_c = gr.Slider( | |
| label="Prior Guidance Scale (Model C)", | |
| info="Controls how much the image generation process follows the text prompt. Higher values make the image stick more closely to the input text.", | |
| minimum=0.0, | |
| maximum=10.0, | |
| value=4.0, | |
| step=0.1, | |
| visible=False, | |
| ) | |
| decoder_num_inference_steps_c = gr.Slider( | |
| label="Decoder Inference Steps (Model C)", | |
| info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference", | |
| minimum=1, | |
| maximum=15, | |
| value=12, | |
| step=1, | |
| visible=False, | |
| ) | |
| decoder_guidance_scale_c = gr.Slider( | |
| label="Decoder Guidance Scale (Model C)", | |
| info="Controls how much the image generation process follows the text prompt. Higher values make the image stick more closely to the input text.", | |
| minimum=0.0, | |
| maximum=10.0, | |
| value=0.0, | |
| step=0.1, | |
| visible=False, | |
| ) | |
| width_c = gr.Slider( | |
| label="Width (Model C)", | |
| info="Width of the Image", | |
| minimum=512, | |
| maximum=1280, | |
| value=1024, | |
| step=32, | |
| ) | |
| height_c = gr.Slider( | |
| label="Height (Model C)", | |
| info="Height of the Image", | |
| minimum=512, | |
| maximum=1280, | |
| value=1024, | |
| step=32, | |
| ) | |
| with gr.Column(visible=False) as model_d_options: | |
| num_inference_steps_d = gr.Slider( | |
| label="Inference Steps (Model D)", | |
| info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference", | |
| minimum=1, | |
| maximum=50, | |
| value=25, | |
| step=1, | |
| visible=True, | |
| ) | |
| guidance_scale_d = gr.Slider( | |
| label="Guidance Scale (Model D)", | |
| info="Controls how much the image generation process follows the text prompt. Higher values make the image stick more closely to the input text.", | |
| minimum=0.0, | |
| maximum=10.0, | |
| value=7.5, | |
| step=0.1, | |
| visible=True, | |
| ) | |
| prior_num_inference_steps_d = gr.Slider( | |
| label="Prior Inference Steps (Model D)", | |
| info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference", | |
| minimum=1, | |
| maximum=50, | |
| value=25, | |
| step=1, | |
| visible=False, | |
| ) | |
| prior_guidance_scale_d = gr.Slider( | |
| label="Prior Guidance Scale (Model D)", | |
| info="Controls how much the image generation process follows the text prompt. Higher values make the image stick more closely to the input text.", | |
| minimum=0.0, | |
| maximum=10.0, | |
| value=4.0, | |
| step=0.1, | |
| visible=False, | |
| ) | |
| decoder_num_inference_steps_d = gr.Slider( | |
| label="Decoder Inference Steps (Model D)", | |
| info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference", | |
| minimum=1, | |
| maximum=15, | |
| value=12, | |
| step=1, | |
| visible=False, | |
| ) | |
| decoder_guidance_scale_d = gr.Slider( | |
| label="Decoder Guidance Scale (Model D)", | |
| info="Controls how much the image generation process follows the text prompt. Higher values make the image stick more closely to the input text.", | |
| minimum=0.0, | |
| maximum=10.0, | |
| value=0.0, | |
| step=0.1, | |
| visible=False, | |
| ) | |
| width_d = gr.Slider( | |
| label="Width (Model D)", | |
| info="Width of the Image", | |
| minimum=512, | |
| maximum=1280, | |
| value=1024, | |
| step=32, | |
| ) | |
| height_d = gr.Slider( | |
| label="Height (Model D)", | |
| info="Height of the Image", | |
| minimum=512, | |
| maximum=1280, | |
| value=1024, | |
| step=32, | |
| ) | |
| with gr.Row(): | |
| seed = gr.Slider( | |
| value=42, | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| label="Seed", | |
| info="A starting point to initiate the generation process, put 0 for a random one", | |
| ) | |
| num_images_per_prompt = gr.Slider( | |
| label="Images Per Prompt", | |
| info="Number of Images to generate with the settings", | |
| minimum=1, | |
| maximum=4, | |
| step=1, | |
| value=2, | |
| ) | |
| def toggle_visibility_arena_a(model_choice_a): | |
| if model_choice_a == "stable cascade": | |
| return { | |
| num_inference_steps_a: gr.update(visible=False), | |
| guidance_scale_a: gr.update(visible=False), | |
| prior_num_inference_steps_a: gr.update(visible=True), | |
| prior_guidance_scale_a: gr.update(visible=True), | |
| decoder_num_inference_steps_a: gr.update(visible=True), | |
| decoder_guidance_scale_a: gr.update(visible=True), | |
| width_a: gr.update(step=512, value=1024, maximum=1536), | |
| height_a: gr.update(step=512, value=1024, maximum=1536), | |
| } | |
| elif model_choice_a == "sdxl flash": | |
| return { | |
| num_inference_steps_a: gr.update(visible=True, maximum=15, value=8), | |
| guidance_scale_a: gr.update(visible=True, maximum=6.0, value=3.5), | |
| prior_num_inference_steps_a: gr.update(visible=False), | |
| prior_guidance_scale_a: gr.update(visible=False), | |
| decoder_num_inference_steps_a: gr.update(visible=False), | |
| decoder_guidance_scale_a: gr.update(visible=False), | |
| width_a: gr.update(step=32, value=1024, maximum=1536), | |
| height_a: gr.update(step=32, value=1024, maximum=1536), | |
| } | |
| elif model_choice_a == "sd1.5": | |
| return { | |
| num_inference_steps_a: gr.update(visible=True, maximum=50, value=25), | |
| guidance_scale_a: gr.update(visible=True, maximum=10.0, value=7.5), | |
| prior_guidance_scale_a: gr.update(visible=True), | |
| decoder_num_inference_steps_a: gr.update(visible=True), | |
| decoder_guidance_scale_a: gr.update(visible=True), | |
| width_a: gr.update(step=32, value=512, maximum=768), | |
| height_a: gr.update(step=32, value=512, maximum=768), | |
| } | |
| elif model_choice_a == "sd2.1": | |
| return { | |
| num_inference_steps_a: gr.update(visible=True, maximum=50, value=25), | |
| guidance_scale_a: gr.update(visible=True, maximum=10.0, value=7.5), | |
| prior_num_inference_steps_a: gr.update(visible=False), | |
| prior_guidance_scale_a: gr.update(visible=False), | |
| decoder_num_inference_steps_a: gr.update(visible=False), | |
| decoder_guidance_scale_a: gr.update(visible=False), | |
| width_a: gr.update(step=32, value=768, maximum=1024), | |
| height_a: gr.update(step=32, value=768, maximum=1024), | |
| } | |
| else: | |
| return { | |
| num_inference_steps_a: gr.update(visible=True, maximum=50, value=25), | |
| guidance_scale_a: gr.update(visible=True, maximum=10.0, value=7.5), | |
| prior_num_inference_steps_a: gr.update(visible=False), | |
| prior_guidance_scale_a: gr.update(visible=False), | |
| decoder_num_inference_steps_a: gr.update(visible=False), | |
| decoder_guidance_scale_a: gr.update(visible=False), | |
| width_a: gr.update(step=32, value=1024, maximum=1536), | |
| height_a: gr.update(step=32, value=1024, maximum=1536), | |
| } | |
| def toggle_visibility_arena_b(model_choice_b): | |
| if model_choice_b == "stable cascade": | |
| return { | |
| num_inference_steps_b: gr.update(visible=False), | |
| guidance_scale_b: gr.update(visible=False), | |
| prior_num_inference_steps_b: gr.update(visible=True), | |
| prior_guidance_scale_b: gr.update(visible=True), | |
| decoder_num_inference_steps_b: gr.update(visible=True), | |
| decoder_guidance_scale_b: gr.update(visible=True), | |
| width_b: gr.update(step=256, value=1024, maximum=1536), | |
| height_b: gr.update(step=256, value=1024, maximum=1536), | |
| } | |
| elif model_choice_b == "sdxl flash": | |
| return { | |
| num_inference_steps_b: gr.update(visible=True, maximum=15, value=8), | |
| guidance_scale_b: gr.update(visible=True, maximum=6.0, value=3.5), | |
| prior_num_inference_steps_b: gr.update(visible=False), | |
| prior_guidance_scale_b: gr.update(visible=False), | |
| decoder_num_inference_steps_b: gr.update(visible=False), | |
| decoder_guidance_scale_b: gr.update(visible=False), | |
| width_a: gr.update(step=32, value=1024, maximum=1536), | |
| height_a: gr.update(step=32, value=1024, maximum=1536), | |
| } | |
| elif model_choice_b == "sd1.5": | |
| return { | |
| num_inference_steps_b: gr.update(visible=True, maximum=50, value=25), | |
| guidance_scale_b: gr.update(visible=True, maximum=10.0, value=7.5), | |
| prior_num_inference_steps_b: gr.update(visible=False), | |
| prior_guidance_scale_b: gr.update(visible=False), | |
| decoder_num_inference_steps_b: gr.update(visible=False), | |
| decoder_guidance_scale_b: gr.update(visible=False), | |
| width_b: gr.update(step=32, value=512, maximum=768), | |
| height_b: gr.update(step=32, value=512, maximum=768), | |
| } | |
| elif model_choice_b == "sd2.1": | |
| return { | |
| num_inference_steps_b: gr.update(visible=True, maximum=50, value=25), | |
| guidance_scale_b: gr.update(visible=True, maximum=10.0, value=7.5), | |
| prior_num_inference_steps_b: gr.update(visible=False), | |
| prior_guidance_scale_b: gr.update(visible=False), | |
| decoder_num_inference_steps_b: gr.update(visible=False), | |
| decoder_guidance_scale_b: gr.update(visible=False), | |
| width_b: gr.update(step=32, value=768, maximum=1024), | |
| height_b: gr.update(step=32, value=768, maximum=1024), | |
| } | |
| else: | |
| return { | |
| num_inference_steps_b: gr.update(visible=True, maximum=50, value=25), | |
| guidance_scale_b: gr.update(visible=True, maximum=10.0, value=7.5), | |
| prior_num_inference_steps_b: gr.update(visible=False), | |
| prior_guidance_scale_b: gr.update(visible=False), | |
| decoder_num_inference_steps_b: gr.update(visible=False), | |
| decoder_guidance_scale_b: gr.update(visible=False), | |
| width_b: gr.update(step=32, value=1024, maximum=1536), | |
| height_b: gr.update(step=32, value=1024, maximum=1536), | |
| } | |
| def toggle_visibility_arena_c(model_choice_c): | |
| if model_choice_c == "stable cascade": | |
| return { | |
| num_inference_steps_c: gr.update(visible=False), | |
| guidance_scale_c: gr.update(visible=False), | |
| prior_num_inference_steps_c: gr.update(visible=True), | |
| prior_guidance_scale_c: gr.update(visible=True), | |
| decoder_num_inference_steps_c: gr.update(visible=True), | |
| decoder_guidance_scale_c: gr.update(visible=True), | |
| width_c: gr.update(step=256, value=1024, maximum=1536), | |
| height_c: gr.update(step=256, value=1024, maximum=1536), | |
| } | |
| elif model_choice_c == "sdxl flash": | |
| return { | |
| num_inference_steps_c: gr.update(visible=True, maximum=15, value=8), | |
| guidance_scale_c: gr.update(visible=True, maximum=6.0, value=3.5), | |
| prior_num_inference_steps_c: gr.update(visible=False), | |
| prior_guidance_scale_c: gr.update(visible=False), | |
| decoder_num_inference_steps_c: gr.update(visible=False), | |
| decoder_guidance_scale_c: gr.update(visible=False), | |
| width_c: gr.update(step=32, value=1024, maximum=1536), | |
| height_c: gr.update(step=32, value=1024, maximum=1536), | |
| } | |
| elif model_choice_c == "sd1.5": | |
| return { | |
| num_inference_steps_c: gr.update(visible=True, maximum=50, value=25), | |
| guidance_scale_c: gr.update(visible=True, maximum=10.0, value=7.5), | |
| prior_num_inference_steps_c: gr.update(visible=False), | |
| prior_guidance_scale_c: gr.update(visible=False), | |
| decoder_num_inference_steps_c: gr.update(visible=False), | |
| decoder_guidance_scale_c: gr.update(visible=False), | |
| width_c: gr.update(step=32, value=512, maximum=768), | |
| height_c: gr.update(step=32, value=512, maximum=768), | |
| } | |
| elif model_choice_c == "sd2.1": | |
| return { | |
| num_inference_steps_c: gr.update(visible=True, maximum=50, value=25), | |
| guidance_scale_c: gr.update(visible=True, maximum=10.0, value=7.5), | |
| prior_num_inference_steps_c: gr.update(visible=False), | |
| prior_guidance_scale_c: gr.update(visible=False), | |
| decoder_num_inference_steps_c: gr.update(visible=False), | |
| decoder_guidance_scale_c: gr.update(visible=False), | |
| width_c: gr.update(step=32, value=768, maximum=1024), | |
| height_c: gr.update(step=32, value=768, maximum=1024), | |
| } | |
| else: | |
| return { | |
| num_inference_steps_c: gr.update(visible=True, maximum=50, value=25), | |
| guidance_scale_c: gr.update(visible=True, maximum=10.0, value=7.5), | |
| prior_num_inference_steps_c: gr.update(visible=False), | |
| prior_guidance_scale_c: gr.update(visible=False), | |
| decoder_num_inference_steps_c: gr.update(visible=False), | |
| decoder_guidance_scale_c: gr.update(visible=False), | |
| width_c: gr.update(step=32, value=1024, maximum=1536), | |
| height_c: gr.update(step=32, value=1024, maximum=1536), | |
| } | |
| def toggle_visibility_arena_d(model_choice_d): | |
| if model_choice_d == "stable cascade": | |
| return { | |
| num_inference_steps_d: gr.update(visible=False), | |
| guidance_scale_d: gr.update(visible=False), | |
| prior_num_inference_steps_d: gr.update(visible=True), | |
| prior_guidance_scale_d: gr.update(visible=True), | |
| decoder_num_inference_steps_d: gr.update(visible=True), | |
| decoder_guidance_scale_d: gr.update(visible=True), | |
| width_d: gr.update(step=256, value=1024, maximum=1536), | |
| height_d: gr.update(step=256, value=1024, maximum=1536), | |
| } | |
| elif model_choice_d == "sdxl flash": | |
| return { | |
| num_inference_steps_d: gr.update(visible=True, maximum=15, value=8), | |
| guidance_scale_d: gr.update(visible=True, maximum=6.0, value=3.5), | |
| prior_num_inference_steps_d: gr.update(visible=False), | |
| prior_guidance_scale_d: gr.update(visible=False), | |
| decoder_num_inference_steps_d: gr.update(visible=False), | |
| decoder_guidance_scale_d: gr.update(visible=False), | |
| width_d: gr.update(step=32, value=1024, maximum=1536), | |
| height_d: gr.update(step=32, value=1024, maximum=1536), | |
| } | |
| elif model_choice_d == "sd1.5": | |
| return { | |
| num_inference_steps_d: gr.update(visible=True, maximum=50, value=25), | |
| guidance_scale_d: gr.update(visible=True, maximum=10.0, value=7.5), | |
| prior_num_inference_steps_d: gr.update(visible=False), | |
| prior_guidance_scale_d: gr.update(visible=False), | |
| decoder_num_inference_steps_d: gr.update(visible=False), | |
| decoder_guidance_scale_d: gr.update(visible=False), | |
| width_d: gr.update(step=32, value=512, maximum=768), | |
| height_d: gr.update(step=32, value=512, maximum=768), | |
| } | |
| elif model_choice_d == "sd2.1": | |
| return { | |
| num_inference_steps_d: gr.update(visible=True, maximum=50, value=25), | |
| guidance_scale_d: gr.update(visible=True, maximum=10.0, value=7.5), | |
| prior_num_inference_steps_d: gr.update(visible=False), | |
| prior_guidance_scale_d: gr.update(visible=False), | |
| decoder_num_inference_steps_d: gr.update(visible=False), | |
| decoder_guidance_scale_d: gr.update(visible=False), | |
| width_d: gr.update(step=32, value=768, maximum=1024), | |
| height_d: gr.update(step=32, value=768, maximum=1024), | |
| } | |
| else: | |
| return { | |
| num_inference_steps_d: gr.update(visible=True, maximum=50, value=25), | |
| guidance_scale_d: gr.update(visible=True, maximum=10.0, value=7.5), | |
| prior_num_inference_steps_d: gr.update(visible=False), | |
| prior_guidance_scale_d: gr.update(visible=False), | |
| decoder_num_inference_steps_d: gr.update(visible=False), | |
| decoder_guidance_scale_d: gr.update(visible=False), | |
| width_d: gr.update(step=32, value=1024, maximum=1536), | |
| height_d: gr.update(step=32, value=1024, maximum=1536), | |
| } | |
| model_choice_a.change( | |
| toggle_visibility_arena_a, | |
| inputs=[model_choice_a], | |
| outputs=[ | |
| num_inference_steps_a, | |
| guidance_scale_a, | |
| prior_num_inference_steps_a, | |
| prior_guidance_scale_a, | |
| decoder_num_inference_steps_a, | |
| decoder_guidance_scale_a, | |
| width_a, | |
| height_a, | |
| ], | |
| ) | |
| model_choice_b.change( | |
| toggle_visibility_arena_b, | |
| inputs=[model_choice_b], | |
| outputs=[ | |
| num_inference_steps_b, | |
| guidance_scale_b, | |
| prior_num_inference_steps_b, | |
| prior_guidance_scale_b, | |
| decoder_num_inference_steps_b, | |
| decoder_guidance_scale_b, | |
| width_b, | |
| height_b, | |
| ], | |
| ) | |
| model_choice_c.change( | |
| toggle_visibility_arena_c, | |
| inputs=[model_choice_c], | |
| outputs=[ | |
| num_inference_steps_c, | |
| guidance_scale_c, | |
| prior_num_inference_steps_c, | |
| prior_guidance_scale_c, | |
| decoder_num_inference_steps_c, | |
| decoder_guidance_scale_c, | |
| width_c, | |
| height_c, | |
| ], | |
| ) | |
| model_choice_d.change( | |
| toggle_visibility_arena_d, | |
| inputs=[model_choice_d], | |
| outputs=[ | |
| num_inference_steps_d, | |
| guidance_scale_d, | |
| prior_num_inference_steps_d, | |
| prior_guidance_scale_d, | |
| decoder_num_inference_steps_d, | |
| decoder_guidance_scale_d, | |
| width_d, | |
| height_d, | |
| ], | |
| ) | |
| def toggle_model_options(num_models): | |
| if num_models == 2: | |
| return { | |
| model_choice_c: gr.update(visible=False), | |
| model_d_options: gr.update(visible=False), | |
| model_choice_d: gr.update(visible=False), | |
| result_3: gr.update(visible=False), | |
| result_4: gr.update(visible=False), | |
| model_c_options: gr.update(visible=False), | |
| } | |
| elif num_models == 3: | |
| return { | |
| model_choice_c: gr.update(visible=True), | |
| model_d_options: gr.update(visible=False), | |
| model_choice_d: gr.update(visible=False), | |
| result_3: gr.update(visible=True), | |
| result_4: gr.update(visible=False), | |
| model_c_options: gr.update(visible=True), | |
| } | |
| elif num_models == 4: | |
| return { | |
| model_choice_c: gr.update(visible=True), | |
| model_d_options: gr.update(visible=True), | |
| model_choice_d: gr.update(visible=True), | |
| result_3: gr.update(visible=True), | |
| result_4: gr.update(visible=True), | |
| model_c_options: gr.update(visible=True), | |
| } | |
| num_models_to_compare.change( | |
| toggle_model_options, | |
| inputs=[num_models_to_compare], | |
| outputs=[ | |
| model_choice_c, | |
| model_d_options, | |
| model_choice_d, | |
| result_3, | |
| result_4, | |
| model_c_options, | |
| ], | |
| ) | |
| gr.Examples( | |
| examples=examples_arena, | |
| fn=generate_arena_images, | |
| inputs=[ | |
| prompt, | |
| negative_prompt, | |
| num_models_to_compare, | |
| num_inference_steps_a, | |
| guidance_scale_a, | |
| num_inference_steps_b, | |
| guidance_scale_b, | |
| num_inference_steps_c, | |
| guidance_scale_c, | |
| num_inference_steps_d, | |
| guidance_scale_d, | |
| height_a, | |
| width_a, | |
| height_b, | |
| width_b, | |
| height_c, | |
| width_c, | |
| height_d, | |
| width_d, | |
| seed, | |
| num_images_per_prompt, | |
| model_choice_a, | |
| model_choice_b, | |
| model_choice_c, | |
| model_choice_d, | |
| prior_num_inference_steps_a, | |
| prior_guidance_scale_a, | |
| decoder_num_inference_steps_a, | |
| decoder_guidance_scale_a, | |
| prior_num_inference_steps_b, | |
| prior_guidance_scale_b, | |
| decoder_num_inference_steps_b, | |
| decoder_guidance_scale_b, | |
| prior_num_inference_steps_c, | |
| prior_guidance_scale_c, | |
| decoder_num_inference_steps_c, | |
| decoder_guidance_scale_c, | |
| prior_num_inference_steps_d, | |
| prior_guidance_scale_d, | |
| decoder_num_inference_steps_d, | |
| decoder_guidance_scale_d, | |
| ], | |
| outputs=[result_1, result_2, result_3, result_4], | |
| cache_examples=CACHE_EXAMPLES | |
| ) | |
| gr.on( | |
| triggers=[ | |
| prompt.submit, | |
| run_button.click, | |
| ], | |
| fn=generate_arena_images, | |
| inputs=[ | |
| prompt, | |
| negative_prompt, | |
| num_models_to_compare, | |
| num_inference_steps_a, | |
| guidance_scale_a, | |
| num_inference_steps_b, | |
| guidance_scale_b, | |
| num_inference_steps_c, | |
| guidance_scale_c, | |
| num_inference_steps_d, | |
| guidance_scale_d, | |
| height_a, | |
| width_a, | |
| height_b, | |
| width_b, | |
| height_c, | |
| width_c, | |
| height_d, | |
| width_d, | |
| seed, | |
| num_images_per_prompt, | |
| model_choice_a, | |
| model_choice_b, | |
| model_choice_c, | |
| model_choice_d, | |
| prior_num_inference_steps_a, | |
| prior_guidance_scale_a, | |
| decoder_num_inference_steps_a, | |
| decoder_guidance_scale_a, | |
| prior_num_inference_steps_b, | |
| prior_guidance_scale_b, | |
| decoder_num_inference_steps_b, | |
| decoder_guidance_scale_b, | |
| prior_num_inference_steps_c, | |
| prior_guidance_scale_c, | |
| decoder_num_inference_steps_c, | |
| decoder_guidance_scale_c, | |
| prior_num_inference_steps_d, | |
| prior_guidance_scale_d, | |
| decoder_num_inference_steps_d, | |
| decoder_guidance_scale_d, | |
| ], | |
| outputs=[result_1, result_2, result_3, result_4], | |
| ) | |
| with gr.TabItem("Individual"): | |
| with gr.Group(): | |
| with gr.Column(): | |
| prompt = gr.Textbox( | |
| label="Prompt", | |
| info="Describe the image you want", | |
| placeholder="A cat...", | |
| ) | |
| model_choice = gr.Dropdown( | |
| label="Stable Diffusion Model", | |
| choices=[ | |
| "sd3 medium", | |
| "sd2.1", | |
| "sdxl", | |
| "sdxl flash", | |
| "stable cascade", | |
| "sd1.5", | |
| ], | |
| value="sd3 medium", | |
| ) | |
| run_button = gr.Button("Run") | |
| result = gr.Gallery( | |
| label="Generated AI Images", elem_id="gallery" | |
| ) | |
| with gr.Accordion("Advanced options", open=False): | |
| with gr.Row(): | |
| negative_prompt = gr.Textbox( | |
| label="Negative Prompt", | |
| info="Describe what you don't want in the image", | |
| value="deformed, distorted, disfigured, poorly drawn, bad anatomy, incorrect anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation", | |
| placeholder="Ugly, bad anatomy...", | |
| ) | |
| with gr.Row(): | |
| num_inference_steps = gr.Slider( | |
| label="Number of Inference Steps", | |
| info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference", | |
| minimum=1, | |
| maximum=50, | |
| value=25, | |
| step=1, | |
| visible=True, | |
| ) | |
| guidance_scale = gr.Slider( | |
| label="Guidance Scale", | |
| info="Controls how much the image generation process follows the text prompt. Higher values make the image stick more closely to the input text.", | |
| minimum=0.0, | |
| maximum=10.0, | |
| value=7.5, | |
| step=0.1, | |
| visible=True, | |
| ) | |
| prior_num_inference_steps = gr.Slider( | |
| label="Prior Inference Steps", | |
| info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference", | |
| minimum=1, | |
| maximum=50, | |
| value=25, | |
| step=1, | |
| visible=False, | |
| ) | |
| prior_guidance_scale = gr.Slider( | |
| label="Prior Guidance Scale", | |
| info="Controls how much the image generation process follows the text prompt. Higher values make the image stick more closely to the input text.", | |
| minimum=0.0, | |
| maximum=10.0, | |
| value=4.0, | |
| step=0.1, | |
| visible=False, | |
| ) | |
| decoder_num_inference_steps = gr.Slider( | |
| label="Decoder Inference Steps", | |
| info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference", | |
| minimum=1, | |
| maximum=15, | |
| value=12, | |
| step=1, | |
| visible=False, | |
| ) | |
| decoder_guidance_scale = gr.Slider( | |
| label="Decoder Guidance Scale", | |
| info="Controls how much the image generation process follows the text prompt. Higher values make the image stick more closely to the input text.", | |
| minimum=0.0, | |
| maximum=10.0, | |
| value=0.0, | |
| step=0.1, | |
| visible=False, | |
| ) | |
| with gr.Row(): | |
| width = gr.Slider( | |
| label="Width", | |
| info="Width of the Image", | |
| minimum=512, | |
| maximum=1280, | |
| value=1024, | |
| step=32, | |
| ) | |
| height = gr.Slider( | |
| label="Height", | |
| info="Height of the Image", | |
| minimum=512, | |
| maximum=1280, | |
| value=1024, | |
| step=32, | |
| ) | |
| with gr.Row(): | |
| seed = gr.Slider( | |
| value=42, | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| label="Seed", | |
| info="A starting point to initiate the generation process, put 0 for a random one", | |
| ) | |
| num_images_per_prompt = gr.Slider( | |
| label="Images Per Prompt", | |
| info="Number of Images to generate with the settings", | |
| minimum=1, | |
| maximum=4, | |
| step=1, | |
| value=2, | |
| ) | |
| def toggle_visibility_individual(model_choice): | |
| if model_choice == "stable cascade": | |
| return { | |
| num_inference_steps: gr.update(visible=False), | |
| guidance_scale: gr.update(visible=False), | |
| prior_num_inference_steps: gr.update(visible=True), | |
| prior_guidance_scale: gr.update(visible=True), | |
| decoder_num_inference_steps: gr.update(visible=True), | |
| decoder_guidance_scale: gr.update(visible=True), | |
| width: gr.update(step=256, value=1024, maximum=1536), | |
| height: gr.update(step=256, value=1024, maximum=1536), | |
| } | |
| elif model_choice == "sdxl flash": | |
| return { | |
| num_inference_steps: gr.update(visible=True, maximum=15, value=8), | |
| guidance_scale: gr.update(visible=True, maximum=6.0, value=3.5), | |
| prior_num_inference_steps: gr.update(visible=False), | |
| prior_guidance_scale: gr.update(visible=False), | |
| decoder_num_inference_steps: gr.update(visible=False), | |
| decoder_guidance_scale: gr.update(visible=False), | |
| width: gr.update(step=32, value=1024, maximum=1536), | |
| height: gr.update(step=32, value=1024, maximum=1536), | |
| } | |
| elif model_choice == "sd1.5": | |
| return { | |
| num_inference_steps: gr.update(visible=True, maximum=50, value=25), | |
| guidance_scale: gr.update(visible=True, maximum=10.0, value=7.5), | |
| prior_num_inference_steps: gr.update(visible=False), | |
| prior_guidance_scale: gr.update(visible=False), | |
| decoder_num_inference_steps: gr.update(visible=False), | |
| decoder_guidance_scale: gr.update(visible=False), | |
| width: gr.update(step=32, value=512, maximum=768), | |
| height: gr.update(step=32, value=512, maximum=768), | |
| } | |
| elif model_choice == "sd2.1": | |
| return { | |
| num_inference_steps: gr.update(visible=True, maximum=50, value=25), | |
| guidance_scale: gr.update(visible=True, maximum=10.0, value=7.5), | |
| prior_num_inference_steps: gr.update(visible=False), | |
| prior_guidance_scale: gr.update(visible=False), | |
| decoder_num_inference_steps: gr.update(visible=False), | |
| decoder_guidance_scale: gr.update(visible=False), | |
| width: gr.update(step=32, value=768, maximum=1024), | |
| height: gr.update(step=32, value=768, maximum=1024), | |
| } | |
| else: | |
| return { | |
| num_inference_steps: gr.update(visible=True, maximum=50, value=25), | |
| guidance_scale: gr.update(visible=True, maximum=10.0, value=7.5), | |
| prior_num_inference_steps: gr.update(visible=False), | |
| prior_guidance_scale: gr.update(visible=False), | |
| decoder_num_inference_steps: gr.update(visible=False), | |
| decoder_guidance_scale: gr.update(visible=False), | |
| width: gr.update(step=32, value=1024, maximum=1536), | |
| height: gr.update(step=32, value=1024, maximum=1536), | |
| } | |
| model_choice.change( | |
| toggle_visibility_individual, | |
| inputs=[model_choice], | |
| outputs=[ | |
| num_inference_steps, | |
| guidance_scale, | |
| prior_num_inference_steps, | |
| prior_guidance_scale, | |
| decoder_num_inference_steps, | |
| decoder_guidance_scale, | |
| width, | |
| height, | |
| ], | |
| ) | |
| gr.Examples( | |
| examples=examples_individual, | |
| fn=generate_individual_image, | |
| inputs=[ | |
| prompt, | |
| model_choice, | |
| negative_prompt, | |
| num_inference_steps, | |
| guidance_scale, | |
| height, | |
| width, | |
| seed, | |
| num_images_per_prompt, | |
| prior_num_inference_steps, | |
| prior_guidance_scale, | |
| decoder_num_inference_steps, | |
| decoder_guidance_scale, | |
| ], | |
| outputs=[result], | |
| cache_examples=CACHE_EXAMPLES | |
| ) | |
| gr.on( | |
| triggers=[ | |
| prompt.submit, | |
| run_button.click, | |
| ], | |
| fn=generate_individual_image, | |
| inputs=[ | |
| prompt, | |
| model_choice, | |
| negative_prompt, | |
| num_inference_steps, | |
| guidance_scale, | |
| height, | |
| width, | |
| seed, | |
| num_images_per_prompt, | |
| prior_num_inference_steps, | |
| prior_guidance_scale, | |
| decoder_num_inference_steps, | |
| decoder_guidance_scale, | |
| ], | |
| outputs=[result], | |
| ) | |
| demo.queue().launch(share=False) |