Update space
Browse files- utils/rag_retriever.py +69 -34
utils/rag_retriever.py
CHANGED
|
@@ -9,21 +9,24 @@ from nltk import sent_tokenize
|
|
| 9 |
import nltk
|
| 10 |
|
| 11 |
# Baixar o tokenizador de frases do NLTK (necessário apenas uma vez)
|
| 12 |
-
try:
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
except nltk.downloader.DownloadError:
|
| 16 |
-
|
| 17 |
-
|
|
|
|
|
|
|
| 18 |
|
| 19 |
# Configurações
|
| 20 |
# Configurações
|
| 21 |
-
RAG_DIR = r
|
| 22 |
-
DATA_DIR = os.path.join(RAG_DIR,
|
| 23 |
-
FAISS_INDEX_DIR = os.path.join(RAG_DIR,
|
| 24 |
-
CONTEXT_FAISS_INDEX_PATH = os.path.join(FAISS_INDEX_DIR,
|
| 25 |
-
CONTEXT_JSON_TEXT_PATH = os.path.join(FAISS_INDEX_DIR,
|
| 26 |
-
EMBEDDING_MODEL_NAME =
|
|
|
|
| 27 |
|
| 28 |
def _load_embedding_model() -> SentenceTransformer:
|
| 29 |
"""
|
|
@@ -38,6 +41,7 @@ def _load_embedding_model() -> SentenceTransformer:
|
|
| 38 |
print(f"Carregando modelo de embeddings {EMBEDDING_MODEL_NAME}...")
|
| 39 |
return SentenceTransformer(EMBEDDING_MODEL_NAME, trust_remote_code=True)
|
| 40 |
|
|
|
|
| 41 |
def _load_existing_index_and_documents() -> tuple[list | None, faiss.Index | None]:
|
| 42 |
"""
|
| 43 |
Attempts to load an existing FAISS index and its associated text documents
|
|
@@ -56,7 +60,7 @@ def _load_existing_index_and_documents() -> tuple[list | None, faiss.Index | Non
|
|
| 56 |
print("Carregando índice e documentos existentes...")
|
| 57 |
try:
|
| 58 |
faiss_index = faiss.read_index(CONTEXT_FAISS_INDEX_PATH)
|
| 59 |
-
with open(CONTEXT_JSON_TEXT_PATH,
|
| 60 |
loaded_documents = json.load(f)
|
| 61 |
print(f"Carregados {len(loaded_documents)} documentos do índice existente.")
|
| 62 |
return loaded_documents, faiss_index
|
|
@@ -65,6 +69,7 @@ def _load_existing_index_and_documents() -> tuple[list | None, faiss.Index | Non
|
|
| 65 |
return None, None
|
| 66 |
return None, None
|
| 67 |
|
|
|
|
| 68 |
def _load_source_documents() -> list[str]:
|
| 69 |
"""
|
| 70 |
Loads and preprocesses text documents from the data folder (DATA_DIR).
|
|
@@ -81,16 +86,16 @@ def _load_source_documents() -> list[str]:
|
|
| 81 |
ValueError: If no '.txt' files are found in the data directory
|
| 82 |
or if no valid documents are loaded after processing.
|
| 83 |
"""
|
| 84 |
-
file_paths = glob.glob(os.path.join(DATA_DIR,
|
| 85 |
if not file_paths:
|
| 86 |
raise ValueError(f"Nenhum arquivo .txt encontrado em {DATA_DIR}. Por favor, adicione documentos.")
|
| 87 |
|
| 88 |
context_chunks = []
|
| 89 |
for file_path in file_paths:
|
| 90 |
try:
|
| 91 |
-
with open(file_path,
|
| 92 |
# Splits by double newline, strips whitespace, and filters out empty strings
|
| 93 |
-
context_chunks.extend(list(filter(None, map(str.strip, f.read().split(
|
| 94 |
except Exception as e:
|
| 95 |
print(f"Erro ao ler o arquivo {file_path}: {e}")
|
| 96 |
continue
|
|
@@ -101,6 +106,7 @@ def _load_source_documents() -> list[str]:
|
|
| 101 |
print(f"Carregados {len(context_chunks)} documentos.")
|
| 102 |
return context_chunks
|
| 103 |
|
|
|
|
| 104 |
def _generate_text_embeddings(embedder_model: SentenceTransformer, text_documents: list[str]) -> np.ndarray:
|
| 105 |
"""
|
| 106 |
Generates numerical embeddings for a list of text documents using the provided embedder.
|
|
@@ -123,9 +129,9 @@ def _generate_text_embeddings(embedder_model: SentenceTransformer, text_document
|
|
| 123 |
batch_size = 32
|
| 124 |
generated_embeddings_list = []
|
| 125 |
for i in range(0, len(text_documents), batch_size):
|
| 126 |
-
batch = text_documents[i:i + batch_size]
|
| 127 |
try:
|
| 128 |
-
if batch:
|
| 129 |
generated_embeddings_list.extend(embedder_model.encode(batch, show_progress_bar=False))
|
| 130 |
except Exception as e:
|
| 131 |
print(f"Erro ao gerar embeddings para lote {i//batch_size if batch_size > 0 else i}: {e}")
|
|
@@ -138,6 +144,7 @@ def _generate_text_embeddings(embedder_model: SentenceTransformer, text_document
|
|
| 138 |
|
| 139 |
return np.array(generated_embeddings_list, dtype=np.float32)
|
| 140 |
|
|
|
|
| 141 |
def _create_faiss_index(document_embeddings: np.ndarray) -> faiss.Index:
|
| 142 |
"""
|
| 143 |
Creates and populates a FAISS (Facebook AI Similarity Search) index from a set of embeddings.
|
|
@@ -159,6 +166,7 @@ def _create_faiss_index(document_embeddings: np.ndarray) -> faiss.Index:
|
|
| 159 |
faiss_index.add(document_embeddings)
|
| 160 |
return faiss_index
|
| 161 |
|
|
|
|
| 162 |
def initialize_rag_system() -> tuple[list[str], faiss.Index, SentenceTransformer]:
|
| 163 |
"""
|
| 164 |
Initializes the complete RAG (Retrieval Augmented Generation) system.
|
|
@@ -181,20 +189,27 @@ def initialize_rag_system() -> tuple[list[str], faiss.Index, SentenceTransformer
|
|
| 181 |
text_embedder = _load_embedding_model()
|
| 182 |
context_documents, faiss_index = _load_existing_index_and_documents()
|
| 183 |
|
| 184 |
-
if faiss_index is None:
|
| 185 |
print("Índice FAISS não encontrado ou corrompido. Reconstruindo...")
|
| 186 |
context_documents = _load_source_documents()
|
| 187 |
document_embeddings = _generate_text_embeddings(text_embedder, context_documents)
|
| 188 |
faiss_index = _create_faiss_index(document_embeddings)
|
| 189 |
|
| 190 |
faiss.write_index(faiss_index, CONTEXT_FAISS_INDEX_PATH)
|
| 191 |
-
with open(CONTEXT_JSON_TEXT_PATH,
|
| 192 |
-
json.dump(context_documents, f, ensure_ascii=False, indent=4)
|
| 193 |
print("Novo índice e documentos salvos com sucesso.")
|
| 194 |
|
| 195 |
return context_documents, faiss_index, text_embedder
|
| 196 |
|
| 197 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 198 |
"""
|
| 199 |
Searches for the 'k_results' most relevant documents for the **entire question**,
|
| 200 |
treating it as a single search unit. This function does not segment the question into sentences.
|
|
@@ -238,7 +253,14 @@ def search_with_full_query(full_question_text: str, context_documents: list[str]
|
|
| 238 |
print(f"Erro ao buscar contexto completo: {e}")
|
| 239 |
return []
|
| 240 |
|
| 241 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 242 |
"""
|
| 243 |
Segments the question into sentences and searches for the 'k_per_sentence' most relevant
|
| 244 |
documents for **EACH sentence**, then consolidates and returns only unique contexts.
|
|
@@ -264,7 +286,7 @@ def search_with_multiple_sentences(question_text: str, context_documents: list[s
|
|
| 264 |
|
| 265 |
print(f"Buscando múltiplos contextos para: '{question_text}'")
|
| 266 |
|
| 267 |
-
sentences = sent_tokenize(question_text, language=
|
| 268 |
if not sentences:
|
| 269 |
print("Nenhuma frase detectada na pergunta para busca de múltiplos contextos.")
|
| 270 |
return []
|
|
@@ -277,7 +299,7 @@ def search_with_multiple_sentences(question_text: str, context_documents: list[s
|
|
| 277 |
try:
|
| 278 |
for sentence in sentences:
|
| 279 |
print(f"Processando frase para múltiplos contextos: '{sentence}'")
|
| 280 |
-
if not sentence.strip():
|
| 281 |
continue
|
| 282 |
query_embedding = np.array(embedder_model.encode([sentence]), dtype=np.float32)
|
| 283 |
distances, indices = faiss_index.search(query_embedding, k_per_sentence)
|
|
@@ -288,8 +310,15 @@ def search_with_multiple_sentences(question_text: str, context_documents: list[s
|
|
| 288 |
|
| 289 |
if 0 <= document_index < len(context_documents):
|
| 290 |
# If the document has already been found, update if the new distance is smaller (more relevant)
|
| 291 |
-
if
|
| 292 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 293 |
|
| 294 |
# Convert the dictionary of consolidated contexts back to a list
|
| 295 |
results_list = list(consolidated_contexts_map.values())
|
|
@@ -302,6 +331,7 @@ def search_with_multiple_sentences(question_text: str, context_documents: list[s
|
|
| 302 |
print(f"Erro ao buscar múltiplos contextos: {e}")
|
| 303 |
return []
|
| 304 |
|
|
|
|
| 305 |
# --- Funções de Teste ---
|
| 306 |
def test_context_search_interactive():
|
| 307 |
"""
|
|
@@ -319,7 +349,7 @@ def test_context_search_interactive():
|
|
| 319 |
|
| 320 |
while True:
|
| 321 |
user_question = input("\nDigite uma pergunta (ou 'sair' para encerrar): ")
|
| 322 |
-
if user_question.lower() ==
|
| 323 |
break
|
| 324 |
|
| 325 |
print("\nEscolha o tipo de busca:")
|
|
@@ -328,12 +358,16 @@ def test_context_search_interactive():
|
|
| 328 |
search_choice = input("Opção (1 ou 2): ")
|
| 329 |
|
| 330 |
retrieved_contexts = []
|
| 331 |
-
if search_choice ==
|
| 332 |
print(f"\nRealizando busca de contexto completo para: '{user_question}'")
|
| 333 |
-
retrieved_contexts = search_with_full_query(
|
| 334 |
-
|
|
|
|
|
|
|
| 335 |
print(f"\nRealizando busca de múltiplos contextos para: '{user_question}'")
|
| 336 |
-
retrieved_contexts = search_with_multiple_sentences(
|
|
|
|
|
|
|
| 337 |
else:
|
| 338 |
print("Opção inválida. Tente novamente.")
|
| 339 |
continue
|
|
@@ -345,8 +379,9 @@ def test_context_search_interactive():
|
|
| 345 |
print("\nContextos mais relevantes:")
|
| 346 |
for doc_idx, text_content, distance_score in retrieved_contexts:
|
| 347 |
print(f"\nÍndice Original do Documento: {doc_idx}, Distância: {distance_score:.4f}")
|
| 348 |
-
print(f"Texto: {text_content[:500]}...")
|
| 349 |
print("-" * 50)
|
| 350 |
|
|
|
|
| 351 |
if __name__ == "__main__":
|
| 352 |
-
test_context_search_interactive()
|
|
|
|
| 9 |
import nltk
|
| 10 |
|
| 11 |
# Baixar o tokenizador de frases do NLTK (necessário apenas uma vez)
|
| 12 |
+
# try:
|
| 13 |
+
# print("tentanto encontrar o tokenizador de frases do NLTK...")
|
| 14 |
+
# nltk.data.find('tokenizers/punkt') or nltk.download('tokenizers/punkt_tab')
|
| 15 |
+
# except nltk.downloader.DownloadError:
|
| 16 |
+
# print("Tokenizador de frases do NLTK não encontrado. Baixando...")
|
| 17 |
+
# nltk.download('punkt_tab')
|
| 18 |
+
|
| 19 |
+
nltk.download("punkt")
|
| 20 |
|
| 21 |
# Configurações
|
| 22 |
# Configurações
|
| 23 |
+
RAG_DIR = r".\RAG"
|
| 24 |
+
DATA_DIR = os.path.join(RAG_DIR, "data")
|
| 25 |
+
FAISS_INDEX_DIR = os.path.join(RAG_DIR, "FAISS") # Renamed from FAISS_DIR for clarity
|
| 26 |
+
CONTEXT_FAISS_INDEX_PATH = os.path.join(FAISS_INDEX_DIR, "context_index.faiss") # Renamed variable
|
| 27 |
+
CONTEXT_JSON_TEXT_PATH = os.path.join(FAISS_INDEX_DIR, "context_texts.json") # Renamed variable
|
| 28 |
+
EMBEDDING_MODEL_NAME = "nomic-ai/nomic-embed-text-v2-moe" # Renamed variable
|
| 29 |
+
|
| 30 |
|
| 31 |
def _load_embedding_model() -> SentenceTransformer:
|
| 32 |
"""
|
|
|
|
| 41 |
print(f"Carregando modelo de embeddings {EMBEDDING_MODEL_NAME}...")
|
| 42 |
return SentenceTransformer(EMBEDDING_MODEL_NAME, trust_remote_code=True)
|
| 43 |
|
| 44 |
+
|
| 45 |
def _load_existing_index_and_documents() -> tuple[list | None, faiss.Index | None]:
|
| 46 |
"""
|
| 47 |
Attempts to load an existing FAISS index and its associated text documents
|
|
|
|
| 60 |
print("Carregando índice e documentos existentes...")
|
| 61 |
try:
|
| 62 |
faiss_index = faiss.read_index(CONTEXT_FAISS_INDEX_PATH)
|
| 63 |
+
with open(CONTEXT_JSON_TEXT_PATH, "r", encoding="utf-8") as f:
|
| 64 |
loaded_documents = json.load(f)
|
| 65 |
print(f"Carregados {len(loaded_documents)} documentos do índice existente.")
|
| 66 |
return loaded_documents, faiss_index
|
|
|
|
| 69 |
return None, None
|
| 70 |
return None, None
|
| 71 |
|
| 72 |
+
|
| 73 |
def _load_source_documents() -> list[str]:
|
| 74 |
"""
|
| 75 |
Loads and preprocesses text documents from the data folder (DATA_DIR).
|
|
|
|
| 86 |
ValueError: If no '.txt' files are found in the data directory
|
| 87 |
or if no valid documents are loaded after processing.
|
| 88 |
"""
|
| 89 |
+
file_paths = glob.glob(os.path.join(DATA_DIR, "*.txt"))
|
| 90 |
if not file_paths:
|
| 91 |
raise ValueError(f"Nenhum arquivo .txt encontrado em {DATA_DIR}. Por favor, adicione documentos.")
|
| 92 |
|
| 93 |
context_chunks = []
|
| 94 |
for file_path in file_paths:
|
| 95 |
try:
|
| 96 |
+
with open(file_path, "r", encoding="utf-8") as f:
|
| 97 |
# Splits by double newline, strips whitespace, and filters out empty strings
|
| 98 |
+
context_chunks.extend(list(filter(None, map(str.strip, f.read().split("\n\n")))))
|
| 99 |
except Exception as e:
|
| 100 |
print(f"Erro ao ler o arquivo {file_path}: {e}")
|
| 101 |
continue
|
|
|
|
| 106 |
print(f"Carregados {len(context_chunks)} documentos.")
|
| 107 |
return context_chunks
|
| 108 |
|
| 109 |
+
|
| 110 |
def _generate_text_embeddings(embedder_model: SentenceTransformer, text_documents: list[str]) -> np.ndarray:
|
| 111 |
"""
|
| 112 |
Generates numerical embeddings for a list of text documents using the provided embedder.
|
|
|
|
| 129 |
batch_size = 32
|
| 130 |
generated_embeddings_list = []
|
| 131 |
for i in range(0, len(text_documents), batch_size):
|
| 132 |
+
batch = text_documents[i : i + batch_size]
|
| 133 |
try:
|
| 134 |
+
if batch: # Ensure the batch is not empty
|
| 135 |
generated_embeddings_list.extend(embedder_model.encode(batch, show_progress_bar=False))
|
| 136 |
except Exception as e:
|
| 137 |
print(f"Erro ao gerar embeddings para lote {i//batch_size if batch_size > 0 else i}: {e}")
|
|
|
|
| 144 |
|
| 145 |
return np.array(generated_embeddings_list, dtype=np.float32)
|
| 146 |
|
| 147 |
+
|
| 148 |
def _create_faiss_index(document_embeddings: np.ndarray) -> faiss.Index:
|
| 149 |
"""
|
| 150 |
Creates and populates a FAISS (Facebook AI Similarity Search) index from a set of embeddings.
|
|
|
|
| 166 |
faiss_index.add(document_embeddings)
|
| 167 |
return faiss_index
|
| 168 |
|
| 169 |
+
|
| 170 |
def initialize_rag_system() -> tuple[list[str], faiss.Index, SentenceTransformer]:
|
| 171 |
"""
|
| 172 |
Initializes the complete RAG (Retrieval Augmented Generation) system.
|
|
|
|
| 189 |
text_embedder = _load_embedding_model()
|
| 190 |
context_documents, faiss_index = _load_existing_index_and_documents()
|
| 191 |
|
| 192 |
+
if faiss_index is None: # If the index doesn't exist or an error occurred loading it, rebuild
|
| 193 |
print("Índice FAISS não encontrado ou corrompido. Reconstruindo...")
|
| 194 |
context_documents = _load_source_documents()
|
| 195 |
document_embeddings = _generate_text_embeddings(text_embedder, context_documents)
|
| 196 |
faiss_index = _create_faiss_index(document_embeddings)
|
| 197 |
|
| 198 |
faiss.write_index(faiss_index, CONTEXT_FAISS_INDEX_PATH)
|
| 199 |
+
with open(CONTEXT_JSON_TEXT_PATH, "w", encoding="utf-8") as f:
|
| 200 |
+
json.dump(context_documents, f, ensure_ascii=False, indent=4) # Added indent for readability
|
| 201 |
print("Novo índice e documentos salvos com sucesso.")
|
| 202 |
|
| 203 |
return context_documents, faiss_index, text_embedder
|
| 204 |
|
| 205 |
+
|
| 206 |
+
def search_with_full_query(
|
| 207 |
+
full_question_text: str,
|
| 208 |
+
context_documents: list[str],
|
| 209 |
+
faiss_index: faiss.Index,
|
| 210 |
+
embedder_model: SentenceTransformer,
|
| 211 |
+
k_results: int = 3,
|
| 212 |
+
) -> list[tuple[int, str, float]]:
|
| 213 |
"""
|
| 214 |
Searches for the 'k_results' most relevant documents for the **entire question**,
|
| 215 |
treating it as a single search unit. This function does not segment the question into sentences.
|
|
|
|
| 253 |
print(f"Erro ao buscar contexto completo: {e}")
|
| 254 |
return []
|
| 255 |
|
| 256 |
+
|
| 257 |
+
def search_with_multiple_sentences(
|
| 258 |
+
question_text: str,
|
| 259 |
+
context_documents: list[str],
|
| 260 |
+
faiss_index: faiss.Index,
|
| 261 |
+
embedder_model: SentenceTransformer,
|
| 262 |
+
k_per_sentence: int = 2,
|
| 263 |
+
) -> list[tuple[int, str, float]]:
|
| 264 |
"""
|
| 265 |
Segments the question into sentences and searches for the 'k_per_sentence' most relevant
|
| 266 |
documents for **EACH sentence**, then consolidates and returns only unique contexts.
|
|
|
|
| 286 |
|
| 287 |
print(f"Buscando múltiplos contextos para: '{question_text}'")
|
| 288 |
|
| 289 |
+
sentences = sent_tokenize(question_text, language="portuguese")
|
| 290 |
if not sentences:
|
| 291 |
print("Nenhuma frase detectada na pergunta para busca de múltiplos contextos.")
|
| 292 |
return []
|
|
|
|
| 299 |
try:
|
| 300 |
for sentence in sentences:
|
| 301 |
print(f"Processando frase para múltiplos contextos: '{sentence}'")
|
| 302 |
+
if not sentence.strip(): # Skip empty sentences that might be produced by sent_tokenize
|
| 303 |
continue
|
| 304 |
query_embedding = np.array(embedder_model.encode([sentence]), dtype=np.float32)
|
| 305 |
distances, indices = faiss_index.search(query_embedding, k_per_sentence)
|
|
|
|
| 310 |
|
| 311 |
if 0 <= document_index < len(context_documents):
|
| 312 |
# If the document has already been found, update if the new distance is smaller (more relevant)
|
| 313 |
+
if (
|
| 314 |
+
document_index not in consolidated_contexts_map
|
| 315 |
+
or distance_score < consolidated_contexts_map[document_index][2]
|
| 316 |
+
):
|
| 317 |
+
consolidated_contexts_map[document_index] = (
|
| 318 |
+
document_index,
|
| 319 |
+
context_documents[document_index],
|
| 320 |
+
distance_score,
|
| 321 |
+
)
|
| 322 |
|
| 323 |
# Convert the dictionary of consolidated contexts back to a list
|
| 324 |
results_list = list(consolidated_contexts_map.values())
|
|
|
|
| 331 |
print(f"Erro ao buscar múltiplos contextos: {e}")
|
| 332 |
return []
|
| 333 |
|
| 334 |
+
|
| 335 |
# --- Funções de Teste ---
|
| 336 |
def test_context_search_interactive():
|
| 337 |
"""
|
|
|
|
| 349 |
|
| 350 |
while True:
|
| 351 |
user_question = input("\nDigite uma pergunta (ou 'sair' para encerrar): ")
|
| 352 |
+
if user_question.lower() == "sair":
|
| 353 |
break
|
| 354 |
|
| 355 |
print("\nEscolha o tipo de busca:")
|
|
|
|
| 358 |
search_choice = input("Opção (1 ou 2): ")
|
| 359 |
|
| 360 |
retrieved_contexts = []
|
| 361 |
+
if search_choice == "1":
|
| 362 |
print(f"\nRealizando busca de contexto completo para: '{user_question}'")
|
| 363 |
+
retrieved_contexts = search_with_full_query(
|
| 364 |
+
user_question, context_documents, faiss_index, text_embedder, k_results=5
|
| 365 |
+
)
|
| 366 |
+
elif search_choice == "2":
|
| 367 |
print(f"\nRealizando busca de múltiplos contextos para: '{user_question}'")
|
| 368 |
+
retrieved_contexts = search_with_multiple_sentences(
|
| 369 |
+
user_question, context_documents, faiss_index, text_embedder, k_per_sentence=3
|
| 370 |
+
)
|
| 371 |
else:
|
| 372 |
print("Opção inválida. Tente novamente.")
|
| 373 |
continue
|
|
|
|
| 379 |
print("\nContextos mais relevantes:")
|
| 380 |
for doc_idx, text_content, distance_score in retrieved_contexts:
|
| 381 |
print(f"\nÍndice Original do Documento: {doc_idx}, Distância: {distance_score:.4f}")
|
| 382 |
+
print(f"Texto: {text_content[:500]}...") # Limita o texto para melhor visualização
|
| 383 |
print("-" * 50)
|
| 384 |
|
| 385 |
+
|
| 386 |
if __name__ == "__main__":
|
| 387 |
+
test_context_search_interactive()
|