Spaces:
Paused
Paused
| from abc import ABC, abstractmethod | |
| from typing import Tuple | |
| import torch | |
| from einops import rearrange | |
| from torch import Tensor | |
| def append_dims(x: torch.Tensor, target_dims: int) -> torch.Tensor: | |
| """Appends dimensions to the end of a tensor until it has target_dims dimensions.""" | |
| dims_to_append = target_dims - x.ndim | |
| if dims_to_append < 0: | |
| raise ValueError( | |
| f"input has {x.ndim} dims but target_dims is {target_dims}, which is less" | |
| ) | |
| elif dims_to_append == 0: | |
| return x | |
| return x[(...,) + (None,) * dims_to_append] | |
| class Patchifier(ABC): | |
| def __init__(self, patch_size: int): | |
| super().__init__() | |
| self._patch_size = (1, patch_size, patch_size) | |
| def patchify( | |
| self, latents: Tensor, frame_rates: Tensor, scale_grid: bool | |
| ) -> Tuple[Tensor, Tensor]: | |
| pass | |
| def unpatchify( | |
| self, | |
| latents: Tensor, | |
| output_height: int, | |
| output_width: int, | |
| output_num_frames: int, | |
| out_channels: int, | |
| ) -> Tuple[Tensor, Tensor]: | |
| pass | |
| def patch_size(self): | |
| return self._patch_size | |
| def get_grid( | |
| self, orig_num_frames, orig_height, orig_width, batch_size, scale_grid, device | |
| ): | |
| f = orig_num_frames // self._patch_size[0] | |
| h = orig_height // self._patch_size[1] | |
| w = orig_width // self._patch_size[2] | |
| grid_h = torch.arange(h, dtype=torch.float32, device=device) | |
| grid_w = torch.arange(w, dtype=torch.float32, device=device) | |
| grid_f = torch.arange(f, dtype=torch.float32, device=device) | |
| grid = torch.meshgrid(grid_f, grid_h, grid_w) | |
| grid = torch.stack(grid, dim=0) | |
| grid = grid.unsqueeze(0).repeat(batch_size, 1, 1, 1, 1) | |
| if scale_grid is not None: | |
| for i in range(3): | |
| if isinstance(scale_grid[i], Tensor): | |
| scale = append_dims(scale_grid[i], grid.ndim - 1) | |
| else: | |
| scale = scale_grid[i] | |
| grid[:, i, ...] = grid[:, i, ...] * scale * self._patch_size[i] | |
| grid = rearrange(grid, "b c f h w -> b c (f h w)", b=batch_size) | |
| return grid | |
| class SymmetricPatchifier(Patchifier): | |
| def patchify( | |
| self, | |
| latents: Tensor, | |
| ) -> Tuple[Tensor, Tensor]: | |
| latents = rearrange( | |
| latents, | |
| "b c (f p1) (h p2) (w p3) -> b (f h w) (c p1 p2 p3)", | |
| p1=self._patch_size[0], | |
| p2=self._patch_size[1], | |
| p3=self._patch_size[2], | |
| ) | |
| return latents | |
| def unpatchify( | |
| self, | |
| latents: Tensor, | |
| output_height: int, | |
| output_width: int, | |
| output_num_frames: int, | |
| out_channels: int, | |
| ) -> Tuple[Tensor, Tensor]: | |
| output_height = output_height // self._patch_size[1] | |
| output_width = output_width // self._patch_size[2] | |
| latents = rearrange( | |
| latents, | |
| "b (f h w) (c p q) -> b c f (h p) (w q) ", | |
| f=output_num_frames, | |
| h=output_height, | |
| w=output_width, | |
| p=self._patch_size[1], | |
| q=self._patch_size[2], | |
| ) | |
| return latents | |