Tools / Modules /Generate_Speech.py
Nymbo's picture
Update Modules/Generate_Speech.py
2010a9a verified
raw
history blame
7.59 kB
from __future__ import annotations
import numpy as np
import gradio as gr
from typing import Annotated
from app import _log_call_end, _log_call_start, _truncate_for_log
from ._docstrings import autodoc
try:
import torch # type: ignore
except Exception: # pragma: no cover
torch = None # type: ignore
try:
from kokoro import KModel, KPipeline # type: ignore
except Exception: # pragma: no cover
KModel = None # type: ignore
KPipeline = None # type: ignore
_KOKORO_STATE = {
"initialized": False,
"device": "cpu",
"model": None,
"pipelines": {},
}
def get_kokoro_voices() -> list[str]:
try:
from huggingface_hub import list_repo_files
files = list_repo_files("hexgrad/Kokoro-82M")
voice_files = [file for file in files if file.endswith(".pt") and file.startswith("voices/")]
voices = [file.replace("voices/", "").replace(".pt", "") for file in voice_files]
return sorted(voices) if voices else _get_fallback_voices()
except Exception:
return _get_fallback_voices()
def _get_fallback_voices() -> list[str]:
return [
"af_alloy", "af_aoede", "af_bella", "af_heart", "af_jessica", "af_kore", "af_nicole", "af_nova", "af_river", "af_sarah", "af_sky",
"am_adam", "am_echo", "am_eric", "am_fenrir", "am_liam", "am_michael", "am_onyx", "am_puck", "am_santa",
"bf_alice", "bf_emma", "bf_isabella", "bf_lily",
"bm_daniel", "bm_fable", "bm_george", "bm_lewis",
"ef_dora", "em_alex", "em_santa",
"ff_siwis",
"hf_alpha", "hf_beta", "hm_omega", "hm_psi",
"if_sara", "im_nicola",
"jf_alpha", "jf_gongitsune", "jf_nezumi", "jf_tebukuro", "jm_kumo",
"pf_dora", "pm_alex", "pm_santa",
"zf_xiaobei", "zf_xiaoni", "zf_xiaoxiao", "zf_xiaoyi",
"zm_yunjian", "zm_yunxi", "zm_yunxia", "zm_yunyang",
]
def _init_kokoro() -> None:
if _KOKORO_STATE["initialized"]:
return
if KModel is None or KPipeline is None:
raise RuntimeError("Kokoro is not installed. Please install the 'kokoro' package (>=0.9.4).")
device = "cpu"
if torch is not None:
try:
if torch.cuda.is_available():
device = "cuda"
except Exception:
device = "cpu"
model = KModel().to(device).eval()
pipelines = {"a": KPipeline(lang_code="a", model=False)}
try:
pipelines["a"].g2p.lexicon.golds["kokoro"] = "kˈOkəɹO"
except Exception:
pass
_KOKORO_STATE.update({"initialized": True, "device": device, "model": model, "pipelines": pipelines})
def List_Kokoro_Voices() -> list[str]:
return get_kokoro_voices()
# Single source of truth for the LLM-facing tool description
TOOL_SUMMARY = (
"Synthesize speech from text using Kokoro-82M; choose voice and speed; returns (sample_rate, waveform). "
"Return the generated media to the user in this format `![Alt text](URL)`."
)
@autodoc(
summary=TOOL_SUMMARY,
)
def Generate_Speech(
text: Annotated[str, "The text to synthesize (English)."],
speed: Annotated[float, "Speech speed multiplier in 0.5–2.0; 1.0 = normal speed."] = 1.25,
voice: Annotated[
str,
(
"Voice identifier from 54 available options. "
"Voice Legend: af=American female, am=American male, bf=British female, bm=British male, ef=European female, "
"em=European male, hf=Hindi female, hm=Hindi male, if=Italian female, im=Italian male, jf=Japanese female, "
"jm=Japanese male, pf=Portuguese female, pm=Portuguese male, zf=Chinese female, zm=Chinese male, ff=French female. "
"All Voices: af_alloy, af_aoede, af_bella, af_heart, af_jessica, af_kore, af_nicole, af_nova, af_river, af_sarah, af_sky, "
"am_adam, am_echo, am_eric, am_fenrir, am_liam, am_michael, am_onyx, am_puck, am_santa, bf_alice, bf_emma, bf_isabella, "
"bf_lily, bm_daniel, bm_fable, bm_george, bm_lewis, ef_dora, em_alex, em_santa, ff_siwis, hf_alpha, hf_beta, hm_omega, hm_psi, "
"if_sara, im_nicola, jf_alpha, jf_gongitsune, jf_nezumi, jf_tebukuro, jm_kumo, pf_dora, pm_alex, pm_santa, zf_xiaobei, "
"zf_xiaoni, zf_xiaoxiao, zf_xiaoyi, zm_yunjian, zm_yunxi, zm_yunxia, zm_yunyang."
),
] = "af_heart",
) -> tuple[int, np.ndarray]:
_log_call_start("Generate_Speech", text=_truncate_for_log(text, 200), speed=speed, voice=voice)
if not text or not text.strip():
try:
_log_call_end("Generate_Speech", "error=empty text")
finally:
pass
raise gr.Error("Please provide non-empty text to synthesize.")
_init_kokoro()
model = _KOKORO_STATE["model"]
pipelines = _KOKORO_STATE["pipelines"]
pipeline = pipelines.get("a")
if pipeline is None:
raise gr.Error("Kokoro English pipeline not initialized.")
audio_segments = []
pack = pipeline.load_voice(voice)
try:
segments = list(pipeline(text, voice, speed))
total_segments = len(segments)
for segment_idx, (text_chunk, ps, _) in enumerate(segments):
ref_s = pack[len(ps) - 1]
try:
audio = model(ps, ref_s, float(speed))
audio_segments.append(audio.detach().cpu().numpy())
if total_segments > 10 and (segment_idx + 1) % 5 == 0:
print(f"Progress: Generated {segment_idx + 1}/{total_segments} segments...")
except Exception as exc:
raise gr.Error(f"Error generating audio for segment {segment_idx + 1}: {exc}")
if not audio_segments:
raise gr.Error("No audio was generated (empty synthesis result).")
if len(audio_segments) == 1:
final_audio = audio_segments[0]
else:
final_audio = np.concatenate(audio_segments, axis=0)
if total_segments > 1:
duration = len(final_audio) / 24_000
print(f"Completed: {total_segments} segments concatenated into {duration:.1f} seconds of audio")
_log_call_end("Generate_Speech", f"samples={final_audio.shape[0]} duration_sec={len(final_audio)/24_000:.2f}")
return 24_000, final_audio
except gr.Error as exc:
_log_call_end("Generate_Speech", f"gr_error={str(exc)}")
raise
except Exception as exc: # pylint: disable=broad-except
_log_call_end("Generate_Speech", f"error={str(exc)[:120]}")
raise gr.Error(f"Error during speech generation: {exc}")
def build_interface() -> gr.Interface:
available_voices = get_kokoro_voices()
return gr.Interface(
fn=Generate_Speech,
inputs=[
gr.Textbox(label="Text", placeholder="Type text to synthesize…", lines=4),
gr.Slider(minimum=0.5, maximum=2.0, value=1.25, step=0.1, label="Speed"),
gr.Dropdown(
label="Voice",
choices=available_voices,
value="af_heart",
info="Select from 54 available voices across multiple languages and accents",
),
],
outputs=gr.Audio(label="Audio", type="numpy", format="wav", show_download_button=True),
title="Generate Speech",
description=(
"<div style=\"text-align:center\">Generate speech with Kokoro-82M. Supports multiple languages and accents. Runs on CPU or CUDA if available.</div>"
),
api_description=TOOL_SUMMARY,
flagging_mode="never",
)
__all__ = ["Generate_Speech", "List_Kokoro_Voices", "build_interface"]