Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,216 +1,29 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import json
|
| 3 |
-
from PIL import Image
|
| 4 |
-
from skimage import io
|
| 5 |
import gradio as gr
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
"inputs": [
|
| 35 |
-
res_url
|
| 36 |
-
],
|
| 37 |
-
"parameters":{},
|
| 38 |
-
"urlPaths": {
|
| 39 |
-
"inUrls": [
|
| 40 |
-
{
|
| 41 |
-
"value": res_url,
|
| 42 |
-
"fileType": "png",
|
| 43 |
-
"type": "image",
|
| 44 |
-
"displayType": "ImgUploader",
|
| 45 |
-
"validator": {
|
| 46 |
-
"accept": "*.jpeg,*.jpg,*.png",
|
| 47 |
-
"max_resolution": "5000*5000",
|
| 48 |
-
"max_size": "10m"
|
| 49 |
-
},
|
| 50 |
-
"name": "",
|
| 51 |
-
"title": ""
|
| 52 |
-
}
|
| 53 |
-
],
|
| 54 |
-
"outUrls": [
|
| 55 |
-
{
|
| 56 |
-
"outputKey": "output_img",
|
| 57 |
-
"type": "image"
|
| 58 |
-
}
|
| 59 |
-
]
|
| 60 |
-
}
|
| 61 |
-
}
|
| 62 |
-
result = call_demo_service(
|
| 63 |
-
path='damo', name='cv_nafnet_image-denoise_sidd', data=json.dumps(data))
|
| 64 |
-
print(f"image-denoising result: {result}")
|
| 65 |
-
res_url = result['data']['output_img']
|
| 66 |
-
|
| 67 |
-
# image-colorization (optional)
|
| 68 |
-
if colorization_option == yes:
|
| 69 |
-
data = {
|
| 70 |
-
"task": "image-colorization",
|
| 71 |
-
"inputs": [
|
| 72 |
-
res_url
|
| 73 |
-
],
|
| 74 |
-
"parameters":{},
|
| 75 |
-
"urlPaths": {
|
| 76 |
-
"inUrls": [
|
| 77 |
-
{
|
| 78 |
-
"value": res_url,
|
| 79 |
-
"fileType": "png",
|
| 80 |
-
"type": "image",
|
| 81 |
-
"displayType": "ImgUploader",
|
| 82 |
-
"validator": {
|
| 83 |
-
"accept": "*.jpeg,*.jpg,*.png",
|
| 84 |
-
"max_size": "10m",
|
| 85 |
-
"max_resolution": "5000*5000",
|
| 86 |
-
},
|
| 87 |
-
"name": "",
|
| 88 |
-
"title": ""
|
| 89 |
-
}
|
| 90 |
-
],
|
| 91 |
-
"outUrls": [
|
| 92 |
-
{
|
| 93 |
-
"outputKey": "output_img",
|
| 94 |
-
"type": "image"
|
| 95 |
-
}
|
| 96 |
-
]
|
| 97 |
-
}
|
| 98 |
-
}
|
| 99 |
-
result = call_demo_service(
|
| 100 |
-
path='damo', name='cv_ddcolor_image-colorization', data=json.dumps(data))
|
| 101 |
-
print(f"image-colorization result: {result}")
|
| 102 |
-
res_url = result['data']['output_img']
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
# image-portrait-enhancement
|
| 106 |
-
data = {
|
| 107 |
-
"task": "image-portrait-enhancement",
|
| 108 |
-
"inputs": [
|
| 109 |
-
res_url
|
| 110 |
-
],
|
| 111 |
-
"parameters":{},
|
| 112 |
-
"urlPaths": {
|
| 113 |
-
"inUrls": [
|
| 114 |
-
{
|
| 115 |
-
"value": res_url,
|
| 116 |
-
"fileType": "png",
|
| 117 |
-
"type": "image",
|
| 118 |
-
"displayType": "ImgUploader",
|
| 119 |
-
"validator": {
|
| 120 |
-
"accept": "*.jpeg,*.jpg,*.png",
|
| 121 |
-
"max_size": "10M",
|
| 122 |
-
"max_resolution": "2000*2000",
|
| 123 |
-
},
|
| 124 |
-
"name": "",
|
| 125 |
-
"title": ""
|
| 126 |
-
}
|
| 127 |
-
],
|
| 128 |
-
"outUrls": [
|
| 129 |
-
{
|
| 130 |
-
"outputKey": "output_img",
|
| 131 |
-
"type": "image"
|
| 132 |
-
}
|
| 133 |
-
]
|
| 134 |
-
}
|
| 135 |
-
}
|
| 136 |
-
result = call_demo_service(
|
| 137 |
-
path='damo', name='cv_gpen_image-portrait-enhancement', data=json.dumps(data))
|
| 138 |
-
print(f"image-portrait-enhancement result: {result}")
|
| 139 |
-
res_url = result['data']['output_img']
|
| 140 |
-
|
| 141 |
-
# image-color-enhancement (optional)
|
| 142 |
-
if color_enhance_option == yes:
|
| 143 |
-
data = {
|
| 144 |
-
"task": "image-color-enhancement",
|
| 145 |
-
"inputs": [
|
| 146 |
-
res_url
|
| 147 |
-
],
|
| 148 |
-
"parameters":{},
|
| 149 |
-
"urlPaths": {
|
| 150 |
-
"inUrls": [
|
| 151 |
-
{
|
| 152 |
-
"value": res_url,
|
| 153 |
-
"fileType": "png",
|
| 154 |
-
"type": "image",
|
| 155 |
-
"displayType": "ImgUploader",
|
| 156 |
-
"validator": {
|
| 157 |
-
"accept": "*.jpeg,*.jpg,*.png",
|
| 158 |
-
"max_size": "10m",
|
| 159 |
-
"max_resolution": "5000*5000",
|
| 160 |
-
},
|
| 161 |
-
"name": "",
|
| 162 |
-
"title": ""
|
| 163 |
-
}
|
| 164 |
-
],
|
| 165 |
-
"outUrls": [
|
| 166 |
-
{
|
| 167 |
-
"outputKey": "output_img",
|
| 168 |
-
"type": "image"
|
| 169 |
-
}
|
| 170 |
-
]
|
| 171 |
-
}
|
| 172 |
-
}
|
| 173 |
-
result = call_demo_service(
|
| 174 |
-
path='damo', name='cv_csrnet_image-color-enhance-models', data=json.dumps(data))
|
| 175 |
-
print(f"image-color-enhancement result: {result}")
|
| 176 |
-
res_url = result['data']['output_img']
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
res_img = decode_image(res_url)
|
| 180 |
-
|
| 181 |
-
return res_img
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
title = "AI老照片修复"
|
| 185 |
-
description = '''
|
| 186 |
-
输入一张老照片,点击一键修复,就能获得由AI完成画质增强、智能上色等处理后的彩色照片!还等什么呢?快让相册里的老照片坐上时光机吧~
|
| 187 |
-
'''
|
| 188 |
-
examples = [[os.path.dirname(__file__) + './images/input1.jpg'],
|
| 189 |
-
[os.path.dirname(__file__) + './images/input2.jpg'],
|
| 190 |
-
[os.path.dirname(__file__) + './images/input3.jpg'],
|
| 191 |
-
[os.path.dirname(__file__) + './images/input4.jpg'],
|
| 192 |
-
[os.path.dirname(__file__) + './images/input5.jpg']]
|
| 193 |
-
|
| 194 |
-
css_style = "#overview {margin: auto;max-width: 600px; max-height: 400px; width: 100%;}"
|
| 195 |
-
|
| 196 |
-
with gr.Blocks(title=title, css=css_style) as demo:
|
| 197 |
-
gr.HTML('''
|
| 198 |
-
<div style="text-align: center; max-width: 720px; margin: 0 auto;">
|
| 199 |
-
<img id="overview" alt="overview" src="https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/public/ModelScope/studio_old_photo_restoration/overview_long.gif" />
|
| 200 |
-
</div>
|
| 201 |
-
''')
|
| 202 |
-
gr.Markdown(description)
|
| 203 |
-
with gr.Row():
|
| 204 |
-
with gr.Column(scale=2):
|
| 205 |
-
img_input = gr.components.Image(label="图片", type="pil")
|
| 206 |
-
colorization_option = gr.components.Radio(label="重新上色", choices=[yes, no], value=yes)
|
| 207 |
-
image_denoise_option = gr.components.Radio(label="应用图像去噪(存在细节损失风险)", choices=[yes, no], value=no)
|
| 208 |
-
color_enhance_option = gr.components.Radio(label="应用色彩增强(存在罕见色调风险)", choices=[yes, no], value=no)
|
| 209 |
-
btn = gr.Button("一键修复")
|
| 210 |
-
with gr.Column(scale=3):
|
| 211 |
-
img_output = gr.components.Image(label="图片", type="pil").style(height=600)
|
| 212 |
-
inputs = [img_input, colorization_option, image_denoise_option, color_enhance_option]
|
| 213 |
-
btn.click(fn=inference, inputs=inputs, outputs=img_output)
|
| 214 |
-
gr.Examples(examples, inputs=img_input)
|
| 215 |
-
|
| 216 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import os
|
| 3 |
+
import cv2
|
| 4 |
+
from modelscope.outputs import OutputKeys
|
| 5 |
+
from modelscope.pipelines import pipeline
|
| 6 |
+
from modelscope.utils.constant import Tasks
|
| 7 |
+
import PIL
|
| 8 |
+
import numpy as np
|
| 9 |
+
|
| 10 |
+
img_colorization = pipeline(Tasks.image_colorization, model='iic/cv_ddcolor_image-colorization')
|
| 11 |
+
img_path = 'input.png'
|
| 12 |
+
##result = img_colorization(img_path)
|
| 13 |
+
##cv2.imwrite('result.png', result[OutputKeys.OUTPUT_IMG])
|
| 14 |
+
def color(image):
|
| 15 |
+
output = img_colorization(image[...,::-1])
|
| 16 |
+
result = output[OutputKeys.OUTPUT_IMG].astype(np.uint8)
|
| 17 |
+
result = result[...,::-1]
|
| 18 |
+
print('infer finished!')
|
| 19 |
+
return result
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
title = "老照片修复"
|
| 23 |
+
description = "上传图片,达到老照片修复"
|
| 24 |
+
examples = [['./input.png'],]
|
| 25 |
+
|
| 26 |
+
demo = gr.Interface(fn=color,inputs="image",outputs="image",examples=examples,title=title,description=description)
|
| 27 |
+
|
| 28 |
+
if __name__ == "__main__":
|
| 29 |
+
demo.launch(share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|