Spaces:
Build error
Build error
| import torch | |
| from PIL import Image | |
| from transformers import AutoProcessor, AutoModelForCausalLM | |
| # Initialize Florence model | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| florence_model = AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True).to(device).eval() | |
| florence_processor = AutoProcessor.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True) | |
| def generate_caption(image): | |
| if not isinstance(image, Image.Image): | |
| image = Image.fromarray(image) | |
| inputs = florence_processor(text="<MORE_DETAILED_CAPTION>", images=image, return_tensors="pt").to(device) | |
| generated_ids = florence_model.generate( | |
| input_ids=inputs["input_ids"], | |
| pixel_values=inputs["pixel_values"], | |
| max_new_tokens=1024, | |
| early_stopping=False, | |
| do_sample=False, | |
| num_beams=3, | |
| ) | |
| generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0] | |
| parsed_answer = florence_processor.post_process_generation( | |
| generated_text, | |
| task="<MORE_DETAILED_CAPTION>", | |
| image_size=(image.width, image.height) | |
| ) | |
| return parsed_answer["<MORE_DETAILED_CAPTION>"] | |
| io = gr.Interface(generate_caption, | |
| inputs=[gr.Image(label="Input Image")], | |
| outputs = [gr.Textbox(label="Output Prompt", lines=2, show_copy_button = True)] | |
| ) | |
| io.launch(debug=True) |