fancyfeast
commited on
Commit
·
6982e15
1
Parent(s):
69eecf7
Initial commit
Browse files- Models.py +1159 -0
- app.py +41 -0
- requirements.txt +5 -0
Models.py
ADDED
|
@@ -0,0 +1,1159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
from pathlib import Path
|
| 3 |
+
from typing import Optional
|
| 4 |
+
import torch
|
| 5 |
+
import torch.backends.cuda
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
import torch.nn.functional as F
|
| 8 |
+
import torchvision
|
| 9 |
+
|
| 10 |
+
from transformers.activations import QuickGELUActivation
|
| 11 |
+
import math
|
| 12 |
+
from einops.layers.torch import Rearrange
|
| 13 |
+
import einops
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
MODEL_CONFIGS = {
|
| 17 |
+
# Custom models trained from scratch
|
| 18 |
+
# "Standard" definitions:
|
| 19 |
+
# name | layers | width | heads
|
| 20 |
+
# B | 12 | 768 | 12
|
| 21 |
+
# L | 24 | 1024 | 16
|
| 22 |
+
# H | 32 | 1280 | 16
|
| 23 |
+
# G | 48 | 1664 | 16
|
| 24 |
+
# e | 56 | 1792 | 16
|
| 25 |
+
# 22 | 48 | 6144 | 48
|
| 26 |
+
|
| 27 |
+
# B/16, 224, PaLM, GELU
|
| 28 |
+
'CustomTest6': {
|
| 29 |
+
'class': 'CLIPLikeModel',
|
| 30 |
+
'embedding_dim': 768,
|
| 31 |
+
'num_attention_heads': 12,
|
| 32 |
+
'activation_cls': nn.GELU,
|
| 33 |
+
'num_channels': 3,
|
| 34 |
+
'patch_size': 16,
|
| 35 |
+
'use_palm_alt': True,
|
| 36 |
+
'num_layers': 12,
|
| 37 |
+
'use_mha_alt': False,
|
| 38 |
+
'good_dropout': False,
|
| 39 |
+
},
|
| 40 |
+
|
| 41 |
+
# GAP head + Sinusoidal positional embeddings + 448 image size
|
| 42 |
+
'CustomTest18': {
|
| 43 |
+
'class': 'CLIPLikeModel',
|
| 44 |
+
'embedding_dim': 768,
|
| 45 |
+
'num_attention_heads': 12,
|
| 46 |
+
'activation_cls': nn.GELU,
|
| 47 |
+
'num_channels': 3,
|
| 48 |
+
'patch_size': 16,
|
| 49 |
+
'use_palm_alt': True,
|
| 50 |
+
'num_layers': 12,
|
| 51 |
+
'use_mha_alt': False,
|
| 52 |
+
'good_dropout': False,
|
| 53 |
+
'use_gap_head': True,
|
| 54 |
+
'sine_positional_embeddings': True,
|
| 55 |
+
},
|
| 56 |
+
|
| 57 |
+
# SW Model + B/16 + ASL + 448 image size
|
| 58 |
+
# cutout_max_pct = 0
|
| 59 |
+
# mixup_alpha = 0.8
|
| 60 |
+
# noise_level = 2
|
| 61 |
+
# random_resize_method = true
|
| 62 |
+
# total_labels = 6549
|
| 63 |
+
'SWModel1': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': False},
|
| 64 |
+
|
| 65 |
+
# Sinusoidal positional embeddings
|
| 66 |
+
'SWModel2': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': True},
|
| 67 |
+
|
| 68 |
+
# Sinusoidal positional embeddings + 224 image size + L/14
|
| 69 |
+
'SWModel3': {'class': 'ViT', 'num_blocks': 24, 'patch_size': 14, 'd_model': 1024, 'mlp_dim': 1024*4, 'num_heads': 16, 'stochdepth_rate': 0.05, 'layerscale_init': 1e-1, 'use_sine': True},
|
| 70 |
+
|
| 71 |
+
# Sinusoidal positional embeddings + 224 image size + G/14
|
| 72 |
+
'SWModel4': {'class': 'ViT', 'num_blocks': 48, 'patch_size': 14, 'd_model': 1664, 'mlp_dim': 1664*4, 'num_heads': 16, 'stochdepth_rate': 0.05, 'layerscale_init': 1e-1, 'use_sine': True},
|
| 73 |
+
|
| 74 |
+
# Sinusoidal positional embeddings + focal loss
|
| 75 |
+
'SWModel5': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': True},
|
| 76 |
+
|
| 77 |
+
'SWModel6': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': True},
|
| 78 |
+
|
| 79 |
+
'SWModel7': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': True},
|
| 80 |
+
'SWModel8': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': True},
|
| 81 |
+
'SWModel9': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': True},
|
| 82 |
+
'SWModel10': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': True},
|
| 83 |
+
'SWModel11': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0, 'use_sine': True},
|
| 84 |
+
|
| 85 |
+
# Trying head_mean_after
|
| 86 |
+
'SWModel12': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': True, 'head_mean_after': True},
|
| 87 |
+
|
| 88 |
+
# Fat boy
|
| 89 |
+
'SWModel13': {'class': 'ViT', 'num_blocks': 6, 'patch_size': 16, 'd_model': 1536, 'mlp_dim': 1536*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': True},
|
| 90 |
+
|
| 91 |
+
# L/14
|
| 92 |
+
'SWModel14': {'class': 'ViT', 'num_blocks': 24, 'patch_size': 14, 'd_model': 1024, 'mlp_dim': 1024*4, 'num_heads': 16, 'stochdepth_rate': 0.05, 'layerscale_init': 1e-1, 'use_sine': True},
|
| 93 |
+
'SWModel15': {'class': 'ViT', 'num_blocks': 24, 'patch_size': 14, 'd_model': 1024, 'mlp_dim': 1024*4, 'num_heads': 16, 'stochdepth_rate': 0.05, 'layerscale_init': 1e-5, 'use_sine': True},
|
| 94 |
+
'SWModel16': {'class': 'ViT', 'num_blocks': 24, 'patch_size': 14, 'd_model': 1024, 'mlp_dim': 1024*4, 'num_heads': 16, 'stochdepth_rate': 0.10, 'layerscale_init': 1e-1, 'use_sine': True},
|
| 95 |
+
'SWModel16f': {'class': 'ViT', 'num_blocks': 24, 'patch_size': 14, 'd_model': 1024, 'mlp_dim': 1024*4, 'num_heads': 16, 'stochdepth_rate': 0.10, 'layerscale_init': 1e-1, 'use_sine': True},
|
| 96 |
+
'SWModel22': {'class': 'ViT', 'num_blocks': 24, 'patch_size': 14, 'd_model': 1024, 'mlp_dim': 1024*4, 'num_heads': 16, 'stochdepth_rate': 0.20, 'layerscale_init': 1e-1, 'use_sine': True},
|
| 97 |
+
'SWModel25': {'class': 'ViT', 'num_blocks': 24, 'patch_size': 16, 'd_model': 1024, 'mlp_dim': 1024*4, 'num_heads': 16, 'stochdepth_rate': 0.15, 'layerscale_init': 1e-1, 'use_sine': True, 'cnn_stem': 'conv:c=128;ln;relu;conv:c=256;ln;relu;conv:c=512;ln;relu;conv:c=1024;ln;relu;conv:c=1024,s=1,k=1,p=0'},
|
| 98 |
+
|
| 99 |
+
# CNN stem
|
| 100 |
+
'SWModel18': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': True, 'cnn_stem': 'conv:c=64;bn;relu;conv:c=128;bn;relu;conv:c=256;bn;relu;conv:c=512;bn;relu;conv:c=768,s=1,k=1'},
|
| 101 |
+
'SWModel19': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': True, 'cnn_stem': 'conv:c=64;bn;relu;conv:c=128;bn;relu;conv:c=128,s=1;bn;relu;conv:c=256;bn;relu;conv:c=256,s=1;bn;relu;conv:c=512;bn;relu;conv:c=768,s=1,k=1,p=0'},
|
| 102 |
+
'SWModel20': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': True, 'cnn_stem': 'conv:c=64;ln;relu;conv:c=128;ln;relu;conv:c=256;ln;relu;conv:c=512;ln;relu;conv:c=768,s=1,k=1,p=0'},
|
| 103 |
+
'SWModel21': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': True, 'cnn_stem': 'conv:c=64;ln;gelu;conv:c=128;ln;gelu;conv:c=256;ln;gelu;conv:c=512;ln;gelu;conv:c=768,s=1,k=1,p=0'},
|
| 104 |
+
'SWModel23': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': True, 'cnn_stem': 'conv:c=64;ln;relu;conv:c=128;ln;relu;conv:c=256;ln;relu;conv:c=512;ln;relu;conv:c=768,s=1,k=1,p=0'},
|
| 105 |
+
'SWModel24': {'class': 'ViT', 'num_blocks': 12, 'patch_size': 16, 'd_model': 768, 'mlp_dim': 768*4, 'num_heads': 12, 'stochdepth_rate': 0.05, 'use_sine': True, 'cnn_stem': 'conv:c=64;ln;relu;conv:c=128;ln;relu;conv:c=256;ln;relu;conv:c=512;ln;relu;conv:c=768,s=1,k=1,p=0'},
|
| 106 |
+
|
| 107 |
+
# H/14
|
| 108 |
+
'SWModel17': {'class': 'ViT', 'num_blocks': 32, 'patch_size': 14, 'd_model': 1280, 'mlp_dim': 1280*4, 'num_heads': 16, 'stochdepth_rate': 0.05, 'layerscale_init': 1e-1, 'use_sine': True},
|
| 109 |
+
'SWModel26': {'class': 'ViT', 'num_blocks': 32, 'patch_size': 14, 'd_model': 1280, 'mlp_dim': 1280*4, 'num_heads': 16, 'stochdepth_rate': 0.15, 'layerscale_init': 1e-1, 'use_sine': True},
|
| 110 |
+
}
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
class VisionModel(nn.Module):
|
| 114 |
+
image_size: int
|
| 115 |
+
n_tags: int
|
| 116 |
+
|
| 117 |
+
def __init__(self, image_size: int, n_tags: int):
|
| 118 |
+
super().__init__()
|
| 119 |
+
|
| 120 |
+
self.image_size = image_size
|
| 121 |
+
self.n_tags = n_tags
|
| 122 |
+
|
| 123 |
+
@staticmethod
|
| 124 |
+
def load_model(path: Path | str, device: str | None = None) -> 'VisionModel':
|
| 125 |
+
"""
|
| 126 |
+
Load a model from a directory.
|
| 127 |
+
:param path: The directory containing the model.
|
| 128 |
+
:return: The model, the image size, and the number of tags.
|
| 129 |
+
"""
|
| 130 |
+
with open(Path(path) / 'config.json', 'r') as f:
|
| 131 |
+
config = json.load(f)
|
| 132 |
+
|
| 133 |
+
if (Path(path) / 'model.safetensors').exists():
|
| 134 |
+
from safetensors.torch import load_file
|
| 135 |
+
resume = load_file(Path(path) / 'model.safetensors', device='cpu')
|
| 136 |
+
else:
|
| 137 |
+
resume = torch.load(Path(path) / 'model.pt', map_location=torch.device('cpu'))
|
| 138 |
+
|
| 139 |
+
model_classes = VisionModel.__subclasses__()
|
| 140 |
+
model_cls = next(cls for cls in model_classes if cls.__name__ == config['class'])
|
| 141 |
+
|
| 142 |
+
model = model_cls(**{k: v for k, v in config.items() if k != 'class'})
|
| 143 |
+
model.load(resume['model'])
|
| 144 |
+
if device is not None:
|
| 145 |
+
model = model.to(device)
|
| 146 |
+
|
| 147 |
+
return model
|
| 148 |
+
|
| 149 |
+
@staticmethod
|
| 150 |
+
def from_config(config: dict) -> 'VisionModel':
|
| 151 |
+
model_classes = VisionModel.__subclasses__()
|
| 152 |
+
model_cls = next(cls for cls in model_classes if cls.__name__ == config['class'])
|
| 153 |
+
return model_cls(**{k: v for k, v in config.items() if k != 'class'})
|
| 154 |
+
|
| 155 |
+
def get_optimized_parameters(self, lr: float):
|
| 156 |
+
raise NotImplementedError
|
| 157 |
+
|
| 158 |
+
def save(self):
|
| 159 |
+
raise NotImplementedError
|
| 160 |
+
|
| 161 |
+
def load(self, state_dict):
|
| 162 |
+
raise NotImplementedError
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
def basic_calculate_loss(preds: dict[str, torch.Tensor], batch: dict, pos_weight: torch.Tensor | None, loss_type: str):
|
| 166 |
+
def asl_helper(preds, target):
|
| 167 |
+
p = F.softmax(preds, dim=1)
|
| 168 |
+
xs_pos = p.clamp(min=1e-6)
|
| 169 |
+
xs_neg = (1 - p).clamp(min=1e-6)
|
| 170 |
+
|
| 171 |
+
los_pos = torch.log(torch.gather(xs_pos, 1, target.unsqueeze(1))).sum()
|
| 172 |
+
los_neg = torch.log(xs_neg)
|
| 173 |
+
los_neg = los_neg.sum() - torch.gather(los_neg, 1, target.unsqueeze(1)).sum()
|
| 174 |
+
loss = los_pos + los_neg
|
| 175 |
+
|
| 176 |
+
return -loss
|
| 177 |
+
|
| 178 |
+
if loss_type == "ce":
|
| 179 |
+
loss = F.binary_cross_entropy_with_logits(preds['tags'], batch['tags'])
|
| 180 |
+
elif loss_type == "weighted":
|
| 181 |
+
loss = F.binary_cross_entropy_with_logits(preds['tags'], batch['tags'], pos_weight=pos_weight)
|
| 182 |
+
elif loss_type == "focal":
|
| 183 |
+
gamma = 2
|
| 184 |
+
p = torch.sigmoid(preds['tags'])
|
| 185 |
+
ce_loss = F.binary_cross_entropy_with_logits(preds['tags'], batch['tags'], reduction='none')
|
| 186 |
+
p_t = p * batch['tags'] + (1 - p) * (1 - batch['tags'])
|
| 187 |
+
loss = ce_loss * ((1 - p_t) ** gamma)
|
| 188 |
+
loss = loss.mean()
|
| 189 |
+
elif loss_type == "focal2":
|
| 190 |
+
gamma = 2
|
| 191 |
+
p = torch.sigmoid(preds['tags'])
|
| 192 |
+
ce_loss = F.binary_cross_entropy_with_logits(preds['tags'], batch['tags'], reduction='none')
|
| 193 |
+
p_t = p * batch['tags'] + (1 - p) * (1 - batch['tags'])
|
| 194 |
+
loss = ce_loss * ((1 - p_t) ** gamma) * 256
|
| 195 |
+
loss = loss.mean()
|
| 196 |
+
elif loss_type == "asl":
|
| 197 |
+
p = torch.sigmoid(preds['tags'])
|
| 198 |
+
xs_pos = p
|
| 199 |
+
xs_neg = 1 - p
|
| 200 |
+
|
| 201 |
+
los_pos = batch['tags'] * torch.log(xs_pos.clamp(min=1e-6))
|
| 202 |
+
los_neg = (1 - batch['tags']) * torch.log(xs_neg.clamp(min=1e-6))
|
| 203 |
+
loss = los_pos + los_neg
|
| 204 |
+
loss = -loss.sum()
|
| 205 |
+
|
| 206 |
+
# Rating
|
| 207 |
+
loss = loss + asl_helper(preds['rating'], batch['rating'])
|
| 208 |
+
|
| 209 |
+
# Score
|
| 210 |
+
loss = loss + asl_helper(preds['score'], batch['score'])
|
| 211 |
+
elif loss_type == "asl2":
|
| 212 |
+
p = torch.sigmoid(preds['tags'])
|
| 213 |
+
xs_pos = p
|
| 214 |
+
xs_neg = 1 - p
|
| 215 |
+
|
| 216 |
+
los_pos = batch['tags'] * torch.log(xs_pos.clamp(min=1e-6))
|
| 217 |
+
los_neg = (1 - batch['tags']) * torch.log(xs_neg.clamp(min=1e-6))
|
| 218 |
+
loss = -los_pos - los_neg
|
| 219 |
+
loss = loss.sum()
|
| 220 |
+
elif loss_type == "asl3":
|
| 221 |
+
p = torch.sigmoid(preds['tags'])
|
| 222 |
+
xs_pos = p
|
| 223 |
+
xs_neg = 1 - p
|
| 224 |
+
|
| 225 |
+
los_pos = batch['tags'] * torch.log(xs_pos.clamp(min=1e-6))
|
| 226 |
+
los_neg = (1 - batch['tags']) * torch.log(xs_neg.clamp(min=1e-6))
|
| 227 |
+
loss = -los_pos - los_neg
|
| 228 |
+
loss = loss.mean()
|
| 229 |
+
elif loss_type == "asl4":
|
| 230 |
+
p = torch.sigmoid(preds['tags'])
|
| 231 |
+
xs_pos = p
|
| 232 |
+
xs_neg = 1 - p
|
| 233 |
+
|
| 234 |
+
los_pos = batch['tags'] * torch.log(xs_pos.clamp(min=1e-6))
|
| 235 |
+
los_neg = (1 - batch['tags']) * torch.log(xs_neg.clamp(min=1e-6))
|
| 236 |
+
loss = -los_pos - los_neg
|
| 237 |
+
loss = loss.mean() * 128
|
| 238 |
+
elif loss_type == "asl5":
|
| 239 |
+
loss = F.binary_cross_entropy_with_logits(preds['tags'], batch['tags'], pos_weight=pos_weight) * 128
|
| 240 |
+
elif loss_type == "asl6":
|
| 241 |
+
loss = F.binary_cross_entropy_with_logits(preds['tags'], batch['tags'], pos_weight=pos_weight) * 256
|
| 242 |
+
elif loss_type == "asl7":
|
| 243 |
+
loss = F.binary_cross_entropy_with_logits(preds['tags'], batch['tags'], pos_weight=pos_weight) * 2
|
| 244 |
+
else:
|
| 245 |
+
raise ValueError(f"Invalid loss type: {loss_type}")
|
| 246 |
+
|
| 247 |
+
return loss
|
| 248 |
+
|
| 249 |
+
|
| 250 |
+
class CLIPMlp(nn.Module):
|
| 251 |
+
def __init__(self, hidden_size: int, intermediate_size: int, activation_cls):
|
| 252 |
+
super().__init__()
|
| 253 |
+
self.activation_fn = activation_cls()
|
| 254 |
+
self.fc1 = nn.Linear(hidden_size, intermediate_size)
|
| 255 |
+
self.fc2 = nn.Linear(intermediate_size, hidden_size)
|
| 256 |
+
|
| 257 |
+
def forward(self, hidden_states: torch.Tensor):
|
| 258 |
+
hidden_states = self.fc1(hidden_states)
|
| 259 |
+
hidden_states = self.activation_fn(hidden_states)
|
| 260 |
+
hidden_states = self.fc2(hidden_states)
|
| 261 |
+
return hidden_states
|
| 262 |
+
|
| 263 |
+
|
| 264 |
+
class FastCLIPAttention2(nn.Module):
|
| 265 |
+
"""Fast Attention module for CLIP-like. This is NOT a drop-in replacement for CLIPAttention, since it adds additional flexibility. Mainly uses xformers."""
|
| 266 |
+
def __init__(self, hidden_size: int, out_dim: int, num_attention_heads: int, out_seq_len: Optional[int] = None, norm_qk: bool = False):
|
| 267 |
+
super().__init__()
|
| 268 |
+
self.out_seq_len = out_seq_len
|
| 269 |
+
self.embed_dim = hidden_size
|
| 270 |
+
self.out_dim = out_dim
|
| 271 |
+
self.norm_qk = norm_qk
|
| 272 |
+
self.num_heads = num_attention_heads
|
| 273 |
+
self.head_dim = hidden_size // num_attention_heads
|
| 274 |
+
assert self.head_dim * num_attention_heads == self.embed_dim, "embed_dim must be divisible by num_attention_heads"
|
| 275 |
+
|
| 276 |
+
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
| 277 |
+
self.kv_proj = nn.Linear(self.embed_dim, self.embed_dim * 2)
|
| 278 |
+
self.out_proj = nn.Linear(self.embed_dim, self.out_dim)
|
| 279 |
+
|
| 280 |
+
if self.norm_qk:
|
| 281 |
+
self.query_norm = nn.LayerNorm(self.embed_dim)
|
| 282 |
+
self.key_norm = nn.LayerNorm(self.embed_dim)
|
| 283 |
+
|
| 284 |
+
#def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
| 285 |
+
# return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).contiguous()
|
| 286 |
+
|
| 287 |
+
def forward(self, query_states: torch.Tensor, kv_states: torch.Tensor) -> torch.Tensor:
|
| 288 |
+
bsz, src_len, embed_dim = kv_states.size()
|
| 289 |
+
if self.out_seq_len is not None:
|
| 290 |
+
tgt_len = self.out_seq_len
|
| 291 |
+
else:
|
| 292 |
+
tgt_len = src_len
|
| 293 |
+
|
| 294 |
+
kv_states = self.kv_proj(kv_states) # (bsz, src_len, embed_dim * 2)
|
| 295 |
+
q_states = self.q_proj(query_states[:, :tgt_len]) # (bsz, tgt_len, embed_dim)
|
| 296 |
+
|
| 297 |
+
# NOTE: It is not clear if LayerNorm should be applied to the embed_dim, or to the head_dim
|
| 298 |
+
if self.norm_qk:
|
| 299 |
+
q_states = self.query_norm(q_states).type(q_states.dtype)
|
| 300 |
+
k_states = self.key_norm(kv_states[:, :, :embed_dim]).type(kv_states.dtype)
|
| 301 |
+
v_states = kv_states[:, :, embed_dim:]
|
| 302 |
+
else:
|
| 303 |
+
k_states = kv_states[:, :, :embed_dim]
|
| 304 |
+
v_states = kv_states[:, :, embed_dim:]
|
| 305 |
+
|
| 306 |
+
q_states = q_states.view(bsz, tgt_len, self.num_heads, self.head_dim).transpose(1, 2) # (bsz, num_heads, tgt_len, head_dim)
|
| 307 |
+
k_states = k_states.view(bsz, src_len, self.num_heads, self.head_dim).transpose(1, 2) # (bsz, num_heads, src_len, head_dim)
|
| 308 |
+
v_states = v_states.view(bsz, src_len, self.num_heads, self.head_dim).transpose(1, 2) # (bsz, num_heads, src_len, head_dim)
|
| 309 |
+
|
| 310 |
+
# Performs scale of query_states, attention, and softmax
|
| 311 |
+
with torch.backends.cuda.sdp_kernel(enable_math=False):
|
| 312 |
+
x = F.scaled_dot_product_attention(q_states, k_states, v_states) # (bsz, num_heads, tgt_len, head_dim)
|
| 313 |
+
x = x.transpose(1, 2).contiguous().view(bsz, tgt_len, embed_dim) # (bsz, tgt_len, embed_dim)
|
| 314 |
+
|
| 315 |
+
# Projection
|
| 316 |
+
x = self.out_proj(x) # (bsz, tgt_len, out_dim)
|
| 317 |
+
|
| 318 |
+
return x
|
| 319 |
+
|
| 320 |
+
|
| 321 |
+
class SkipInit(nn.Module):
|
| 322 |
+
def __init__(self, hidden_size: int, channel_wise: bool, init_scale: float):
|
| 323 |
+
super().__init__()
|
| 324 |
+
self.hidden_size = hidden_size
|
| 325 |
+
self.channel_wise = channel_wise
|
| 326 |
+
self.init_scale = init_scale
|
| 327 |
+
|
| 328 |
+
if self.channel_wise:
|
| 329 |
+
self.scale = nn.Parameter(torch.ones(hidden_size) * init_scale)
|
| 330 |
+
else:
|
| 331 |
+
self.scale = nn.Parameter(torch.tensor(init_scale))
|
| 332 |
+
|
| 333 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 334 |
+
return x * self.scale
|
| 335 |
+
|
| 336 |
+
|
| 337 |
+
class FastCLIPEncoderLayer(nn.Module):
|
| 338 |
+
def __init__(
|
| 339 |
+
self,
|
| 340 |
+
hidden_size: int,
|
| 341 |
+
num_attention_heads: int,
|
| 342 |
+
out_seq_len: Optional[int],
|
| 343 |
+
activation_cls = QuickGELUActivation,
|
| 344 |
+
use_palm_alt: bool = False,
|
| 345 |
+
norm_qk: bool = False,
|
| 346 |
+
skip_init: Optional[float] = None,
|
| 347 |
+
stochastic_depth: Optional[float] = None,
|
| 348 |
+
):
|
| 349 |
+
super().__init__()
|
| 350 |
+
|
| 351 |
+
self.use_palm_alt = use_palm_alt
|
| 352 |
+
self.stochastic_depth = stochastic_depth
|
| 353 |
+
|
| 354 |
+
self.self_attn = FastCLIPAttention2(
|
| 355 |
+
hidden_size=hidden_size,
|
| 356 |
+
out_dim=hidden_size,
|
| 357 |
+
num_attention_heads=num_attention_heads,
|
| 358 |
+
out_seq_len=out_seq_len,
|
| 359 |
+
norm_qk=norm_qk,
|
| 360 |
+
)
|
| 361 |
+
self.mlp = CLIPMlp(hidden_size, 4 * hidden_size, activation_cls)
|
| 362 |
+
self.layer_norm1 = nn.LayerNorm(hidden_size)
|
| 363 |
+
if not use_palm_alt:
|
| 364 |
+
self.layer_norm2 = nn.LayerNorm(hidden_size)
|
| 365 |
+
|
| 366 |
+
if skip_init is not None:
|
| 367 |
+
self.attn_skip_init = SkipInit(hidden_size, channel_wise=True, init_scale=skip_init)
|
| 368 |
+
self.mlp_skip_init = SkipInit(hidden_size, channel_wise=True, init_scale=skip_init)
|
| 369 |
+
else:
|
| 370 |
+
self.attn_skip_init = nn.Identity()
|
| 371 |
+
self.mlp_skip_init = nn.Identity()
|
| 372 |
+
|
| 373 |
+
def forward(self, hidden_states: torch.Tensor):
|
| 374 |
+
residual = hidden_states
|
| 375 |
+
hidden_states = self.layer_norm1(hidden_states)
|
| 376 |
+
|
| 377 |
+
if not self.use_palm_alt:
|
| 378 |
+
hidden_states = self.self_attn(query_states=hidden_states, kv_states=hidden_states)
|
| 379 |
+
hidden_states = self.attn_skip_init(hidden_states)
|
| 380 |
+
hidden_states = hidden_states + residual[:, :hidden_states.size(1)]
|
| 381 |
+
|
| 382 |
+
residual = hidden_states
|
| 383 |
+
hidden_states = self.layer_norm2(hidden_states)
|
| 384 |
+
hidden_states = self.mlp(hidden_states)
|
| 385 |
+
hidden_states = self.mlp_skip_init(hidden_states)
|
| 386 |
+
hidden_states = hidden_states + residual
|
| 387 |
+
else:
|
| 388 |
+
# An alternative implementation inspired by the PALM paper
|
| 389 |
+
# By performing the attention and MLP in parallel it's possible to fuse the linear projections of the attention and MLP layers
|
| 390 |
+
# We don't do that here yet, but that supposedly improves efficiency without hurting performance
|
| 391 |
+
attn = self.self_attn(query_states=hidden_states, kv_states=hidden_states)
|
| 392 |
+
attn = self.attn_skip_init(attn)
|
| 393 |
+
mlp = self.mlp(hidden_states[:, :attn.size(1)])
|
| 394 |
+
mlp = self.mlp_skip_init(mlp)
|
| 395 |
+
|
| 396 |
+
if self.stochastic_depth is not None:
|
| 397 |
+
attn = torchvision.ops.stochastic_depth(attn, self.stochastic_depth, mode='row', training=self.training)
|
| 398 |
+
mlp = torchvision.ops.stochastic_depth(mlp, self.stochastic_depth, mode='row', training=self.training)
|
| 399 |
+
|
| 400 |
+
hidden_states = residual[:, :attn.size(1)] + attn + mlp
|
| 401 |
+
|
| 402 |
+
return hidden_states
|
| 403 |
+
|
| 404 |
+
|
| 405 |
+
def sinusoidal_position_embedding(width: int, height: int, depth: int, dtype, device, temperature = 10000):
|
| 406 |
+
"""
|
| 407 |
+
Sinusoidal position embedding. Returns a flat tensor of shape (h * w, d).
|
| 408 |
+
"""
|
| 409 |
+
assert depth % 4 == 0, "Embedding dimension must be divisible by 4."
|
| 410 |
+
|
| 411 |
+
y, x = torch.meshgrid(torch.arange(height, device=device), torch.arange(width, device=device), indexing="ij")
|
| 412 |
+
omega = torch.arange(depth // 4, device=device) / (depth // 4 - 1)
|
| 413 |
+
omega = 1. / (temperature ** omega)
|
| 414 |
+
|
| 415 |
+
y = y.flatten()[:, None] * omega[None, :]
|
| 416 |
+
x = x.flatten()[:, None] * omega[None, :]
|
| 417 |
+
embedding = torch.cat([x.sin(), x.cos(), y.sin(), y.cos()], dim=1)
|
| 418 |
+
|
| 419 |
+
return embedding.type(dtype)
|
| 420 |
+
|
| 421 |
+
|
| 422 |
+
class CLIPEmbeddingLayer(nn.Module):
|
| 423 |
+
def __init__(self, hidden_size: int, num_channels: int, image_size: int, patch_size: int, patch_dropout: float = 0.0, good_dropout: bool = False, dpn: bool = False, sine_positional_embeddings: bool = False):
|
| 424 |
+
super().__init__()
|
| 425 |
+
|
| 426 |
+
assert image_size % patch_size == 0, "Image dimensions must be divisible by the patch size."
|
| 427 |
+
|
| 428 |
+
seq_len = (image_size // patch_size) ** 2
|
| 429 |
+
self.patch_dropout = patch_dropout
|
| 430 |
+
self.hidden_size = hidden_size
|
| 431 |
+
self.good_dropout = good_dropout
|
| 432 |
+
self.dpn = dpn
|
| 433 |
+
self.sine_positional_embeddings = sine_positional_embeddings
|
| 434 |
+
self.patch_size = patch_size
|
| 435 |
+
|
| 436 |
+
self.patch_embeddings = nn.Conv2d(
|
| 437 |
+
in_channels=num_channels,
|
| 438 |
+
out_channels=hidden_size,
|
| 439 |
+
kernel_size=patch_size,
|
| 440 |
+
stride=patch_size,
|
| 441 |
+
bias=False,
|
| 442 |
+
)
|
| 443 |
+
if not self.sine_positional_embeddings:
|
| 444 |
+
self.positional_embeddings = nn.Embedding(seq_len, hidden_size)
|
| 445 |
+
self.register_buffer("position_ids", torch.arange(seq_len))
|
| 446 |
+
|
| 447 |
+
if self.dpn:
|
| 448 |
+
self.to_patch_embeddings = nn.Sequential(
|
| 449 |
+
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1=patch_size, p2=patch_size),
|
| 450 |
+
nn.LayerNorm(3 * patch_size * patch_size),
|
| 451 |
+
nn.Linear(3 * patch_size * patch_size, hidden_size),
|
| 452 |
+
nn.LayerNorm(hidden_size),
|
| 453 |
+
)
|
| 454 |
+
else:
|
| 455 |
+
self.to_patch_embeddings = nn.Conv2d(
|
| 456 |
+
in_channels=num_channels,
|
| 457 |
+
out_channels=hidden_size,
|
| 458 |
+
kernel_size=patch_size,
|
| 459 |
+
stride=patch_size,
|
| 460 |
+
bias=False,
|
| 461 |
+
)
|
| 462 |
+
|
| 463 |
+
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
|
| 464 |
+
B, C, H, W = pixel_values.shape
|
| 465 |
+
assert H % self.patch_size == 0, f"Input image height ({H}) needs to be divisible by the patch size ({self.patch_size})."
|
| 466 |
+
assert W % self.patch_size == 0, f"Input image width ({W}) needs to be divisible by the patch size ({self.patch_size})."
|
| 467 |
+
|
| 468 |
+
if self.dpn:
|
| 469 |
+
patches = self.to_patch_embeddings(pixel_values)
|
| 470 |
+
else:
|
| 471 |
+
patches = self.to_patch_embeddings(pixel_values)
|
| 472 |
+
patches = patches.flatten(2).transpose(1, 2)
|
| 473 |
+
|
| 474 |
+
seq_len = patches.shape[1]
|
| 475 |
+
patch_dropout = int(math.ceil((1.0 - self.patch_dropout) * seq_len))
|
| 476 |
+
|
| 477 |
+
if self.sine_positional_embeddings:
|
| 478 |
+
position_embeddings = sinusoidal_position_embedding(W // self.patch_size, H // self.patch_size, self.hidden_size, pixel_values.dtype, pixel_values.device)
|
| 479 |
+
else:
|
| 480 |
+
position_embeddings = self.positional_embeddings(self.position_ids)
|
| 481 |
+
|
| 482 |
+
if patch_dropout == seq_len or not self.training:
|
| 483 |
+
embeddings = patches + position_embeddings
|
| 484 |
+
elif self.good_dropout:
|
| 485 |
+
# Pick random patches to drop out
|
| 486 |
+
# The "good_dropout" variant uses random permutations for each batch item, but is slightly slower and involves more code
|
| 487 |
+
|
| 488 |
+
# The below method is a nice trick to generate a batch of random permutations.
|
| 489 |
+
# Torch (as of 1.13) doesn't have a built-in function to do this, and a for loop of torch.randperm is slow.
|
| 490 |
+
# Based on some benchmarks I measured the generation of the mask and the fetching to be only 50% slower than the non-"good_dropout" variant.
|
| 491 |
+
# And the time taken here is only a fraction of the time spent performing the embedding convolution.
|
| 492 |
+
# Generate a matrix of random numbers between 0 and 1 of shape (B, seq_len)
|
| 493 |
+
patch_mask = torch.rand(B, seq_len, device=patches.device)
|
| 494 |
+
# For each batch tensor, use argsort to convert the random numbers into a permutation of the patch indices
|
| 495 |
+
patch_mask = torch.argsort(patch_mask, dim=1)
|
| 496 |
+
# Truncate
|
| 497 |
+
patch_mask = patch_mask[:, :patch_dropout]
|
| 498 |
+
|
| 499 |
+
embeddings = patches.gather(1, patch_mask.unsqueeze(-1).expand(-1, -1, self.hidden_size)) + position_embeddings[patch_mask]
|
| 500 |
+
else:
|
| 501 |
+
# The non-"good_dropout" variant uses a single random permutation for all batch items, but is faster and uses less code
|
| 502 |
+
indices = torch.randperm(seq_len, device=pixel_values.device)[:patch_dropout]
|
| 503 |
+
embeddings = patches[:, indices, :] + position_embeddings[indices.expand(1, -1)]
|
| 504 |
+
|
| 505 |
+
return embeddings
|
| 506 |
+
|
| 507 |
+
|
| 508 |
+
class MHAPoolingHead(nn.Module):
|
| 509 |
+
def __init__(self, hidden_size: int, num_attention_heads: int, activation_cls, out_dim: int, alt_style: bool, norm_qk: bool):
|
| 510 |
+
super().__init__()
|
| 511 |
+
|
| 512 |
+
self.out_dim = out_dim if not alt_style else hidden_size
|
| 513 |
+
|
| 514 |
+
self.probe = nn.Parameter(torch.randn(hidden_size))
|
| 515 |
+
|
| 516 |
+
self.mlp = CLIPMlp(hidden_size, 4 * hidden_size, activation_cls)
|
| 517 |
+
self.layer_norm = nn.LayerNorm(hidden_size)
|
| 518 |
+
self.pooling_head = nn.Linear(hidden_size, 1)
|
| 519 |
+
|
| 520 |
+
self.self_attn = FastCLIPAttention2(
|
| 521 |
+
hidden_size=hidden_size,
|
| 522 |
+
out_dim=self.out_dim,
|
| 523 |
+
num_attention_heads=num_attention_heads,
|
| 524 |
+
out_seq_len=1,
|
| 525 |
+
norm_qk=norm_qk,
|
| 526 |
+
)
|
| 527 |
+
self.mlp = CLIPMlp(self.out_dim, 4 * self.out_dim, activation_cls)
|
| 528 |
+
self.layer_norm1 = nn.LayerNorm(hidden_size)
|
| 529 |
+
self.layer_norm2 = nn.LayerNorm(self.out_dim)
|
| 530 |
+
|
| 531 |
+
if alt_style:
|
| 532 |
+
self.final_proj = nn.Linear(hidden_size, out_dim)
|
| 533 |
+
else:
|
| 534 |
+
self.final_proj = nn.Identity()
|
| 535 |
+
|
| 536 |
+
def forward(self, hidden_states: torch.Tensor):
|
| 537 |
+
hidden_states = self.layer_norm1(hidden_states)
|
| 538 |
+
query_states = self.probe.unsqueeze(0).unsqueeze(0).expand(hidden_states.size(0), 1, -1)
|
| 539 |
+
|
| 540 |
+
hidden_states = self.self_attn(query_states=query_states, kv_states=hidden_states)
|
| 541 |
+
# We don't use a residual connection here because the out_dim is different from the hidden_size
|
| 542 |
+
|
| 543 |
+
residual = hidden_states
|
| 544 |
+
hidden_states = self.layer_norm2(hidden_states)
|
| 545 |
+
hidden_states = self.mlp(hidden_states)
|
| 546 |
+
hidden_states = hidden_states + residual
|
| 547 |
+
hidden_states = self.final_proj(hidden_states)
|
| 548 |
+
|
| 549 |
+
return hidden_states.squeeze(1)
|
| 550 |
+
|
| 551 |
+
|
| 552 |
+
class GAPHead(nn.Module):
|
| 553 |
+
def __init__(self, hidden_size: int, out_dim: int):
|
| 554 |
+
super().__init__()
|
| 555 |
+
|
| 556 |
+
self.norm = nn.LayerNorm(hidden_size)
|
| 557 |
+
self.proj = nn.Linear(hidden_size, out_dim)
|
| 558 |
+
|
| 559 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 560 |
+
x = x.mean(dim=1)
|
| 561 |
+
x = self.norm(x)
|
| 562 |
+
x = self.proj(x)
|
| 563 |
+
return x
|
| 564 |
+
|
| 565 |
+
|
| 566 |
+
class CLIPLikeModel(VisionModel):
|
| 567 |
+
def __init__(
|
| 568 |
+
self,
|
| 569 |
+
n_tags: int,
|
| 570 |
+
embedding_dim: int,
|
| 571 |
+
num_attention_heads: int,
|
| 572 |
+
activation_cls,
|
| 573 |
+
num_channels: int,
|
| 574 |
+
image_size: int,
|
| 575 |
+
patch_size: int,
|
| 576 |
+
patch_dropout: float,
|
| 577 |
+
use_palm_alt: bool,
|
| 578 |
+
num_layers: int,
|
| 579 |
+
use_mha_alt: bool,
|
| 580 |
+
loss_type: str,
|
| 581 |
+
good_dropout: bool=False,
|
| 582 |
+
dpn: bool=False,
|
| 583 |
+
sine_positional_embeddings: bool=False,
|
| 584 |
+
norm_qk: bool = False,
|
| 585 |
+
no_wd_bias: bool = False,
|
| 586 |
+
use_gap_head: bool = False,
|
| 587 |
+
skip_init: Optional[float] = None,
|
| 588 |
+
stochastic_depth: Optional[float] = None,
|
| 589 |
+
):
|
| 590 |
+
super().__init__(image_size, n_tags)
|
| 591 |
+
|
| 592 |
+
out_dim = n_tags
|
| 593 |
+
self.n_tags = n_tags
|
| 594 |
+
self.loss_type = loss_type
|
| 595 |
+
self.no_wd_bias = no_wd_bias
|
| 596 |
+
|
| 597 |
+
stochastic_depth_space = torch.linspace(0, stochastic_depth, num_layers) if stochastic_depth is not None else None
|
| 598 |
+
|
| 599 |
+
self.embedding_layer = CLIPEmbeddingLayer(embedding_dim, num_channels, image_size, patch_size, patch_dropout, good_dropout, dpn, sine_positional_embeddings)
|
| 600 |
+
self.pre_layer_norm = nn.LayerNorm(embedding_dim)
|
| 601 |
+
self.encoder_layers = nn.ModuleList([FastCLIPEncoderLayer(
|
| 602 |
+
hidden_size=embedding_dim,
|
| 603 |
+
num_attention_heads=num_attention_heads,
|
| 604 |
+
out_seq_len=None,
|
| 605 |
+
activation_cls=activation_cls,
|
| 606 |
+
use_palm_alt=use_palm_alt,
|
| 607 |
+
norm_qk=norm_qk,
|
| 608 |
+
skip_init=skip_init,
|
| 609 |
+
stochastic_depth=stochastic_depth_space[i].item() if stochastic_depth_space is not None else None,
|
| 610 |
+
) for i in range(num_layers)])
|
| 611 |
+
|
| 612 |
+
if use_gap_head:
|
| 613 |
+
self.pooling_head = GAPHead(embedding_dim, out_dim)
|
| 614 |
+
else:
|
| 615 |
+
self.pooling_head = MHAPoolingHead(embedding_dim, num_attention_heads, activation_cls, out_dim, use_mha_alt, norm_qk=norm_qk)
|
| 616 |
+
|
| 617 |
+
def forward(self, batch):
|
| 618 |
+
hidden_states = self.embedding_layer(batch['image'])
|
| 619 |
+
hidden_states = self.pre_layer_norm(hidden_states)
|
| 620 |
+
|
| 621 |
+
for layer in self.encoder_layers:
|
| 622 |
+
hidden_states = layer(hidden_states)
|
| 623 |
+
|
| 624 |
+
preds = self.pooling_head(hidden_states)
|
| 625 |
+
|
| 626 |
+
result = {
|
| 627 |
+
'tags': preds,
|
| 628 |
+
}
|
| 629 |
+
|
| 630 |
+
return result
|
| 631 |
+
|
| 632 |
+
def calculate_loss(self, preds, batch, pos_weight):
|
| 633 |
+
return basic_calculate_loss(preds, batch, pos_weight, self.loss_type)
|
| 634 |
+
|
| 635 |
+
def get_optimized_parameters(self, lr: float):
|
| 636 |
+
if self.no_wd_bias:
|
| 637 |
+
return self.get_optimized_parameters_no_wd_bias()
|
| 638 |
+
else:
|
| 639 |
+
return self.parameters()
|
| 640 |
+
|
| 641 |
+
def get_optimized_parameters_no_wd_bias(self):
|
| 642 |
+
decay = []
|
| 643 |
+
no_decay = []
|
| 644 |
+
|
| 645 |
+
for name, param in self.named_parameters():
|
| 646 |
+
if not param.requires_grad:
|
| 647 |
+
continue
|
| 648 |
+
|
| 649 |
+
if len(param.shape) == 1 or name.endswith(".bias"):
|
| 650 |
+
no_decay.append(param)
|
| 651 |
+
print(f'No decay: {name}')
|
| 652 |
+
else:
|
| 653 |
+
decay.append(param)
|
| 654 |
+
|
| 655 |
+
return [
|
| 656 |
+
{'params': decay},
|
| 657 |
+
{'params': no_decay, 'weight_decay': 0.},
|
| 658 |
+
]
|
| 659 |
+
|
| 660 |
+
def save(self):
|
| 661 |
+
return self.state_dict()
|
| 662 |
+
|
| 663 |
+
def load(self, state_dict):
|
| 664 |
+
self.load_state_dict(state_dict)
|
| 665 |
+
|
| 666 |
+
|
| 667 |
+
class MaskedAutoEncoderViT(nn.Module):
|
| 668 |
+
def __init__(
|
| 669 |
+
self,
|
| 670 |
+
n_tags: int,
|
| 671 |
+
|
| 672 |
+
embedding_dim: int,
|
| 673 |
+
num_attention_heads: int,
|
| 674 |
+
activation_cls,
|
| 675 |
+
num_channels: int,
|
| 676 |
+
image_size: int,
|
| 677 |
+
patch_size: int,
|
| 678 |
+
num_layers: int,
|
| 679 |
+
loss_type: str,
|
| 680 |
+
sine_positional_embeddings: bool=False,
|
| 681 |
+
|
| 682 |
+
decoder_embedding_dim: int = 512,
|
| 683 |
+
decoder_num_attention_heads: int = 8,
|
| 684 |
+
decoder_num_layers: int = 6,
|
| 685 |
+
decoder_force_projection: bool = False,
|
| 686 |
+
|
| 687 |
+
masking_ratio: float = 0.75,
|
| 688 |
+
mae_loss_weight: float = 1.0,
|
| 689 |
+
mae_normalize_targets: bool = False,
|
| 690 |
+
mae_post_norm: bool = False,
|
| 691 |
+
):
|
| 692 |
+
super().__init__()
|
| 693 |
+
|
| 694 |
+
self.n_tags = n_tags
|
| 695 |
+
self.seq_len = (image_size // patch_size) ** 2
|
| 696 |
+
self.embedding_dim = embedding_dim
|
| 697 |
+
self.decoder_embedding_dim = decoder_embedding_dim
|
| 698 |
+
self.sine_positional_embeddings = sine_positional_embeddings
|
| 699 |
+
self.image_size = image_size
|
| 700 |
+
self.patch_size = patch_size
|
| 701 |
+
self.masking_ratio = masking_ratio
|
| 702 |
+
self.loss_type = loss_type
|
| 703 |
+
self.mae_loss_weight = mae_loss_weight
|
| 704 |
+
self.mae_normalize_targets = mae_normalize_targets
|
| 705 |
+
|
| 706 |
+
if not self.sine_positional_embeddings:
|
| 707 |
+
self.positional_embeddings = nn.Embedding(self.seq_len, embedding_dim)
|
| 708 |
+
self.decoder_positional_embeddings = nn.Embedding(self.seq_len, decoder_embedding_dim)
|
| 709 |
+
self.register_buffer("position_ids", torch.arange(self.seq_len))
|
| 710 |
+
|
| 711 |
+
self.to_patches = Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1=patch_size, p2=patch_size)
|
| 712 |
+
self.patch_embedder = nn.Linear(num_channels * patch_size * patch_size, embedding_dim)
|
| 713 |
+
|
| 714 |
+
# Encoder
|
| 715 |
+
self.pre_layer_norm = nn.LayerNorm(embedding_dim)
|
| 716 |
+
self.encoder_layers = nn.ModuleList([FastCLIPEncoderLayer(
|
| 717 |
+
hidden_size=embedding_dim,
|
| 718 |
+
num_attention_heads=num_attention_heads,
|
| 719 |
+
out_seq_len=None,
|
| 720 |
+
activation_cls=activation_cls,
|
| 721 |
+
use_palm_alt=True,
|
| 722 |
+
norm_qk=False,
|
| 723 |
+
skip_init=None,
|
| 724 |
+
) for _ in range(num_layers)])
|
| 725 |
+
|
| 726 |
+
# Head for classification
|
| 727 |
+
self.pooling_head = GAPHead(embedding_dim, n_tags)
|
| 728 |
+
|
| 729 |
+
# Decoder
|
| 730 |
+
if embedding_dim != decoder_embedding_dim or decoder_force_projection:
|
| 731 |
+
self.encoder_to_decoder_proj = nn.Linear(embedding_dim, decoder_embedding_dim)
|
| 732 |
+
else:
|
| 733 |
+
self.encoder_to_decoder_proj = nn.Identity()
|
| 734 |
+
self.decoder_pre_layer_norm = nn.LayerNorm(decoder_embedding_dim)
|
| 735 |
+
self.decoder_layers = nn.ModuleList([FastCLIPEncoderLayer(
|
| 736 |
+
hidden_size=decoder_embedding_dim,
|
| 737 |
+
num_attention_heads=decoder_num_attention_heads,
|
| 738 |
+
out_seq_len=None,
|
| 739 |
+
activation_cls=activation_cls,
|
| 740 |
+
use_palm_alt=True,
|
| 741 |
+
norm_qk=False,
|
| 742 |
+
skip_init=None,
|
| 743 |
+
) for _ in range(decoder_num_layers)])
|
| 744 |
+
|
| 745 |
+
if mae_post_norm:
|
| 746 |
+
self.decoder_to_pixel_values = nn.Sequential(
|
| 747 |
+
nn.LayerNorm(decoder_embedding_dim),
|
| 748 |
+
nn.Linear(decoder_embedding_dim, num_channels * patch_size * patch_size)
|
| 749 |
+
)
|
| 750 |
+
else:
|
| 751 |
+
self.decoder_to_pixel_values = nn.Linear(decoder_embedding_dim, num_channels * patch_size * patch_size)
|
| 752 |
+
self.mask_token = nn.Parameter(torch.zeros(decoder_embedding_dim))
|
| 753 |
+
torch.nn.init.normal_(self.mask_token, std=0.02)
|
| 754 |
+
|
| 755 |
+
def forward(self, batch):
|
| 756 |
+
pixel_values = batch['image']
|
| 757 |
+
device = pixel_values.device
|
| 758 |
+
B, C, H, W = pixel_values.shape
|
| 759 |
+
assert H % self.patch_size == 0, f"Input image height ({H}) needs to be divisible by the patch size ({self.patch_size})."
|
| 760 |
+
assert W % self.patch_size == 0, f"Input image width ({W}) needs to be divisible by the patch size ({self.patch_size})."
|
| 761 |
+
|
| 762 |
+
# Convert image to patches (B, seq_len, C * patch_size * patch_size)
|
| 763 |
+
patches = self.to_patches(pixel_values)
|
| 764 |
+
seq_len = patches.shape[1]
|
| 765 |
+
num_masked = int(self.masking_ratio * seq_len)
|
| 766 |
+
|
| 767 |
+
# For each batch tensor, use argsort to convert the random numbers into a permutation of the patch indices
|
| 768 |
+
# From this we can get the masked and unmasked indices
|
| 769 |
+
patch_mask = torch.rand(B, seq_len, device=device)
|
| 770 |
+
patch_mask = torch.argsort(patch_mask, dim=1)
|
| 771 |
+
masked_indices, unmasked_indices = patch_mask[:, :num_masked], patch_mask[:, num_masked:]
|
| 772 |
+
batch_range = torch.arange(B, device=device)[:, None]
|
| 773 |
+
|
| 774 |
+
# Masked and unmasked patches
|
| 775 |
+
unmasked_patches = patches[batch_range, unmasked_indices]
|
| 776 |
+
masked_patches = patches[batch_range, masked_indices]
|
| 777 |
+
|
| 778 |
+
# Embed unmasked patches for the encoder (B, seq_len, embedding_dim)
|
| 779 |
+
tokens = self.patch_embedder(unmasked_patches)
|
| 780 |
+
|
| 781 |
+
if self.sine_positional_embeddings:
|
| 782 |
+
position_embeddings = sinusoidal_position_embedding(W // self.patch_size, H // self.patch_size, self.embedding_dim, pixel_values.dtype, device)
|
| 783 |
+
decoder_position_embeddings = sinusoidal_position_embedding(W // self.patch_size, H // self.patch_size, self.decoder_embedding_dim, pixel_values.dtype, device)
|
| 784 |
+
else:
|
| 785 |
+
position_embeddings = self.positional_embeddings(self.position_ids)
|
| 786 |
+
decoder_position_embeddings = self.decoder_positional_embeddings(self.position_ids)
|
| 787 |
+
|
| 788 |
+
# Add position embeddings
|
| 789 |
+
tokens = tokens + position_embeddings[unmasked_indices]
|
| 790 |
+
|
| 791 |
+
# Run the encoder
|
| 792 |
+
encoded_tokens = self.pre_layer_norm(tokens)
|
| 793 |
+
|
| 794 |
+
for layer in self.encoder_layers:
|
| 795 |
+
encoded_tokens = layer(encoded_tokens)
|
| 796 |
+
|
| 797 |
+
# Label predictions
|
| 798 |
+
if self.training:
|
| 799 |
+
preds = self.pooling_head(encoded_tokens)
|
| 800 |
+
else:
|
| 801 |
+
# During inference, classify using the entire image
|
| 802 |
+
# But we'll do the usual for the MAE part, just so we can see how MAE is performing during validation
|
| 803 |
+
tokens = self.patch_embedder(patches)
|
| 804 |
+
tokens = tokens + position_embeddings
|
| 805 |
+
tokens = self.pre_layer_norm(tokens)
|
| 806 |
+
for layer in self.encoder_layers:
|
| 807 |
+
tokens = layer(tokens)
|
| 808 |
+
preds = self.pooling_head(tokens)
|
| 809 |
+
|
| 810 |
+
# Projection for the decoder and position embeddings
|
| 811 |
+
decoder_tokens = self.encoder_to_decoder_proj(encoded_tokens)
|
| 812 |
+
decoder_tokens = decoder_tokens + decoder_position_embeddings[unmasked_indices]
|
| 813 |
+
|
| 814 |
+
# Fill in the masked patches
|
| 815 |
+
mask_tokens = einops.repeat(self.mask_token, 'd -> b n d', b = B, n = num_masked)
|
| 816 |
+
mask_tokens = mask_tokens + decoder_position_embeddings[masked_indices]
|
| 817 |
+
decoder_tokens = torch.cat([decoder_tokens, mask_tokens], dim=1)
|
| 818 |
+
|
| 819 |
+
# Run the decoder
|
| 820 |
+
decoded_tokens = self.decoder_pre_layer_norm(decoder_tokens)
|
| 821 |
+
|
| 822 |
+
for layer in self.decoder_layers:
|
| 823 |
+
decoded_tokens = layer(decoded_tokens)
|
| 824 |
+
|
| 825 |
+
# Only predict the masked patches
|
| 826 |
+
# All the masked patches are at the end of the sequence
|
| 827 |
+
decoded_tokens = decoded_tokens[:, -num_masked:]
|
| 828 |
+
pred_pixel_values = self.decoder_to_pixel_values(decoded_tokens)
|
| 829 |
+
|
| 830 |
+
# Calculate the mae loss
|
| 831 |
+
if self.mae_normalize_targets:
|
| 832 |
+
# Normalize each patch by its mean and variance. The ViCHA paper says this provides better results
|
| 833 |
+
means = masked_patches.mean(dim=-1, keepdim=True)
|
| 834 |
+
vars = masked_patches.var(dim=-1, keepdim=True)
|
| 835 |
+
target = (masked_patches - means) / (vars + 1e-6)**0.5
|
| 836 |
+
mae_loss = F.mse_loss(pred_pixel_values, target)
|
| 837 |
+
else:
|
| 838 |
+
mae_loss = F.mse_loss(pred_pixel_values, masked_patches)
|
| 839 |
+
mae_loss = mae_loss * self.mae_loss_weight
|
| 840 |
+
|
| 841 |
+
return {
|
| 842 |
+
'tags': preds,
|
| 843 |
+
'mae_loss': mae_loss,
|
| 844 |
+
}
|
| 845 |
+
|
| 846 |
+
def calculate_loss(self, preds, batch, pos_weight):
|
| 847 |
+
return basic_calculate_loss(preds, batch, pos_weight, self.loss_type) + preds['mae_loss']
|
| 848 |
+
|
| 849 |
+
def get_optimized_parameters(self, lr: float):
|
| 850 |
+
return self.parameters()
|
| 851 |
+
|
| 852 |
+
def save(self):
|
| 853 |
+
return self.state_dict()
|
| 854 |
+
|
| 855 |
+
def load(self, state_dict):
|
| 856 |
+
self.load_state_dict(state_dict)
|
| 857 |
+
|
| 858 |
+
|
| 859 |
+
class StochDepth(nn.Module):
|
| 860 |
+
def __init__(self, drop_rate: float, scale_by_keep: bool = False):
|
| 861 |
+
super().__init__()
|
| 862 |
+
self.drop_rate = drop_rate
|
| 863 |
+
self.scale_by_keep = scale_by_keep
|
| 864 |
+
|
| 865 |
+
def forward(self, x):
|
| 866 |
+
if not self.training:
|
| 867 |
+
return x
|
| 868 |
+
|
| 869 |
+
batch_size = x.shape[0]
|
| 870 |
+
r = torch.rand((batch_size, 1, 1), device=x.device)
|
| 871 |
+
keep_prob = 1 - self.drop_rate
|
| 872 |
+
binary_tensor = torch.floor(keep_prob + r)
|
| 873 |
+
if self.scale_by_keep:
|
| 874 |
+
x = x / keep_prob
|
| 875 |
+
|
| 876 |
+
return x * binary_tensor
|
| 877 |
+
|
| 878 |
+
|
| 879 |
+
class SkipInitChannelwise(nn.Module):
|
| 880 |
+
def __init__(self, channels, init_val=1e-6):
|
| 881 |
+
super().__init__()
|
| 882 |
+
self.channels = channels
|
| 883 |
+
self.init_val = init_val
|
| 884 |
+
self.skip = nn.Parameter(torch.ones(channels) * init_val)
|
| 885 |
+
|
| 886 |
+
def forward(self, x):
|
| 887 |
+
return x * self.skip
|
| 888 |
+
|
| 889 |
+
|
| 890 |
+
class PosEmbedding(nn.Module):
|
| 891 |
+
def __init__(self, d_model: int, max_len: int, use_sine: bool, patch_size: int):
|
| 892 |
+
super().__init__()
|
| 893 |
+
self.d_model = d_model
|
| 894 |
+
self.max_len = max_len
|
| 895 |
+
self.use_sine = use_sine
|
| 896 |
+
self.patch_size = patch_size
|
| 897 |
+
|
| 898 |
+
if not self.use_sine:
|
| 899 |
+
self.embedding = nn.Embedding(max_len, d_model)
|
| 900 |
+
nn.init.trunc_normal_(self.embedding.weight, std=0.02)
|
| 901 |
+
self.register_buffer("position_ids", torch.arange(max_len))
|
| 902 |
+
|
| 903 |
+
def forward(self, x, width: int, height: int):
|
| 904 |
+
if self.use_sine:
|
| 905 |
+
position_embeddings = sinusoidal_position_embedding(width // self.patch_size, height // self.patch_size, self.d_model, x.dtype, x.device)
|
| 906 |
+
else:
|
| 907 |
+
position_embeddings = self.embedding(self.position_ids)
|
| 908 |
+
|
| 909 |
+
return x + position_embeddings
|
| 910 |
+
|
| 911 |
+
|
| 912 |
+
class MLPBlock(nn.Module):
|
| 913 |
+
def __init__(self, d_model: int, d_ff: int, stochdepth_rate: float):
|
| 914 |
+
super().__init__()
|
| 915 |
+
self.linear1 = nn.Linear(d_model, d_ff)
|
| 916 |
+
self.linear2 = nn.Linear(d_ff, d_model)
|
| 917 |
+
self.activation = nn.GELU()
|
| 918 |
+
if stochdepth_rate > 0:
|
| 919 |
+
self.stochdepth = StochDepth(stochdepth_rate, scale_by_keep=True)
|
| 920 |
+
else:
|
| 921 |
+
self.stochdepth = None
|
| 922 |
+
|
| 923 |
+
def forward(self, x):
|
| 924 |
+
x = self.linear1(x)
|
| 925 |
+
x = self.activation(x)
|
| 926 |
+
if self.stochdepth is not None:
|
| 927 |
+
x = self.stochdepth(x)
|
| 928 |
+
x = self.linear2(x)
|
| 929 |
+
return x
|
| 930 |
+
|
| 931 |
+
|
| 932 |
+
class ViTBlock(nn.Module):
|
| 933 |
+
def __init__(self, num_heads: int, d_model: int, d_ff: int, layerscale_init: float, stochdepth_rate: float):
|
| 934 |
+
super().__init__()
|
| 935 |
+
self.num_heads = num_heads
|
| 936 |
+
self.d_model = d_model
|
| 937 |
+
|
| 938 |
+
assert d_model % num_heads == 0, "d_model must be divisible by num_heads"
|
| 939 |
+
|
| 940 |
+
# MHA
|
| 941 |
+
self.norm1 = nn.LayerNorm(d_model)
|
| 942 |
+
self.qkv_proj = nn.Linear(d_model, d_model * 3)
|
| 943 |
+
self.out_proj = nn.Linear(d_model, d_model)
|
| 944 |
+
self.skip_init1 = SkipInitChannelwise(channels=d_model, init_val=layerscale_init)
|
| 945 |
+
self.stochdepth1 = StochDepth(stochdepth_rate, scale_by_keep=True) if stochdepth_rate > 0 else None
|
| 946 |
+
|
| 947 |
+
# MLP
|
| 948 |
+
self.norm2 = nn.LayerNorm(d_model)
|
| 949 |
+
self.mlp = MLPBlock(d_model, d_ff, stochdepth_rate)
|
| 950 |
+
self.skip_init2 = SkipInitChannelwise(channels=d_model, init_val=layerscale_init)
|
| 951 |
+
self.stochdepth2 = StochDepth(stochdepth_rate, scale_by_keep=True) if stochdepth_rate > 0 else None
|
| 952 |
+
|
| 953 |
+
def forward(self, x):
|
| 954 |
+
bsz, src_len, embed_dim = x.shape
|
| 955 |
+
|
| 956 |
+
out = x
|
| 957 |
+
out = self.norm1(out)
|
| 958 |
+
|
| 959 |
+
# MHA
|
| 960 |
+
qkv_states = self.qkv_proj(out).split(self.d_model, dim=-1)
|
| 961 |
+
q_states = qkv_states[0].view(bsz, src_len, self.num_heads, embed_dim // self.num_heads).transpose(1, 2) # (bsz, num_heads, src_len, embed_dim // num_heads)
|
| 962 |
+
k_states = qkv_states[1].view(bsz, src_len, self.num_heads, embed_dim // self.num_heads).transpose(1, 2) # (bsz, num_heads, src_len, embed_dim // num_heads)
|
| 963 |
+
v_states = qkv_states[2].view(bsz, src_len, self.num_heads, embed_dim // self.num_heads).transpose(1, 2) # (bsz, num_heads, src_len, embed_dim // num_heads)
|
| 964 |
+
|
| 965 |
+
with torch.backends.cuda.sdp_kernel(enable_math=False):
|
| 966 |
+
out = F.scaled_dot_product_attention(q_states, k_states, v_states) # (bsz, num_heads, tgt_len, head_dim)
|
| 967 |
+
out = out.transpose(1, 2).contiguous().view(bsz, src_len, embed_dim) # (bsz, tgt_len, embed_dim)
|
| 968 |
+
|
| 969 |
+
out = self.out_proj(out)
|
| 970 |
+
|
| 971 |
+
out = self.skip_init1(out)
|
| 972 |
+
if self.stochdepth1 is not None:
|
| 973 |
+
out = self.stochdepth1(out)
|
| 974 |
+
x = out + x
|
| 975 |
+
|
| 976 |
+
out = self.norm2(x)
|
| 977 |
+
out = self.mlp(out)
|
| 978 |
+
out = self.skip_init2(out)
|
| 979 |
+
if self.stochdepth2 is not None:
|
| 980 |
+
out = self.stochdepth2(out)
|
| 981 |
+
|
| 982 |
+
out = out + x
|
| 983 |
+
|
| 984 |
+
return out
|
| 985 |
+
|
| 986 |
+
|
| 987 |
+
def CaiT_LayerScale_init(network_depth):
|
| 988 |
+
if network_depth <= 18:
|
| 989 |
+
return 1e-1
|
| 990 |
+
elif network_depth <= 24:
|
| 991 |
+
return 1e-5
|
| 992 |
+
else:
|
| 993 |
+
return 1e-6
|
| 994 |
+
|
| 995 |
+
|
| 996 |
+
class CNNLayerNorm(nn.Module):
|
| 997 |
+
def __init__(self, d_model: int):
|
| 998 |
+
super().__init__()
|
| 999 |
+
self.norm = nn.LayerNorm(d_model)
|
| 1000 |
+
|
| 1001 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 1002 |
+
x = x.transpose(1, 3)
|
| 1003 |
+
x = self.norm(x)
|
| 1004 |
+
x = x.transpose(1, 3)
|
| 1005 |
+
return x
|
| 1006 |
+
|
| 1007 |
+
|
| 1008 |
+
class CNNStem(nn.Module):
|
| 1009 |
+
def __init__(self, config: str):
|
| 1010 |
+
super().__init__()
|
| 1011 |
+
self.config = config
|
| 1012 |
+
|
| 1013 |
+
layers = []
|
| 1014 |
+
channels = 3
|
| 1015 |
+
|
| 1016 |
+
for line in config.split(";"):
|
| 1017 |
+
ty, line = line.split(":") if ":" in line else (line, "")
|
| 1018 |
+
options = line.split(",")
|
| 1019 |
+
options = [o.split("=") for o in options] if line else []
|
| 1020 |
+
options = {k: v for k, v in options}
|
| 1021 |
+
|
| 1022 |
+
if ty == 'conv':
|
| 1023 |
+
layers.append(nn.Conv2d(
|
| 1024 |
+
in_channels=channels,
|
| 1025 |
+
out_channels=int(options['c']),
|
| 1026 |
+
kernel_size=int(options['k'] if 'k' in options else 3),
|
| 1027 |
+
stride=int(options['s'] if 's' in options else 2),
|
| 1028 |
+
bias=True,
|
| 1029 |
+
padding=int(options['p'] if 'p' in options else 1),
|
| 1030 |
+
))
|
| 1031 |
+
channels = int(options['c'])
|
| 1032 |
+
elif ty == 'bn':
|
| 1033 |
+
layers.append(nn.BatchNorm2d(channels))
|
| 1034 |
+
elif ty == 'ln':
|
| 1035 |
+
layers.append(CNNLayerNorm(channels))
|
| 1036 |
+
elif ty == 'relu':
|
| 1037 |
+
layers.append(nn.ReLU())
|
| 1038 |
+
elif ty == 'gelu':
|
| 1039 |
+
layers.append(nn.GELU())
|
| 1040 |
+
|
| 1041 |
+
self.conv = nn.Sequential(*layers)
|
| 1042 |
+
|
| 1043 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 1044 |
+
return self.conv(x)
|
| 1045 |
+
|
| 1046 |
+
|
| 1047 |
+
class ViT(VisionModel):
|
| 1048 |
+
def __init__(self,
|
| 1049 |
+
n_tags: int,
|
| 1050 |
+
image_size: int,
|
| 1051 |
+
num_blocks: int,
|
| 1052 |
+
patch_size: int,
|
| 1053 |
+
d_model: int,
|
| 1054 |
+
mlp_dim: int,
|
| 1055 |
+
num_heads: int,
|
| 1056 |
+
stochdepth_rate: float,
|
| 1057 |
+
use_sine: bool,
|
| 1058 |
+
loss_type: str,
|
| 1059 |
+
layerscale_init: Optional[float] = None,
|
| 1060 |
+
head_mean_after: bool = False,
|
| 1061 |
+
cnn_stem: str | None = None,
|
| 1062 |
+
patch_dropout: float = 0.0,
|
| 1063 |
+
):
|
| 1064 |
+
super().__init__(image_size, n_tags)
|
| 1065 |
+
|
| 1066 |
+
#assert image_size % patch_size == 0, "image_size must be divisible by patch_size"
|
| 1067 |
+
assert d_model % num_heads == 0, "d_model must be divisible by num_heads"
|
| 1068 |
+
|
| 1069 |
+
out_dim = n_tags
|
| 1070 |
+
self.n_tags = n_tags
|
| 1071 |
+
self.loss_type = loss_type
|
| 1072 |
+
self.patch_size = patch_size
|
| 1073 |
+
self.head_mean_after = head_mean_after
|
| 1074 |
+
self.patch_dropout = patch_dropout
|
| 1075 |
+
|
| 1076 |
+
layerscale_init = CaiT_LayerScale_init(num_blocks) if layerscale_init is None else layerscale_init
|
| 1077 |
+
self.patch_embeddings = nn.Conv2d(
|
| 1078 |
+
in_channels=3,
|
| 1079 |
+
out_channels=d_model,
|
| 1080 |
+
kernel_size=patch_size,
|
| 1081 |
+
stride=patch_size,
|
| 1082 |
+
bias=True,
|
| 1083 |
+
) if cnn_stem is None else CNNStem(cnn_stem)
|
| 1084 |
+
self.pos_embedding = PosEmbedding(d_model, (image_size // patch_size) ** 2, use_sine=use_sine, patch_size=patch_size)
|
| 1085 |
+
|
| 1086 |
+
self.blocks = nn.ModuleList([
|
| 1087 |
+
ViTBlock(num_heads, d_model, mlp_dim, layerscale_init, stochdepth_rate)
|
| 1088 |
+
for _ in range(num_blocks)
|
| 1089 |
+
])
|
| 1090 |
+
|
| 1091 |
+
self.norm = nn.LayerNorm(d_model)
|
| 1092 |
+
self.head = nn.Linear(d_model, out_dim)
|
| 1093 |
+
|
| 1094 |
+
def forward(self, batch, return_embeddings=False, return_loss: bool = False, pos_weight = None):
|
| 1095 |
+
B, C, H, W = batch['image'].shape
|
| 1096 |
+
assert H % self.patch_size == 0, f"Input image height ({H}) needs to be divisible by the patch size ({self.patch_size})."
|
| 1097 |
+
assert W % self.patch_size == 0, f"Input image width ({W}) needs to be divisible by the patch size ({self.patch_size})."
|
| 1098 |
+
|
| 1099 |
+
x = self.patch_embeddings(batch['image']) # (bsz, d_model, patch_num, patch_num)
|
| 1100 |
+
x = x.flatten(2).transpose(1, 2) # (bsz, patch_num ** 2, d_model)
|
| 1101 |
+
x = self.pos_embedding(x, W, H) # (bsz, patch_num ** 2, d_model)
|
| 1102 |
+
|
| 1103 |
+
# Patch dropout
|
| 1104 |
+
seq_len = x.shape[1]
|
| 1105 |
+
patch_dropout = int(math.ceil((1.0 - self.patch_dropout) * seq_len))
|
| 1106 |
+
|
| 1107 |
+
if patch_dropout != seq_len:
|
| 1108 |
+
# Generate a matrix of random numbers between 0 and 1 of shape (B, seq_len)
|
| 1109 |
+
patch_mask = torch.rand(B, seq_len, device=x.device)
|
| 1110 |
+
# For each batch tensor, use argsort to convert the random numbers into a permutation of the patch indices
|
| 1111 |
+
patch_mask = torch.argsort(patch_mask, dim=1)
|
| 1112 |
+
# Truncate
|
| 1113 |
+
patch_mask = patch_mask[:, :patch_dropout]
|
| 1114 |
+
|
| 1115 |
+
x = x.gather(1, patch_mask.unsqueeze(-1).expand(-1, -1, x.shape[-1]))
|
| 1116 |
+
|
| 1117 |
+
#indices = torch.randperm(seq_len, device=x.device)[:patch_dropout]
|
| 1118 |
+
#x = x[:, indices, :]
|
| 1119 |
+
|
| 1120 |
+
# Transformer
|
| 1121 |
+
for block in self.blocks:
|
| 1122 |
+
x = block(x)
|
| 1123 |
+
|
| 1124 |
+
# Head
|
| 1125 |
+
result = {}
|
| 1126 |
+
|
| 1127 |
+
x = self.norm(x)
|
| 1128 |
+
if self.head_mean_after:
|
| 1129 |
+
x = self.head(x)
|
| 1130 |
+
x = x.mean(dim=1)
|
| 1131 |
+
else:
|
| 1132 |
+
x = x.mean(dim=1)
|
| 1133 |
+
if return_embeddings:
|
| 1134 |
+
result['embeddings'] = x
|
| 1135 |
+
x = self.head(x)
|
| 1136 |
+
|
| 1137 |
+
result['tags'] = x
|
| 1138 |
+
|
| 1139 |
+
if return_loss:
|
| 1140 |
+
result['loss'] = self.calculate_loss(result, batch, pos_weight)
|
| 1141 |
+
|
| 1142 |
+
return result
|
| 1143 |
+
|
| 1144 |
+
def calculate_loss(self, preds, batch, pos_weight):
|
| 1145 |
+
return basic_calculate_loss(preds, batch, pos_weight, self.loss_type)
|
| 1146 |
+
|
| 1147 |
+
def get_optimized_parameters(self, lr: float):
|
| 1148 |
+
return self.parameters()
|
| 1149 |
+
|
| 1150 |
+
def save(self):
|
| 1151 |
+
return self.state_dict()
|
| 1152 |
+
|
| 1153 |
+
def load(self, state_dict):
|
| 1154 |
+
if 'head.weight' in state_dict and 'head.bias' in state_dict and state_dict['head.weight'].shape[0] == (self.n_tags + 9):
|
| 1155 |
+
# Support old models which included 3 rating and 6 score dimensions
|
| 1156 |
+
state_dict['head.weight'] = state_dict['head.weight'][:self.n_tags]
|
| 1157 |
+
state_dict['head.bias'] = state_dict['head.bias'][:self.n_tags]
|
| 1158 |
+
|
| 1159 |
+
self.load_state_dict(state_dict)
|
app.py
ADDED
|
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from Models import VisionModel
|
| 3 |
+
import huggingface_hub
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import torch.amp.autocast_mode
|
| 6 |
+
from pathlib import Path
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
MODEL_REPO = "fancyfeast/joytag"
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
@torch.no_grad()
|
| 13 |
+
def predict(image: Image.Image):
|
| 14 |
+
with torch.amp.autocast_mode.autocast('cuda', enabled=True):
|
| 15 |
+
preds = model(image)
|
| 16 |
+
tag_preds = preds['tags'].sigmoid().cpu()
|
| 17 |
+
|
| 18 |
+
return {top_tags[i]: tag_preds[i] for i in range(len(top_tags))}
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
print("Downloading model...")
|
| 22 |
+
path = huggingface_hub.snapshot_download(MODEL_REPO)
|
| 23 |
+
print("Loading model...")
|
| 24 |
+
model = VisionModel.load_model(path)
|
| 25 |
+
model.eval()
|
| 26 |
+
|
| 27 |
+
with open(Path(path) / 'top_tags.txt', 'r') as f:
|
| 28 |
+
top_tags = [line.strip() for line in f.readlines() if line.strip()]
|
| 29 |
+
|
| 30 |
+
print("Starting server...")
|
| 31 |
+
|
| 32 |
+
gradio_app = gr.Interface(
|
| 33 |
+
predict,
|
| 34 |
+
inputs=gr.Image(label="Source", sources=['upload', 'webcam'], type='pil'),
|
| 35 |
+
outputs=[gr.Label(label="Result", num_top_classes=5)],
|
| 36 |
+
title="JoyTag",
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
if __name__ == '__main__':
|
| 41 |
+
gradio_app.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch==2.1.2
|
| 2 |
+
transformers==4.36.2
|
| 3 |
+
torchvision==0.16.2
|
| 4 |
+
einops==0.7.0
|
| 5 |
+
safetensors==0.4.1
|