Doron Adler
commited on
Commit
·
d6c8575
1
Parent(s):
212a881
* Return a sharpened version of the image, using an unsharp mask
Browse files- .gitattributes +1 -1
- Sample00001.jpg +0 -0
- Sample00002.jpg +0 -0
- Sample00003.jpg +0 -0
- Sample00004.jpg +0 -0
- Sample00005.jpg +0 -0
- Sample00006.jpg +0 -0
- app.py +31 -7
- u2net_bce_itr_18000_train_3.891670_tar_0.553700_512x_460x.jit.pt → u2net_bce_itr_25000_train_3.856416_tar_0.547567-400x_360x.jit.pt +2 -2
.gitattributes
CHANGED
|
@@ -25,5 +25,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
| 27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
-
|
| 29 |
shape_predictor_5_face_landmarks.dat filter=lfs diff=lfs merge=lfs -text
|
|
|
|
| 25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
| 27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
u2net_bce_itr_25000_train_3.856416_tar_0.547567-400x_360x.jit.pt filter=lfs diff=lfs merge=lfs -text
|
| 29 |
shape_predictor_5_face_landmarks.dat filter=lfs diff=lfs merge=lfs -text
|
Sample00001.jpg
CHANGED
|
|
Sample00002.jpg
CHANGED
|
|
Sample00003.jpg
CHANGED
|
|
Sample00004.jpg
CHANGED
|
|
Sample00005.jpg
CHANGED
|
|
Sample00006.jpg
CHANGED
|
|
app.py
CHANGED
|
@@ -6,12 +6,27 @@ import face_detection
|
|
| 6 |
import PIL
|
| 7 |
from PIL import Image, ImageOps, ImageFile
|
| 8 |
import numpy as np
|
| 9 |
-
|
| 10 |
import torch
|
|
|
|
| 11 |
torch.set_grad_enabled(False)
|
| 12 |
-
model = torch.jit.load('
|
| 13 |
model.eval()
|
| 14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
def normPRED(d):
|
| 16 |
ma = np.max(d)
|
| 17 |
mi = np.min(d)
|
|
@@ -20,6 +35,12 @@ def normPRED(d):
|
|
| 20 |
|
| 21 |
return dn
|
| 22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
def array_to_image(array_in):
|
| 24 |
array_in = normPRED(array_in)
|
| 25 |
array_in = np.squeeze(255.0*(array_in))
|
|
@@ -45,11 +66,11 @@ def image_as_array(image_in):
|
|
| 45 |
image_out = np.expand_dims(tmpImg, 0)
|
| 46 |
return image_out
|
| 47 |
|
| 48 |
-
def find_aligned_face(image_in, size=
|
| 49 |
aligned_image, n_faces, quad = face_detection.align(image_in, face_index=0, output_size=size)
|
| 50 |
return aligned_image, n_faces, quad
|
| 51 |
|
| 52 |
-
def align_first_face(image_in, size=
|
| 53 |
aligned_image, n_faces, quad = find_aligned_face(image_in,size=size)
|
| 54 |
if n_faces == 0:
|
| 55 |
try:
|
|
@@ -82,14 +103,17 @@ def face2doll(
|
|
| 82 |
else:
|
| 83 |
input = torch.Tensor(aligned_img)
|
| 84 |
results = model(input)
|
| 85 |
-
|
| 86 |
-
|
|
|
|
|
|
|
|
|
|
| 87 |
del results
|
| 88 |
|
| 89 |
return output
|
| 90 |
|
| 91 |
def inference(img):
|
| 92 |
-
out = face2doll(img,
|
| 93 |
return out
|
| 94 |
|
| 95 |
|
|
|
|
| 6 |
import PIL
|
| 7 |
from PIL import Image, ImageOps, ImageFile
|
| 8 |
import numpy as np
|
| 9 |
+
import cv2 as cv
|
| 10 |
import torch
|
| 11 |
+
|
| 12 |
torch.set_grad_enabled(False)
|
| 13 |
+
model = torch.jit.load('u2net_bce_itr_25000_train_3.856416_tar_0.547567-400x_360x.jit.pt')
|
| 14 |
model.eval()
|
| 15 |
|
| 16 |
+
# https://en.wikipedia.org/wiki/Unsharp_masking
|
| 17 |
+
# https://stackoverflow.com/a/55590133/1495606
|
| 18 |
+
def unsharp_mask(image, kernel_size=(5, 5), sigma=1.0, amount=2.0, threshold=0):
|
| 19 |
+
"""Return a sharpened version of the image, using an unsharp mask."""
|
| 20 |
+
blurred = cv.GaussianBlur(image, kernel_size, sigma)
|
| 21 |
+
sharpened = float(amount + 1) * image - float(amount) * blurred
|
| 22 |
+
sharpened = np.maximum(sharpened, np.zeros(sharpened.shape))
|
| 23 |
+
sharpened = np.minimum(sharpened, 255 * np.ones(sharpened.shape))
|
| 24 |
+
sharpened = sharpened.round().astype(np.uint8)
|
| 25 |
+
if threshold > 0:
|
| 26 |
+
low_contrast_mask = np.absolute(image - blurred) < threshold
|
| 27 |
+
np.copyto(sharpened, image, where=low_contrast_mask)
|
| 28 |
+
return sharpened
|
| 29 |
+
|
| 30 |
def normPRED(d):
|
| 31 |
ma = np.max(d)
|
| 32 |
mi = np.min(d)
|
|
|
|
| 35 |
|
| 36 |
return dn
|
| 37 |
|
| 38 |
+
def array_to_np(array_in):
|
| 39 |
+
array_in = normPRED(array_in)
|
| 40 |
+
array_in = np.squeeze(255.0*(array_in))
|
| 41 |
+
array_in = np.transpose(array_in, (1, 2, 0))
|
| 42 |
+
return array_in
|
| 43 |
+
|
| 44 |
def array_to_image(array_in):
|
| 45 |
array_in = normPRED(array_in)
|
| 46 |
array_in = np.squeeze(255.0*(array_in))
|
|
|
|
| 66 |
image_out = np.expand_dims(tmpImg, 0)
|
| 67 |
return image_out
|
| 68 |
|
| 69 |
+
def find_aligned_face(image_in, size=400):
|
| 70 |
aligned_image, n_faces, quad = face_detection.align(image_in, face_index=0, output_size=size)
|
| 71 |
return aligned_image, n_faces, quad
|
| 72 |
|
| 73 |
+
def align_first_face(image_in, size=400):
|
| 74 |
aligned_image, n_faces, quad = find_aligned_face(image_in,size=size)
|
| 75 |
if n_faces == 0:
|
| 76 |
try:
|
|
|
|
| 103 |
else:
|
| 104 |
input = torch.Tensor(aligned_img)
|
| 105 |
results = model(input)
|
| 106 |
+
doll_np_image = array_to_np(results[1].detach().numpy())
|
| 107 |
+
doll_image = unsharp_mask(doll_np_image)
|
| 108 |
+
doll_image = Image.fromarray(doll_image)
|
| 109 |
+
|
| 110 |
+
output = img_concat_h(array_to_image(aligned_img), doll_image)
|
| 111 |
del results
|
| 112 |
|
| 113 |
return output
|
| 114 |
|
| 115 |
def inference(img):
|
| 116 |
+
out = face2doll(img, 400)
|
| 117 |
return out
|
| 118 |
|
| 119 |
|
u2net_bce_itr_18000_train_3.891670_tar_0.553700_512x_460x.jit.pt → u2net_bce_itr_25000_train_3.856416_tar_0.547567-400x_360x.jit.pt
RENAMED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9b8d7427e71fd7cb303ffffaef7a42c7c7f95aa77f846fa4cccb4130fcfbbf74
|
| 3 |
+
size 177193974
|