Spaces:
Paused
Paused
Commit
·
d1dd306
1
Parent(s):
fccef52
refactor
Browse files
CLAUDE.md
ADDED
|
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# CLAUDE.md
|
| 2 |
+
|
| 3 |
+
This file provides guidance to Claude Code (claude.ai/code) when working with code in this repository.
|
| 4 |
+
|
| 5 |
+
## Development Commands
|
| 6 |
+
|
| 7 |
+
### Running the Application
|
| 8 |
+
```bash
|
| 9 |
+
# Install dependencies
|
| 10 |
+
pip install -r requirements.txt
|
| 11 |
+
|
| 12 |
+
# Start the FastAPI server
|
| 13 |
+
uvicorn app:app --host 0.0.0.0 --port 7860
|
| 14 |
+
|
| 15 |
+
# Alternative development server with reload
|
| 16 |
+
uvicorn app:app --reload
|
| 17 |
+
```
|
| 18 |
+
|
| 19 |
+
### Docker Deployment
|
| 20 |
+
```bash
|
| 21 |
+
# Build the Docker image
|
| 22 |
+
docker build -t sportsai .
|
| 23 |
+
|
| 24 |
+
# Run the container
|
| 25 |
+
docker run -p 7860:7860 sportsai
|
| 26 |
+
```
|
| 27 |
+
|
| 28 |
+
### Environment Setup
|
| 29 |
+
- Create `.env` file with required environment variables:
|
| 30 |
+
- `API_URL`: External API endpoint URL
|
| 31 |
+
- `API_KEY`: Authentication key for external API
|
| 32 |
+
- `AI_API_TOKEN`: Token for authenticating incoming requests
|
| 33 |
+
|
| 34 |
+
## Architecture Overview
|
| 35 |
+
|
| 36 |
+
### Core Components
|
| 37 |
+
|
| 38 |
+
**FastAPI Application (`app.py`)**
|
| 39 |
+
- Main web server with two primary endpoints:
|
| 40 |
+
- `/upload`: General video processing with pose estimation
|
| 41 |
+
- `/exercise/salto_alto`: Specialized high jump exercise analysis
|
| 42 |
+
- Uses background tasks for asynchronous video processing
|
| 43 |
+
- Handles file uploads and API authentication
|
| 44 |
+
|
| 45 |
+
**Pose Estimation (`vitpose.py`)**
|
| 46 |
+
- Wraps the `rt-pose` library with VitPose model
|
| 47 |
+
- Provides pose estimation pipeline with CUDA/CPU support
|
| 48 |
+
- Handles video-to-frames conversion and frame annotation
|
| 49 |
+
- Automatically rotates landscape videos to portrait orientation
|
| 50 |
+
|
| 51 |
+
**Video Analysis (`tasks.py`)**
|
| 52 |
+
- Contains `process_salto_alto()` function for high jump analysis
|
| 53 |
+
- Implements comprehensive jump metrics calculation:
|
| 54 |
+
- Jump height detection using pose keypoints
|
| 55 |
+
- Sayer power estimation
|
| 56 |
+
- Repetition counting
|
| 57 |
+
- Metrics visualization overlay
|
| 58 |
+
- Sends results to external API endpoints via webhooks
|
| 59 |
+
|
| 60 |
+
**Configuration (`config.py`)**
|
| 61 |
+
- Manages environment variables and API credentials
|
| 62 |
+
- Uses python-dotenv for environment file loading
|
| 63 |
+
|
| 64 |
+
### Key Features
|
| 65 |
+
|
| 66 |
+
**High Jump Analysis Pipeline:**
|
| 67 |
+
1. Video upload and pose estimation using VitPose
|
| 68 |
+
2. Calibration using person height in first frame
|
| 69 |
+
3. Jump detection based on ankle movement thresholds
|
| 70 |
+
4. Real-time metrics calculation and overlay visualization
|
| 71 |
+
5. Results packaging and webhook delivery
|
| 72 |
+
|
| 73 |
+
**Pose Estimation:**
|
| 74 |
+
- Uses PekingU/rtdetr object detection + usyd-community/vitpose-plus-small
|
| 75 |
+
- Supports both CUDA and CPU inference
|
| 76 |
+
- Model compilation enabled for performance optimization
|
| 77 |
+
|
| 78 |
+
**Video Processing:**
|
| 79 |
+
- Automatic landscape-to-portrait rotation
|
| 80 |
+
- Skeleton visualization with keypoint connections
|
| 81 |
+
- Metrics overlay with rounded rectangles and real-time updates
|
| 82 |
+
|
| 83 |
+
### Dependencies
|
| 84 |
+
- **FastAPI**: Web framework for API endpoints
|
| 85 |
+
- **rt-pose**: Pose estimation pipeline
|
| 86 |
+
- **OpenCV**: Video processing and computer vision
|
| 87 |
+
- **Supervision**: Keypoint visualization utilities
|
| 88 |
+
- **PyTorch**: Deep learning framework for pose models
|
| 89 |
+
|
| 90 |
+
### File Structure
|
| 91 |
+
- `app.py`: Main FastAPI application
|
| 92 |
+
- `vitpose.py`: VitPose wrapper class
|
| 93 |
+
- `tasks.py`: Video processing and analysis functions
|
| 94 |
+
- `config.py`: Environment configuration
|
| 95 |
+
- `requirements.txt`: Python dependencies
|
| 96 |
+
- `Dockerfile`: Container deployment configuration
|
| 97 |
+
- `static/`: Directory for processed video outputs (git-ignored)
|
| 98 |
+
|
| 99 |
+
### API Authentication
|
| 100 |
+
All endpoints require token-based authentication via header or body parameters. Unauthorized requests return 401 status codes.
|
app.py
CHANGED
|
@@ -13,7 +13,7 @@ from tasks import process_video,process_salto_alto
|
|
| 13 |
from fastapi.responses import JSONResponse
|
| 14 |
from config import AI_API_TOKEN
|
| 15 |
import logging
|
| 16 |
-
|
| 17 |
|
| 18 |
|
| 19 |
logging.basicConfig(level=logging.INFO)
|
|
@@ -76,7 +76,7 @@ async def upload(background_tasks: BackgroundTasks,
|
|
| 76 |
exercise_id: str = Body(...)
|
| 77 |
):
|
| 78 |
|
| 79 |
-
|
| 80 |
player_data = json.loads(player_data)
|
| 81 |
|
| 82 |
if token != AI_API_TOKEN:
|
|
@@ -105,3 +105,4 @@ async def upload(background_tasks: BackgroundTasks,
|
|
| 105 |
print(f"returning response")
|
| 106 |
return JSONResponse(content={"message": "Video uploaded successfully",
|
| 107 |
"status": 200})
|
|
|
|
|
|
| 13 |
from fastapi.responses import JSONResponse
|
| 14 |
from config import AI_API_TOKEN
|
| 15 |
import logging
|
| 16 |
+
import json
|
| 17 |
|
| 18 |
|
| 19 |
logging.basicConfig(level=logging.INFO)
|
|
|
|
| 76 |
exercise_id: str = Body(...)
|
| 77 |
):
|
| 78 |
|
| 79 |
+
|
| 80 |
player_data = json.loads(player_data)
|
| 81 |
|
| 82 |
if token != AI_API_TOKEN:
|
|
|
|
| 105 |
print(f"returning response")
|
| 106 |
return JSONResponse(content={"message": "Video uploaded successfully",
|
| 107 |
"status": 200})
|
| 108 |
+
|
tasks.py
CHANGED
|
@@ -6,6 +6,8 @@ from fastapi import UploadFile
|
|
| 6 |
import logging
|
| 7 |
import cv2
|
| 8 |
import numpy as np
|
|
|
|
|
|
|
| 9 |
|
| 10 |
import time
|
| 11 |
import json
|
|
@@ -13,8 +15,108 @@ from fastapi.responses import JSONResponse
|
|
| 13 |
|
| 14 |
logging.basicConfig(level=logging.INFO)
|
| 15 |
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
def process_video(file_name: str,vitpose: VitPose,user_id: str,player_id: str):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
video_path = file_name
|
| 19 |
|
| 20 |
contents = open(video_path, "rb").read()
|
|
@@ -59,14 +161,27 @@ def process_salto_alto(file_name: str,
|
|
| 59 |
exercise_id: str,
|
| 60 |
repetitions) -> dict:
|
| 61 |
"""
|
| 62 |
-
Process a high jump exercise video using VitPose for pose estimation.
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
Args:
|
| 65 |
-
file_name: Path to the input video
|
| 66 |
-
vitpose: VitPose instance for pose estimation
|
| 67 |
-
player_data: Dictionary containing player information
|
| 68 |
-
|
| 69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
"""
|
| 71 |
# Use the provided VitPose instance
|
| 72 |
|
|
@@ -109,7 +224,26 @@ def send_results_api(results_dict: dict,
|
|
| 109 |
exercise_id: str,
|
| 110 |
video_path: str) -> JSONResponse:
|
| 111 |
"""
|
| 112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
"""
|
| 114 |
url = API_URL + "/excercises/webhooks/video-processed-results"
|
| 115 |
logger.info(f"Sending video results to {url}")
|
|
@@ -142,73 +276,68 @@ def send_results_api(results_dict: dict,
|
|
| 142 |
return response
|
| 143 |
|
| 144 |
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
def analyze_jump_video(model: VitPose,
|
| 150 |
-
input_video: str,
|
| 151 |
-
output_video: str,
|
| 152 |
-
player_height: float,
|
| 153 |
-
body_mass_kg: float,
|
| 154 |
-
repetitions: int) -> dict | None:
|
| 155 |
"""
|
| 156 |
-
|
|
|
|
|
|
|
|
|
|
| 157 |
|
| 158 |
Args:
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
output_video: Path to output video
|
| 162 |
-
reference_height: Height of the person in meters
|
| 163 |
-
body_mass_kg: Weight of the person in kg
|
| 164 |
|
| 165 |
Returns:
|
| 166 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 167 |
"""
|
|
|
|
|
|
|
|
|
|
| 168 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 169 |
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
SMOOTHING_WINDOW = 5 # Ventana para suavizar la altura de los tobillos
|
| 177 |
-
HORIZONTAL_OFFSET_FACTOR = 0.75 # Factor para ubicar el cuadro entre el hombro y el borde
|
| 178 |
-
VELOCITY_WINDOW = 3 # Número de frames para calcular la velocidad
|
| 179 |
-
METRICS_BELOW_FEET_OFFSET = 20 # Offset en píxeles para colocar los cuadros debajo de los pies
|
| 180 |
-
|
| 181 |
-
# Color palette
|
| 182 |
-
BLUE = (255, 0, 0)
|
| 183 |
-
GREEN = (0, 255, 0)
|
| 184 |
-
YELLOW = (0, 255, 255)
|
| 185 |
-
WHITE = (255, 255, 255)
|
| 186 |
-
BLACK = (0, 0, 0)
|
| 187 |
-
GRAY = (128, 128, 128)
|
| 188 |
-
LIGHT_GRAY = (200, 200, 200)
|
| 189 |
-
|
| 190 |
-
repetition_data = []
|
| 191 |
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
print("Error al abrir el video")
|
| 196 |
-
return {}
|
| 197 |
|
| 198 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 199 |
ret, frame = cap.read()
|
| 200 |
if not ret:
|
| 201 |
-
|
| 202 |
-
return {}
|
| 203 |
|
| 204 |
-
|
| 205 |
-
PX_PER_METER = None
|
| 206 |
-
initial_person_height_px = None
|
| 207 |
-
initial_left_shoulder_x = None
|
| 208 |
-
initial_right_shoulder_x = None
|
| 209 |
-
|
| 210 |
-
# Process first frame to calibrate
|
| 211 |
-
output = model(frame) # Detect pose in first frame
|
| 212 |
keypoints = output.keypoints_xy.float().cpu().numpy()
|
| 213 |
labels = model.pose_estimator_config.label2id
|
| 214 |
|
|
@@ -218,276 +347,413 @@ def analyze_jump_video(model: VitPose,
|
|
| 218 |
L_shoulder_keypoint = labels["L_Shoulder"]
|
| 219 |
R_shoulder_keypoint = labels["R_Shoulder"]
|
| 220 |
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
kpts_first = keypoints[0]
|
| 227 |
-
if len(kpts_first[nose_keypoint]) > 0 and len(kpts_first[L_ankle_keypoint]) > 0:
|
| 228 |
initial_person_height_px = min(kpts_first[L_ankle_keypoint][1], kpts_first[R_ankle_keypoint][1]) - kpts_first[nose_keypoint][1]
|
| 229 |
PX_PER_METER = initial_person_height_px / player_height
|
| 230 |
-
if len(kpts_first[L_shoulder_keypoint]) > 0 and len(kpts_first[R_shoulder_keypoint]) > 0:
|
| 231 |
initial_left_shoulder_x = int(kpts_first[L_shoulder_keypoint][0])
|
| 232 |
initial_right_shoulder_x = int(kpts_first[R_shoulder_keypoint][0])
|
| 233 |
-
|
| 234 |
if PX_PER_METER is None or initial_left_shoulder_x is None or initial_right_shoulder_x is None:
|
| 235 |
-
|
| 236 |
-
cap.release()
|
| 237 |
-
return None
|
| 238 |
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
|
|
|
|
|
|
| 246 |
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
# Add try-except block around the model inference to catch any model errors
|
| 274 |
-
try:
|
| 275 |
-
output = model(annotated_frame)
|
| 276 |
-
keypoints = output.keypoints_xy.float().cpu().numpy()
|
| 277 |
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
len(
|
| 282 |
-
|
| 283 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 284 |
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
left_shoulder = kpts[L_shoulder_keypoint]
|
| 293 |
-
right_shoulder = kpts[R_shoulder_keypoint]
|
| 294 |
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 376 |
else:
|
| 377 |
-
# Skip processing for this frame - no valid keypoints detected
|
| 378 |
-
print("Skipping frame - no valid keypoints detected")
|
| 379 |
-
print(f"keypoints {keypoints}")
|
| 380 |
last_detected_ankles_y = None
|
| 381 |
-
velocity_vertical = 0.0
|
| 382 |
-
|
| 383 |
-
#
|
| 384 |
-
|
| 385 |
-
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
"
|
| 411 |
-
"black": BLACK,
|
| 412 |
-
"gray": GRAY,
|
| 413 |
-
"light_gray": LIGHT_GRAY
|
| 414 |
},
|
| 415 |
-
|
| 416 |
-
|
| 417 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 418 |
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
'R_Shoulder': 6, 'R_Wrist': 10
|
| 428 |
-
}
|
| 429 |
-
|
| 430 |
-
# Define skeleton connections (pairs of keypoints that should be connected)
|
| 431 |
-
skeleton_connections = [
|
| 432 |
-
(keypoint_indices["Nose"], keypoint_indices["L_Eye"]),
|
| 433 |
-
(keypoint_indices["Nose"], keypoint_indices["R_Eye"]),
|
| 434 |
-
(keypoint_indices["L_Eye"], keypoint_indices["L_Ear"]),
|
| 435 |
-
(keypoint_indices["R_Eye"], keypoint_indices["R_Ear"]),
|
| 436 |
-
(keypoint_indices["Nose"], keypoint_indices["L_Shoulder"]),
|
| 437 |
-
(keypoint_indices["Nose"], keypoint_indices["R_Shoulder"]),
|
| 438 |
-
(keypoint_indices["L_Shoulder"], keypoint_indices["R_Shoulder"]),
|
| 439 |
-
(keypoint_indices["L_Shoulder"], keypoint_indices["L_Elbow"]),
|
| 440 |
-
(keypoint_indices["R_Shoulder"], keypoint_indices["R_Elbow"]),
|
| 441 |
-
(keypoint_indices["L_Elbow"], keypoint_indices["L_Wrist"]),
|
| 442 |
-
(keypoint_indices["R_Elbow"], keypoint_indices["R_Wrist"]),
|
| 443 |
-
(keypoint_indices["L_Shoulder"], keypoint_indices["L_Hip"]),
|
| 444 |
-
(keypoint_indices["R_Shoulder"], keypoint_indices["R_Hip"]),
|
| 445 |
-
(keypoint_indices["L_Hip"], keypoint_indices["R_Hip"]),
|
| 446 |
-
(keypoint_indices["L_Hip"], keypoint_indices["L_Knee"]),
|
| 447 |
-
(keypoint_indices["R_Hip"], keypoint_indices["R_Knee"]),
|
| 448 |
-
(keypoint_indices["L_Knee"], keypoint_indices["L_Ankle"]),
|
| 449 |
-
(keypoint_indices["R_Knee"], keypoint_indices["R_Ankle"])
|
| 450 |
-
]
|
| 451 |
-
|
| 452 |
-
kpts = keypoints[0]
|
| 453 |
-
# Draw points
|
| 454 |
-
for i, point in enumerate(kpts):
|
| 455 |
-
if point[0] > 0 and point[1] > 0: # Only draw if keypoint is valid
|
| 456 |
-
cv2.circle(annotated_frame, (int(point[0]), int(point[1])), 5, GREEN, -1)
|
| 457 |
-
|
| 458 |
-
# Draw connections
|
| 459 |
-
for connection in skeleton_connections:
|
| 460 |
-
start_idx, end_idx = connection
|
| 461 |
-
if (start_idx < len(kpts) and end_idx < len(kpts) and
|
| 462 |
-
kpts[start_idx][0] > 0 and kpts[start_idx][1] > 0 and
|
| 463 |
-
kpts[end_idx][0] > 0 and kpts[end_idx][1] > 0):
|
| 464 |
-
start_point = (int(kpts[start_idx][0]), int(kpts[start_idx][1]))
|
| 465 |
-
end_point = (int(kpts[end_idx][0]), int(kpts[end_idx][1]))
|
| 466 |
-
cv2.line(annotated_frame, start_point, end_point, YELLOW, 2)
|
| 467 |
-
except Exception as e:
|
| 468 |
-
print(f"Error drawing skeleton: {e}")
|
| 469 |
-
|
| 470 |
-
out.write(annotated_frame)
|
| 471 |
-
|
| 472 |
-
# Prepare results dictionary
|
| 473 |
-
results_dict = {
|
| 474 |
-
"video_analysis": {
|
| 475 |
-
"output_video": str(output_video),
|
| 476 |
-
},
|
| 477 |
-
"repetition_data": [
|
| 478 |
-
{
|
| 479 |
-
"repetition": int(rep["repetition"]),
|
| 480 |
-
"distancia_elevada": float(rep["distancia_elevada"]),
|
| 481 |
-
"salto_alto": float(rep["salto_alto"]),
|
| 482 |
-
"potencia_sayer": float(rep["potencia_sayer"])
|
| 483 |
-
} for rep in repetition_data
|
| 484 |
-
]
|
| 485 |
-
}
|
| 486 |
-
|
| 487 |
-
cap.release()
|
| 488 |
-
out.release()
|
| 489 |
-
|
| 490 |
-
return results_dict
|
| 491 |
|
| 492 |
|
| 493 |
def calculate_peak_power_sayer(jump_height_m, body_mass_kg):
|
|
@@ -520,6 +786,234 @@ def calculate_high_jump(player_height:float, max_jump_height:float) -> float:
|
|
| 520 |
return player_height + max_jump_height
|
| 521 |
|
| 522 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 523 |
def draw_metrics_overlay(frame, max_jump_height, salto_alto, velocity_vertical, peak_power_sayer,
|
| 524 |
repetition_count, last_detected_ankles_y, initial_left_shoulder_x,
|
| 525 |
initial_right_shoulder_x, width, height, colors, metrics_below_feet_offset=20,
|
|
@@ -546,165 +1040,52 @@ def draw_metrics_overlay(frame, max_jump_height, salto_alto, velocity_vertical,
|
|
| 546 |
Returns:
|
| 547 |
Frame with metrics overlay
|
| 548 |
"""
|
|
|
|
|
|
|
| 549 |
|
| 550 |
-
|
| 551 |
-
|
| 552 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 553 |
|
| 554 |
-
|
| 555 |
-
|
| 556 |
-
|
| 557 |
-
|
| 558 |
-
|
| 559 |
-
|
| 560 |
-
font_thickness_metric = 1
|
| 561 |
-
font_thickness_title_main = 1 # Thickness for main title
|
| 562 |
-
line_height_title_metric = int(20 * 1.2)
|
| 563 |
-
line_height_value = int(25 * 1.2)
|
| 564 |
-
padding_vertical = int(15 * 1.2)
|
| 565 |
-
padding_horizontal = int(15 * 1.2)
|
| 566 |
-
text_color_title = colors["light_gray"]
|
| 567 |
-
text_color_value = colors["white"]
|
| 568 |
-
text_color_title_main = colors["white"]
|
| 569 |
-
bg_color = colors["gray"]
|
| 570 |
-
border_color = colors["white"]
|
| 571 |
-
border_thickness = 1
|
| 572 |
-
corner_radius = 10
|
| 573 |
-
spacing_horizontal = 30
|
| 574 |
-
title_y_offset = 50 # Lower vertical position of title
|
| 575 |
-
metrics_y_offset_alto = 80 # Adjust Salto Alto position to leave space below
|
| 576 |
-
metrics_y_offset_relativo = None # Will be calculated dynamically
|
| 577 |
-
metrics_y_offset_velocidad = None # Will be calculated dynamically
|
| 578 |
-
metrics_y_offset_potencia = None # Will be calculated dynamically
|
| 579 |
-
|
| 580 |
-
# Helper function to draw rounded rectangles
|
| 581 |
-
def draw_rounded_rect(img, pt1, pt2, color, thickness=-1, lineType=cv2.LINE_AA, radius=10):
|
| 582 |
-
x1, y1 = pt1
|
| 583 |
-
x2, y2 = pt2
|
| 584 |
-
w = x2 - x1
|
| 585 |
-
h = y2 - y1
|
| 586 |
-
if radius > 0:
|
| 587 |
-
img = cv2.ellipse(img, (x1 + radius, y1 + radius), (radius, radius), 0, 0, 90, color, thickness, lineType)
|
| 588 |
-
img = cv2.ellipse(img, (x2 - radius, y1 + radius), (radius, radius), 0, 90, 180, color, thickness, lineType)
|
| 589 |
-
img = cv2.ellipse(img, (x2 - radius, y2 - radius), (radius, radius), 0, 180, 270, color, thickness, lineType)
|
| 590 |
-
img = cv2.ellipse(img, (x1 + radius, y2 - radius), (radius, radius), 0, 270, 360, color, thickness, lineType)
|
| 591 |
-
|
| 592 |
-
img = cv2.rectangle(img, (x1, y1 + radius), (x2, y2 - radius), color, thickness, lineType)
|
| 593 |
-
img = cv2.rectangle(img, (x1 + radius, y1), (x2 - radius, y2), color, thickness, lineType)
|
| 594 |
-
else:
|
| 595 |
-
img = cv2.rectangle(img, pt1, pt2, color, thickness, lineType)
|
| 596 |
-
return img
|
| 597 |
|
| 598 |
-
#
|
| 599 |
-
|
| 600 |
-
|
| 601 |
-
|
| 602 |
-
|
| 603 |
-
|
| 604 |
-
|
| 605 |
-
# --- Relative Jump Box (dynamically positioned) ---
|
| 606 |
-
relativo_text = "SALTO RELATIVO"
|
| 607 |
-
relativo_value = f"{max(0, max_jump_height):.2f} m"
|
| 608 |
-
relativo_text_size = cv2.getTextSize(relativo_text, font, font_scale_title_metric, font_thickness_metric)[0]
|
| 609 |
-
relativo_value_size = cv2.getTextSize(relativo_value, font, font_scale_value, font_thickness_metric)[0]
|
| 610 |
-
bg_width_relativo = max(relativo_text_size[0], relativo_value_size[0]) + 2 * padding_horizontal
|
| 611 |
-
bg_height_relativo = line_height_title_metric + line_height_value + 2 * padding_vertical
|
| 612 |
-
x_relativo = 20
|
| 613 |
|
| 614 |
-
|
| 615 |
-
|
| 616 |
-
|
| 617 |
-
|
| 618 |
-
|
| 619 |
-
|
| 620 |
-
metrics_y_offset_relativo = height - 150 # Default position if ankles not detected
|
| 621 |
-
|
| 622 |
-
if metrics_y_offset_relativo is not None:
|
| 623 |
-
y_relativo = metrics_y_offset_relativo
|
| 624 |
-
pt1_relativo = (x_relativo, y_relativo)
|
| 625 |
-
pt2_relativo = (x_relativo + bg_width_relativo, y_relativo + bg_height_relativo)
|
| 626 |
-
overlay = draw_rounded_rect(overlay, pt1_relativo, pt2_relativo, bg_color, cv2.FILLED, cv2.LINE_AA, corner_radius)
|
| 627 |
-
cv2.rectangle(overlay, pt1_relativo, pt2_relativo, border_color, border_thickness, cv2.LINE_AA)
|
| 628 |
-
cv2.putText(overlay, relativo_text, (x_relativo + (bg_width_relativo - relativo_text_size[0]) // 2, y_relativo + padding_vertical + line_height_title_metric // 2 + 2), font, font_scale_title_metric, text_color_title, font_thickness_metric, cv2.LINE_AA)
|
| 629 |
-
cv2.putText(overlay, relativo_value, (x_relativo + (bg_width_relativo - relativo_value_size[0]) // 2, y_relativo + padding_vertical + line_height_title_metric + line_height_value // 2 + 5), font, font_scale_value, text_color_value, font_thickness_metric, cv2.LINE_AA)
|
| 630 |
-
|
| 631 |
-
# --- High Jump Box (stays in top right) ---
|
| 632 |
-
alto_text = "SALTO ALTO"
|
| 633 |
-
alto_value = f"{max(0, salto_alto):.2f} m"
|
| 634 |
-
alto_text_size = cv2.getTextSize(alto_text, font, font_scale_title_metric, font_thickness_metric)[0]
|
| 635 |
-
alto_value_size = cv2.getTextSize(alto_value, font, font_scale_value, font_thickness_metric)[0]
|
| 636 |
-
bg_width_alto = max(alto_text_size[0], alto_value_size[0]) + 2 * padding_horizontal
|
| 637 |
-
bg_height_alto = line_height_title_metric + line_height_value + 2 * padding_vertical
|
| 638 |
-
x_alto = width - bg_width_alto - 20 # Default position near right edge
|
| 639 |
|
| 640 |
-
|
| 641 |
-
|
| 642 |
-
|
| 643 |
-
|
| 644 |
-
|
| 645 |
-
|
| 646 |
-
|
| 647 |
-
|
| 648 |
-
|
| 649 |
-
overlay = draw_rounded_rect(overlay, pt1_alto, pt2_alto, bg_color, cv2.FILLED, cv2.LINE_AA, corner_radius)
|
| 650 |
-
cv2.rectangle(overlay, pt1_alto, pt2_alto, border_color, border_thickness, cv2.LINE_AA)
|
| 651 |
-
cv2.putText(overlay, alto_text, (x_alto + (bg_width_alto - alto_text_size[0]) // 2, y_alto + padding_vertical + line_height_title_metric // 2 + 2), font, font_scale_title_metric, text_color_title, font_thickness_metric, cv2.LINE_AA)
|
| 652 |
-
cv2.putText(overlay, alto_value, (x_alto + (bg_width_alto - alto_value_size[0]) // 2, y_alto + padding_vertical + line_height_title_metric + line_height_value // 2 + 5), font, font_scale_value, text_color_value, font_thickness_metric, cv2.LINE_AA)
|
| 653 |
-
|
| 654 |
-
# --- Repetitions Box ---
|
| 655 |
-
reps_text = "REPETICIONES"
|
| 656 |
-
reps_value = f"{repetition_count}"
|
| 657 |
-
reps_text_size = cv2.getTextSize(reps_text, font, font_scale_title_metric, font_thickness_metric)[0]
|
| 658 |
-
reps_value_size = cv2.getTextSize(reps_value, font, font_scale_value, font_thickness_metric)[0]
|
| 659 |
-
bg_width_reps = max(reps_text_size[0], reps_value_size[0]) + 2 * padding_horizontal
|
| 660 |
-
bg_height_reps = line_height_title_metric + line_height_value + 2 * padding_vertical
|
| 661 |
-
x_reps = x_relativo
|
| 662 |
-
y_reps = y_relativo + bg_height_relativo + 10
|
| 663 |
-
|
| 664 |
-
pt1_reps = (x_reps, y_reps)
|
| 665 |
-
pt2_reps = (x_reps + bg_width_reps, y_reps + bg_height_reps)
|
| 666 |
-
overlay = draw_rounded_rect(overlay, pt1_reps, pt2_reps, bg_color, cv2.FILLED, cv2.LINE_AA, corner_radius)
|
| 667 |
-
cv2.rectangle(overlay, pt1_reps, pt2_reps, border_color, border_thickness, cv2.LINE_AA)
|
| 668 |
-
cv2.putText(overlay, reps_text, (x_reps + (bg_width_reps - reps_text_size[0]) // 2, y_reps + padding_vertical + line_height_title_metric // 2 + 2), font, font_scale_title_metric, text_color_title, font_thickness_metric, cv2.LINE_AA)
|
| 669 |
-
cv2.putText(overlay, reps_value, (x_reps + (bg_width_reps - reps_value_size[0]) // 2, y_reps + padding_vertical + line_height_title_metric + line_height_value // 2 + 5), font, font_scale_value, text_color_value, font_thickness_metric, cv2.LINE_AA)
|
| 670 |
-
|
| 671 |
-
# --- Vertical Velocity Box (below feet) ---
|
| 672 |
-
if last_detected_ankles_y is not None:
|
| 673 |
-
velocidad_text = "VELOCIDAD VERTICAL"
|
| 674 |
-
velocidad_value = f"{abs(velocity_vertical):.2f} m/s" # Show absolute value
|
| 675 |
-
velocidad_text_size = cv2.getTextSize(velocidad_text, font, font_scale_title_metric, font_thickness_metric)[0]
|
| 676 |
-
velocidad_value_size = cv2.getTextSize(velocidad_value, font, font_scale_value, font_thickness_metric)[0]
|
| 677 |
-
bg_width_velocidad = max(velocidad_text_size[0], velocidad_value_size[0]) + 2 * padding_horizontal
|
| 678 |
-
bg_height_velocidad = line_height_title_metric + line_height_value + 2 * padding_vertical
|
| 679 |
-
|
| 680 |
-
x_velocidad = int(width / 2 - bg_width_velocidad / 2) # Horizontally centered
|
| 681 |
-
y_velocidad = int(last_detected_ankles_y + metrics_below_feet_offset + bg_height_velocidad)
|
| 682 |
-
|
| 683 |
-
pt1_velocidad = (int(x_velocidad), int(y_velocidad - bg_height_velocidad))
|
| 684 |
-
pt2_velocidad = (int(x_velocidad + bg_width_velocidad), int(y_velocidad))
|
| 685 |
-
overlay = draw_rounded_rect(overlay, pt1_velocidad, pt2_velocidad, bg_color, cv2.FILLED, cv2.LINE_AA, corner_radius)
|
| 686 |
-
cv2.rectangle(overlay, pt1_velocidad, pt2_velocidad, border_color, border_thickness, cv2.LINE_AA)
|
| 687 |
-
cv2.putText(overlay, velocidad_text, (int(x_velocidad + (bg_width_velocidad - velocidad_text_size[0]) // 2), int(y_velocidad - bg_height_velocidad + padding_vertical + line_height_title_metric // 2 + 2)), font, font_scale_title_metric, text_color_title, font_thickness_metric, cv2.LINE_AA)
|
| 688 |
-
cv2.putText(overlay, velocidad_value, (int(x_velocidad + (bg_width_velocidad - velocidad_value_size[0]) // 2), int(y_velocidad - bg_height_velocidad + padding_vertical + line_height_title_metric + line_height_value // 2 + 5)), font, font_scale_value, text_color_value, font_thickness_metric, cv2.LINE_AA)
|
| 689 |
-
|
| 690 |
-
# --- Sayer Power Box (below velocity box) ---
|
| 691 |
-
potencia_text = "POTENCIA SAYER"
|
| 692 |
potencia_value = f"{peak_power_sayer:.2f} W"
|
| 693 |
-
|
| 694 |
-
|
| 695 |
-
|
| 696 |
-
bg_height_potencia = line_height_title_metric + line_height_value + 2 * padding_vertical
|
| 697 |
-
|
| 698 |
-
x_potencia = x_velocidad # Same horizontal position as velocity
|
| 699 |
-
y_potencia = y_velocidad + 5 # Below velocity box
|
| 700 |
-
|
| 701 |
-
pt1_potencia = (int(x_potencia), int(y_potencia))
|
| 702 |
-
pt2_potencia = (int(x_potencia + bg_width_potencia), int(y_potencia + bg_height_potencia))
|
| 703 |
-
overlay = draw_rounded_rect(overlay, pt1_potencia, pt2_potencia, bg_color, cv2.FILLED, cv2.LINE_AA, corner_radius)
|
| 704 |
-
cv2.rectangle(overlay, pt1_potencia, pt2_potencia, border_color, border_thickness, cv2.LINE_AA)
|
| 705 |
-
cv2.putText(overlay, potencia_text, (int(x_potencia + (bg_width_potencia - potencia_text_size[0]) // 2), int(y_potencia + padding_vertical + line_height_title_metric // 2 + 2)), font, font_scale_title_metric, text_color_title, font_thickness_metric, cv2.LINE_AA)
|
| 706 |
-
cv2.putText(overlay, potencia_value, (int(x_potencia + (bg_width_potencia - potencia_value_size[0]) // 2), int(y_potencia + padding_vertical + line_height_title_metric + line_height_value // 2 + 5)), font, font_scale_value, text_color_value, font_thickness_metric, cv2.LINE_AA)
|
| 707 |
|
| 708 |
# Blend overlay with original frame
|
| 709 |
-
result = cv2.addWeighted(overlay, alpha, frame, 1 - alpha, 0)
|
| 710 |
return result
|
|
|
|
| 6 |
import logging
|
| 7 |
import cv2
|
| 8 |
import numpy as np
|
| 9 |
+
from dataclasses import dataclass
|
| 10 |
+
from typing import Optional, Tuple, Dict, List
|
| 11 |
|
| 12 |
import time
|
| 13 |
import json
|
|
|
|
| 15 |
|
| 16 |
logging.basicConfig(level=logging.INFO)
|
| 17 |
logger = logging.getLogger(__name__)
|
| 18 |
+
|
| 19 |
+
# Jump Analysis Constants
|
| 20 |
+
JUMP_THRESHOLD_PERCENT = 0.05
|
| 21 |
+
SMOOTHING_WINDOW = 5
|
| 22 |
+
HORIZONTAL_OFFSET_FACTOR = 0.75
|
| 23 |
+
VELOCITY_WINDOW = 3
|
| 24 |
+
METRICS_BELOW_FEET_OFFSET = 20
|
| 25 |
+
|
| 26 |
+
# Color Constants
|
| 27 |
+
BLUE = (255, 0, 0)
|
| 28 |
+
GREEN = (0, 255, 0)
|
| 29 |
+
YELLOW = (0, 255, 255)
|
| 30 |
+
WHITE = (255, 255, 255)
|
| 31 |
+
BLACK = (0, 0, 0)
|
| 32 |
+
GRAY = (128, 128, 128)
|
| 33 |
+
LIGHT_GRAY = (200, 200, 200)
|
| 34 |
+
|
| 35 |
+
COLORS = {
|
| 36 |
+
"blue": BLUE,
|
| 37 |
+
"green": GREEN,
|
| 38 |
+
"yellow": YELLOW,
|
| 39 |
+
"white": WHITE,
|
| 40 |
+
"black": BLACK,
|
| 41 |
+
"gray": GRAY,
|
| 42 |
+
"light_gray": LIGHT_GRAY
|
| 43 |
+
}
|
| 44 |
+
|
| 45 |
+
# Keypoint indices
|
| 46 |
+
KEYPOINT_INDICES = {
|
| 47 |
+
'L_Ankle': 15, 'L_Ear': 3, 'L_Elbow': 7, 'L_Eye': 1, 'L_Hip': 11,
|
| 48 |
+
'L_Knee': 13, 'L_Shoulder': 5, 'L_Wrist': 9, 'Nose': 0, 'R_Ankle': 16,
|
| 49 |
+
'R_Ear': 4, 'R_Elbow': 8, 'R_Eye': 2, 'R_Hip': 12, 'R_Knee': 14,
|
| 50 |
+
'R_Shoulder': 6, 'R_Wrist': 10
|
| 51 |
+
}
|
| 52 |
+
|
| 53 |
+
# Skeleton connections
|
| 54 |
+
SKELETON_CONNECTIONS = [
|
| 55 |
+
("Nose", "L_Eye"), ("Nose", "R_Eye"), ("L_Eye", "L_Ear"), ("R_Eye", "R_Ear"),
|
| 56 |
+
("Nose", "L_Shoulder"), ("Nose", "R_Shoulder"), ("L_Shoulder", "R_Shoulder"),
|
| 57 |
+
("L_Shoulder", "L_Elbow"), ("R_Shoulder", "R_Elbow"), ("L_Elbow", "L_Wrist"),
|
| 58 |
+
("R_Elbow", "R_Wrist"), ("L_Shoulder", "L_Hip"), ("R_Shoulder", "R_Hip"),
|
| 59 |
+
("L_Hip", "R_Hip"), ("L_Hip", "L_Knee"), ("R_Hip", "R_Knee"),
|
| 60 |
+
("L_Knee", "L_Ankle"), ("R_Knee", "R_Ankle")
|
| 61 |
+
]
|
| 62 |
+
|
| 63 |
+
@dataclass
|
| 64 |
+
class JumpMetrics:
|
| 65 |
+
max_jump_height: float = 0.0
|
| 66 |
+
velocity_vertical: float = 0.0
|
| 67 |
+
peak_power_sayer: float = 0.0
|
| 68 |
+
jump_peak_power: float = 0.0
|
| 69 |
+
repetition_count: int = 0
|
| 70 |
+
ground_level: Optional[float] = None
|
| 71 |
+
takeoff_head_y: Optional[float] = None
|
| 72 |
+
max_head_height_px: Optional[float] = None
|
| 73 |
+
jump_started: bool = False
|
| 74 |
+
|
| 75 |
+
@dataclass
|
| 76 |
+
class OverlayConfig:
|
| 77 |
+
alpha: float = 0.7
|
| 78 |
+
font: int = cv2.FONT_HERSHEY_SIMPLEX
|
| 79 |
+
font_scale_title_metric: float = 0.5
|
| 80 |
+
font_scale_value: float = 0.7
|
| 81 |
+
font_scale_title_main: float = 1.2
|
| 82 |
+
font_thickness_metric: int = 1
|
| 83 |
+
font_thickness_title_main: int = 1
|
| 84 |
+
line_height_title_metric: int = int(20 * 1.2)
|
| 85 |
+
line_height_value: int = int(25 * 1.2)
|
| 86 |
+
padding_vertical: int = int(15 * 1.2)
|
| 87 |
+
padding_horizontal: int = int(15 * 1.2)
|
| 88 |
+
border_thickness: int = 1
|
| 89 |
+
corner_radius: int = 10
|
| 90 |
+
spacing_horizontal: int = 30
|
| 91 |
+
title_y_offset: int = 50
|
| 92 |
+
metrics_y_offset_alto: int = 80
|
| 93 |
+
|
| 94 |
+
@dataclass
|
| 95 |
+
class FramePosition:
|
| 96 |
+
x: int
|
| 97 |
+
y: int
|
| 98 |
+
width: int
|
| 99 |
+
height: int
|
| 100 |
def process_video(file_name: str,vitpose: VitPose,user_id: str,player_id: str):
|
| 101 |
+
"""
|
| 102 |
+
Process a video file using VitPose for pose estimation and send results to webhook.
|
| 103 |
+
|
| 104 |
+
This function processes a video file by applying pose estimation, saving the annotated
|
| 105 |
+
video to the static directory, and sending the processed video to a webhook endpoint.
|
| 106 |
|
| 107 |
+
Args:
|
| 108 |
+
file_name (str): Path to the input video file
|
| 109 |
+
vitpose (VitPose): VitPose instance for pose estimation
|
| 110 |
+
user_id (str): ID of the user uploading the video
|
| 111 |
+
player_id (str): ID of the player in the video
|
| 112 |
+
|
| 113 |
+
Returns:
|
| 114 |
+
None
|
| 115 |
+
|
| 116 |
+
Raises:
|
| 117 |
+
ValueError: If video file cannot be opened or processed
|
| 118 |
+
requests.RequestException: If webhook request fails
|
| 119 |
+
"""
|
| 120 |
video_path = file_name
|
| 121 |
|
| 122 |
contents = open(video_path, "rb").read()
|
|
|
|
| 161 |
exercise_id: str,
|
| 162 |
repetitions) -> dict:
|
| 163 |
"""
|
| 164 |
+
Process a high jump exercise video using VitPose for pose estimation and analyze jump metrics.
|
| 165 |
+
|
| 166 |
+
This function processes a high jump video by analyzing pose keypoints to calculate
|
| 167 |
+
jump metrics including height, velocity, and power. Results are sent to an API endpoint.
|
| 168 |
|
| 169 |
Args:
|
| 170 |
+
file_name (str): Path to the input video file
|
| 171 |
+
vitpose (VitPose): VitPose instance for pose estimation
|
| 172 |
+
player_data (dict): Dictionary containing player information including:
|
| 173 |
+
- height: Player height in cm
|
| 174 |
+
- weight: Player weight in kg
|
| 175 |
+
- id: Player identifier
|
| 176 |
+
exercise_id (str): Unique identifier for the exercise
|
| 177 |
+
repetitions (int): Expected number of jump repetitions in the video
|
| 178 |
+
|
| 179 |
+
Returns:
|
| 180 |
+
dict: Dictionary containing analysis results and video information
|
| 181 |
+
|
| 182 |
+
Raises:
|
| 183 |
+
ValueError: If video processing fails or player data is invalid
|
| 184 |
+
requests.RequestException: If API request fails
|
| 185 |
"""
|
| 186 |
# Use the provided VitPose instance
|
| 187 |
|
|
|
|
| 224 |
exercise_id: str,
|
| 225 |
video_path: str) -> JSONResponse:
|
| 226 |
"""
|
| 227 |
+
Send video analysis results to the API webhook endpoint.
|
| 228 |
+
|
| 229 |
+
This function uploads the analyzed video file along with the computed metrics
|
| 230 |
+
to the API's webhook endpoint for processing and storage.
|
| 231 |
+
|
| 232 |
+
Args:
|
| 233 |
+
results_dict (dict): Dictionary containing analysis results including:
|
| 234 |
+
- video_analysis: Information about the processed video
|
| 235 |
+
- repetition_data: List of metrics for each jump repetition
|
| 236 |
+
player_id (str): Unique identifier for the player
|
| 237 |
+
exercise_id (str): Unique identifier for the exercise
|
| 238 |
+
video_path (str): Path to the video file to upload
|
| 239 |
+
|
| 240 |
+
Returns:
|
| 241 |
+
JSONResponse: HTTP response from the API endpoint
|
| 242 |
+
|
| 243 |
+
Raises:
|
| 244 |
+
FileNotFoundError: If the video file doesn't exist
|
| 245 |
+
requests.RequestException: If the API request fails
|
| 246 |
+
json.JSONEncodeError: If results_dict cannot be serialized to JSON
|
| 247 |
"""
|
| 248 |
url = API_URL + "/excercises/webhooks/video-processed-results"
|
| 249 |
logger.info(f"Sending video results to {url}")
|
|
|
|
| 276 |
return response
|
| 277 |
|
| 278 |
|
| 279 |
+
def setup_video_capture(input_video: str, output_video: str) -> Tuple[cv2.VideoCapture, cv2.VideoWriter, int, int]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 280 |
"""
|
| 281 |
+
Initialize video capture and writer objects for video processing.
|
| 282 |
+
|
| 283 |
+
This function creates OpenCV VideoCapture and VideoWriter objects with matching
|
| 284 |
+
properties (frame rate, dimensions) for reading from input and writing to output.
|
| 285 |
|
| 286 |
Args:
|
| 287 |
+
input_video (str): Path to the input video file
|
| 288 |
+
output_video (str): Path for the output video file
|
|
|
|
|
|
|
|
|
|
| 289 |
|
| 290 |
Returns:
|
| 291 |
+
Tuple[cv2.VideoCapture, cv2.VideoWriter, int, int]: A tuple containing:
|
| 292 |
+
- cap: VideoCapture object for reading input video
|
| 293 |
+
- out: VideoWriter object for writing output video
|
| 294 |
+
- width: Video frame width in pixels
|
| 295 |
+
- height: Video frame height in pixels
|
| 296 |
+
|
| 297 |
+
Raises:
|
| 298 |
+
ValueError: If the input video cannot be opened or read
|
| 299 |
+
cv2.error: If video writer initialization fails
|
| 300 |
"""
|
| 301 |
+
cap = cv2.VideoCapture(input_video)
|
| 302 |
+
if not cap.isOpened():
|
| 303 |
+
raise ValueError("Error al abrir el video")
|
| 304 |
|
| 305 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 306 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 307 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 308 |
+
out = cv2.VideoWriter(output_video, cv2.VideoWriter_fourcc(*'mp4v'), fps, (width, height))
|
| 309 |
|
| 310 |
+
return cap, out, width, height
|
| 311 |
+
|
| 312 |
+
|
| 313 |
+
def calibrate_pose_detection(model, cap, player_height: float) -> Tuple[float, int, int]:
|
| 314 |
+
"""
|
| 315 |
+
Calibrate pose detection scale and reference points using the first video frame.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 316 |
|
| 317 |
+
This function analyzes the first frame to establish the pixel-to-meter conversion
|
| 318 |
+
ratio based on the player's known height and detects initial shoulder positions
|
| 319 |
+
for reference during video processing.
|
|
|
|
|
|
|
| 320 |
|
| 321 |
+
Args:
|
| 322 |
+
model: VitPose model instance for pose estimation
|
| 323 |
+
cap: OpenCV VideoCapture object
|
| 324 |
+
player_height (float): Actual height of the player in meters
|
| 325 |
+
|
| 326 |
+
Returns:
|
| 327 |
+
Tuple[float, int, int]: A tuple containing:
|
| 328 |
+
- PX_PER_METER: Conversion factor from pixels to meters
|
| 329 |
+
- initial_left_shoulder_x: X-coordinate of left shoulder in pixels
|
| 330 |
+
- initial_right_shoulder_x: X-coordinate of right shoulder in pixels
|
| 331 |
+
|
| 332 |
+
Raises:
|
| 333 |
+
ValueError: If video cannot be read or pose detection fails on first frame
|
| 334 |
+
IndexError: If required keypoints are not detected in the first frame
|
| 335 |
+
"""
|
| 336 |
ret, frame = cap.read()
|
| 337 |
if not ret:
|
| 338 |
+
raise ValueError("Error al leer el video")
|
|
|
|
| 339 |
|
| 340 |
+
output = model(frame)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 341 |
keypoints = output.keypoints_xy.float().cpu().numpy()
|
| 342 |
labels = model.pose_estimator_config.label2id
|
| 343 |
|
|
|
|
| 347 |
L_shoulder_keypoint = labels["L_Shoulder"]
|
| 348 |
R_shoulder_keypoint = labels["R_Shoulder"]
|
| 349 |
|
| 350 |
+
PX_PER_METER = None
|
| 351 |
+
initial_left_shoulder_x = None
|
| 352 |
+
initial_right_shoulder_x = None
|
| 353 |
+
|
| 354 |
+
if (keypoints is not None and len(keypoints) > 0 and len(keypoints[0]) > 0):
|
| 355 |
kpts_first = keypoints[0]
|
| 356 |
+
if len(kpts_first[nose_keypoint]) > 0 and len(kpts_first[L_ankle_keypoint]) > 0:
|
| 357 |
initial_person_height_px = min(kpts_first[L_ankle_keypoint][1], kpts_first[R_ankle_keypoint][1]) - kpts_first[nose_keypoint][1]
|
| 358 |
PX_PER_METER = initial_person_height_px / player_height
|
| 359 |
+
if len(kpts_first[L_shoulder_keypoint]) > 0 and len(kpts_first[R_shoulder_keypoint]) > 0:
|
| 360 |
initial_left_shoulder_x = int(kpts_first[L_shoulder_keypoint][0])
|
| 361 |
initial_right_shoulder_x = int(kpts_first[R_shoulder_keypoint][0])
|
| 362 |
+
|
| 363 |
if PX_PER_METER is None or initial_left_shoulder_x is None or initial_right_shoulder_x is None:
|
| 364 |
+
raise ValueError("No se pudo calibrar la escala o detectar los hombros en el primer frame.")
|
|
|
|
|
|
|
| 365 |
|
| 366 |
+
return PX_PER_METER, initial_left_shoulder_x, initial_right_shoulder_x
|
| 367 |
+
|
| 368 |
+
|
| 369 |
+
def process_frame_keypoints(model, frame):
|
| 370 |
+
"""
|
| 371 |
+
Process a video frame and extract human pose keypoints.
|
| 372 |
+
|
| 373 |
+
This function applies the pose estimation model to a frame and validates
|
| 374 |
+
that all required keypoints (nose, ankles, shoulders) are detected and visible.
|
| 375 |
|
| 376 |
+
Args:
|
| 377 |
+
model: VitPose model instance for pose estimation
|
| 378 |
+
frame: Input video frame as numpy array
|
| 379 |
+
|
| 380 |
+
Returns:
|
| 381 |
+
Tuple containing:
|
| 382 |
+
- success (bool): True if all required keypoints were detected, False otherwise
|
| 383 |
+
- current_ankle_y (float or None): Y-coordinate of the highest ankle point if detected
|
| 384 |
+
- current_head_y (float or None): Y-coordinate of the nose point if detected
|
| 385 |
+
- keypoints (numpy.ndarray or None): Array of detected keypoints if successful
|
| 386 |
+
"""
|
| 387 |
+
try:
|
| 388 |
+
output = model(frame)
|
| 389 |
+
keypoints = output.keypoints_xy.float().cpu().numpy()
|
| 390 |
+
labels = model.pose_estimator_config.label2id
|
| 391 |
+
|
| 392 |
+
nose_keypoint = labels["Nose"]
|
| 393 |
+
L_ankle_keypoint = labels["L_Ankle"]
|
| 394 |
+
R_ankle_keypoint = labels["R_Ankle"]
|
| 395 |
+
L_shoulder_keypoint = labels["L_Shoulder"]
|
| 396 |
+
R_shoulder_keypoint = labels["R_Shoulder"]
|
| 397 |
+
|
| 398 |
+
if (keypoints is not None and
|
| 399 |
+
len(keypoints) > 0 and
|
| 400 |
+
len(keypoints[0]) > 0 and
|
| 401 |
+
keypoints.size > 0):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 402 |
|
| 403 |
+
kpts = keypoints[0]
|
| 404 |
+
|
| 405 |
+
if (nose_keypoint < len(kpts) and L_ankle_keypoint < len(kpts) and
|
| 406 |
+
R_ankle_keypoint < len(kpts) and L_shoulder_keypoint < len(kpts) and
|
| 407 |
+
R_shoulder_keypoint < len(kpts)):
|
| 408 |
+
|
| 409 |
+
nose = kpts[nose_keypoint]
|
| 410 |
+
ankles = [kpts[L_ankle_keypoint], kpts[R_ankle_keypoint]]
|
| 411 |
+
left_shoulder = kpts[L_shoulder_keypoint]
|
| 412 |
+
right_shoulder = kpts[R_shoulder_keypoint]
|
| 413 |
|
| 414 |
+
if (nose[0] > 0 and nose[1] > 0 and
|
| 415 |
+
all(a[0] > 0 and a[1] > 0 for a in ankles) and
|
| 416 |
+
left_shoulder[0] > 0 and left_shoulder[1] > 0 and
|
| 417 |
+
right_shoulder[0] > 0 and right_shoulder[1] > 0):
|
| 418 |
|
| 419 |
+
current_ankle_y = min(a[1] for a in ankles)
|
| 420 |
+
current_head_y = nose[1]
|
|
|
|
|
|
|
| 421 |
|
| 422 |
+
return True, current_ankle_y, current_head_y, keypoints
|
| 423 |
+
|
| 424 |
+
return False, None, None, None
|
| 425 |
+
|
| 426 |
+
except Exception as e:
|
| 427 |
+
print(f"Error processing frame: {e}")
|
| 428 |
+
return False, None, None, None
|
| 429 |
+
|
| 430 |
+
|
| 431 |
+
def detect_jump_events(metrics: JumpMetrics, smoothed_ankle_y: float, smoothed_head_y: float,
|
| 432 |
+
repetition_data: List[Dict], player_height: float, body_mass_kg: float,
|
| 433 |
+
repetitions: int) -> bool:
|
| 434 |
+
"""
|
| 435 |
+
Detect jump start and end events based on ankle position changes.
|
| 436 |
+
|
| 437 |
+
This function monitors ankle position relative to ground level to detect when
|
| 438 |
+
a jump begins and ends. It calculates jump metrics for completed jumps and
|
| 439 |
+
tracks repetition count.
|
| 440 |
+
|
| 441 |
+
Args:
|
| 442 |
+
metrics (JumpMetrics): Object tracking current jump state and metrics
|
| 443 |
+
smoothed_ankle_y (float): Current smoothed ankle Y-coordinate
|
| 444 |
+
smoothed_head_y (float): Current smoothed head Y-coordinate
|
| 445 |
+
repetition_data (List[Dict]): List to store completed jump data
|
| 446 |
+
player_height (float): Player height in meters
|
| 447 |
+
body_mass_kg (float): Player body mass in kilograms
|
| 448 |
+
repetitions (int): Target number of repetitions to detect
|
| 449 |
+
|
| 450 |
+
Returns:
|
| 451 |
+
bool: True if target number of repetitions has been reached, False otherwise
|
| 452 |
+
|
| 453 |
+
Side Effects:
|
| 454 |
+
- Updates metrics object with jump state
|
| 455 |
+
- Appends completed jump data to repetition_data list
|
| 456 |
+
- Modifies metrics.ground_level, metrics.jump_started, metrics.repetition_count
|
| 457 |
+
"""
|
| 458 |
+
if metrics.ground_level is None:
|
| 459 |
+
metrics.ground_level = smoothed_ankle_y
|
| 460 |
+
metrics.takeoff_head_y = smoothed_head_y
|
| 461 |
+
return False
|
| 462 |
+
|
| 463 |
+
relative_ankle_change = (metrics.ground_level - smoothed_ankle_y) / metrics.ground_level if metrics.ground_level > 0 else 0
|
| 464 |
+
|
| 465 |
+
# Detect jump start
|
| 466 |
+
if not metrics.jump_started and relative_ankle_change > JUMP_THRESHOLD_PERCENT:
|
| 467 |
+
metrics.jump_started = True
|
| 468 |
+
metrics.takeoff_head_y = smoothed_head_y
|
| 469 |
+
metrics.max_jump_height = 0
|
| 470 |
+
metrics.max_head_height_px = smoothed_head_y
|
| 471 |
+
metrics.jump_peak_power = 0.0
|
| 472 |
+
return False
|
| 473 |
+
|
| 474 |
+
# Detect jump end
|
| 475 |
+
if metrics.jump_started and relative_ankle_change <= JUMP_THRESHOLD_PERCENT:
|
| 476 |
+
high_jump = calculate_high_jump(player_height, metrics.max_jump_height)
|
| 477 |
+
repetition_data.append({
|
| 478 |
+
"repetition": metrics.repetition_count + 1,
|
| 479 |
+
"distancia_elevada": round(metrics.max_jump_height, 2),
|
| 480 |
+
"salto_alto": round(high_jump, 2),
|
| 481 |
+
"potencia_sayer": round(metrics.jump_peak_power, 2)
|
| 482 |
+
})
|
| 483 |
+
metrics.repetition_count += 1
|
| 484 |
+
metrics.jump_started = False
|
| 485 |
+
|
| 486 |
+
return metrics.repetition_count >= repetitions
|
| 487 |
+
|
| 488 |
+
return False
|
| 489 |
+
|
| 490 |
+
|
| 491 |
+
def calculate_jump_metrics(metrics: JumpMetrics, smoothed_head_y: float, PX_PER_METER: float,
|
| 492 |
+
body_mass_kg: float, head_y_buffer: List[float], fps: float):
|
| 493 |
+
"""
|
| 494 |
+
Calculate jump metrics during an active jump phase.
|
| 495 |
+
|
| 496 |
+
This function continuously updates jump metrics while a jump is in progress,
|
| 497 |
+
tracking maximum jump height, peak power, and other performance indicators.
|
| 498 |
+
|
| 499 |
+
Args:
|
| 500 |
+
metrics (JumpMetrics): Object containing current jump state and metrics
|
| 501 |
+
smoothed_head_y (float): Current smoothed head Y-coordinate in pixels
|
| 502 |
+
PX_PER_METER (float): Conversion factor from pixels to meters
|
| 503 |
+
body_mass_kg (float): Player body mass in kilograms
|
| 504 |
+
head_y_buffer (List[float]): Buffer of recent head positions for velocity calculation
|
| 505 |
+
fps (float): Video frame rate in frames per second
|
| 506 |
+
|
| 507 |
+
Returns:
|
| 508 |
+
None
|
| 509 |
+
|
| 510 |
+
Side Effects:
|
| 511 |
+
- Updates metrics.max_jump_height if current jump exceeds previous maximum
|
| 512 |
+
- Updates metrics.max_head_height_px with lowest Y-coordinate (highest position)
|
| 513 |
+
- Updates metrics.jump_peak_power and metrics.peak_power_sayer with calculated power values
|
| 514 |
+
"""
|
| 515 |
+
if not metrics.jump_started:
|
| 516 |
+
return
|
| 517 |
+
|
| 518 |
+
relative_jump = (metrics.takeoff_head_y - smoothed_head_y) / PX_PER_METER
|
| 519 |
+
if relative_jump > metrics.max_jump_height:
|
| 520 |
+
metrics.max_jump_height = relative_jump
|
| 521 |
+
|
| 522 |
+
if smoothed_head_y < metrics.max_head_height_px:
|
| 523 |
+
metrics.max_head_height_px = smoothed_head_y
|
| 524 |
+
|
| 525 |
+
if relative_jump:
|
| 526 |
+
current_power = calculate_peak_power_sayer(relative_jump, body_mass_kg)
|
| 527 |
+
if current_power > metrics.jump_peak_power:
|
| 528 |
+
metrics.jump_peak_power = current_power
|
| 529 |
+
if current_power > metrics.peak_power_sayer:
|
| 530 |
+
metrics.peak_power_sayer = current_power
|
| 531 |
+
|
| 532 |
+
|
| 533 |
+
def calculate_velocity(head_y_buffer: List[float], PX_PER_METER: float, fps: float) -> float:
|
| 534 |
+
"""
|
| 535 |
+
Calculate vertical velocity based on head position changes over time.
|
| 536 |
+
|
| 537 |
+
This function computes the vertical velocity by analyzing the change in head
|
| 538 |
+
position over a specified time window, converting from pixel coordinates to
|
| 539 |
+
real-world units.
|
| 540 |
+
|
| 541 |
+
Args:
|
| 542 |
+
head_y_buffer (List[float]): Buffer containing recent head Y-coordinates in pixels
|
| 543 |
+
PX_PER_METER (float): Conversion factor from pixels to meters
|
| 544 |
+
fps (float): Video frame rate in frames per second
|
| 545 |
+
|
| 546 |
+
Returns:
|
| 547 |
+
float: Vertical velocity in meters per second (positive = upward motion)
|
| 548 |
+
Returns 0.0 if calculation cannot be performed
|
| 549 |
+
|
| 550 |
+
Note:
|
| 551 |
+
- Requires at least VELOCITY_WINDOW frames in the buffer
|
| 552 |
+
- Velocity is calculated as the change from oldest to newest position
|
| 553 |
+
- Y-coordinates decrease as objects move upward in image coordinates
|
| 554 |
+
"""
|
| 555 |
+
if len(head_y_buffer) < VELOCITY_WINDOW or PX_PER_METER is None or fps <= 0:
|
| 556 |
+
return 0.0
|
| 557 |
+
|
| 558 |
+
delta_y_pixels = head_y_buffer[0] - head_y_buffer[-1]
|
| 559 |
+
delta_y_meters = delta_y_pixels / PX_PER_METER
|
| 560 |
+
delta_t = VELOCITY_WINDOW / fps
|
| 561 |
+
return delta_y_meters / delta_t
|
| 562 |
+
|
| 563 |
+
|
| 564 |
+
def draw_skeleton(frame, keypoints):
|
| 565 |
+
"""
|
| 566 |
+
Draw human pose skeleton on a video frame.
|
| 567 |
+
|
| 568 |
+
This function visualizes the detected pose by drawing keypoints as circles
|
| 569 |
+
and connecting them with lines according to the human body structure.
|
| 570 |
+
|
| 571 |
+
Args:
|
| 572 |
+
frame (numpy.ndarray): Video frame to draw on (modified in-place)
|
| 573 |
+
keypoints (numpy.ndarray or None): Array of detected keypoints with shape (N, 17, 2)
|
| 574 |
+
where N is batch size, 17 is number of keypoints,
|
| 575 |
+
and 2 represents (x, y) coordinates
|
| 576 |
+
|
| 577 |
+
Returns:
|
| 578 |
+
None
|
| 579 |
+
|
| 580 |
+
Side Effects:
|
| 581 |
+
- Modifies the input frame by drawing circles for keypoints
|
| 582 |
+
- Draws lines connecting related body parts (skeleton connections)
|
| 583 |
+
- Uses GREEN color for keypoints and YELLOW for connections
|
| 584 |
+
|
| 585 |
+
Note:
|
| 586 |
+
- Safely handles None or empty keypoints arrays
|
| 587 |
+
- Only draws keypoints and connections with positive coordinates
|
| 588 |
+
- Uses SKELETON_CONNECTIONS constant for body part relationships
|
| 589 |
+
"""
|
| 590 |
+
if keypoints is None or len(keypoints) == 0 or len(keypoints[0]) == 0:
|
| 591 |
+
return
|
| 592 |
+
|
| 593 |
+
try:
|
| 594 |
+
kpts = keypoints[0]
|
| 595 |
+
|
| 596 |
+
# Draw points
|
| 597 |
+
for point in kpts:
|
| 598 |
+
if point[0] > 0 and point[1] > 0:
|
| 599 |
+
cv2.circle(frame, (int(point[0]), int(point[1])), 5, GREEN, -1)
|
| 600 |
+
|
| 601 |
+
# Draw connections
|
| 602 |
+
for connection in SKELETON_CONNECTIONS:
|
| 603 |
+
start_name, end_name = connection
|
| 604 |
+
start_idx = KEYPOINT_INDICES[start_name]
|
| 605 |
+
end_idx = KEYPOINT_INDICES[end_name]
|
| 606 |
+
|
| 607 |
+
if (start_idx < len(kpts) and end_idx < len(kpts) and
|
| 608 |
+
kpts[start_idx][0] > 0 and kpts[start_idx][1] > 0 and
|
| 609 |
+
kpts[end_idx][0] > 0 and kpts[end_idx][1] > 0):
|
| 610 |
+
|
| 611 |
+
start_point = (int(kpts[start_idx][0]), int(kpts[start_idx][1]))
|
| 612 |
+
end_point = (int(kpts[end_idx][0]), int(kpts[end_idx][1]))
|
| 613 |
+
cv2.line(frame, start_point, end_point, YELLOW, 2)
|
| 614 |
+
|
| 615 |
+
except Exception as e:
|
| 616 |
+
print(f"Error drawing skeleton: {e}")
|
| 617 |
+
|
| 618 |
+
|
| 619 |
+
|
| 620 |
+
|
| 621 |
+
|
| 622 |
+
|
| 623 |
+
def analyze_jump_video(model: VitPose,
|
| 624 |
+
input_video: str,
|
| 625 |
+
output_video: str,
|
| 626 |
+
player_height: float,
|
| 627 |
+
body_mass_kg: float,
|
| 628 |
+
repetitions: int) -> dict | None:
|
| 629 |
+
"""
|
| 630 |
+
Analyze a jump video to calculate various jump metrics.
|
| 631 |
+
|
| 632 |
+
Args:
|
| 633 |
+
model: VitPose model instance
|
| 634 |
+
input_video: Path to input video
|
| 635 |
+
output_video: Path to output video
|
| 636 |
+
player_height: Height of the person in meters
|
| 637 |
+
body_mass_kg: Weight of the person in kg
|
| 638 |
+
repetitions: Expected number of repetitions
|
| 639 |
+
|
| 640 |
+
Returns:
|
| 641 |
+
Dictionary containing jump metrics and video analysis data
|
| 642 |
+
"""
|
| 643 |
+
try:
|
| 644 |
+
# Setup video capture and writer
|
| 645 |
+
cap, out, width, height = setup_video_capture(input_video, output_video)
|
| 646 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 647 |
+
|
| 648 |
+
# Calibrate pose detection
|
| 649 |
+
PX_PER_METER, initial_left_shoulder_x, initial_right_shoulder_x = calibrate_pose_detection(
|
| 650 |
+
model, cap, player_height)
|
| 651 |
+
|
| 652 |
+
# Reset video for processing
|
| 653 |
+
cap.release()
|
| 654 |
+
cap = cv2.VideoCapture(input_video)
|
| 655 |
+
|
| 656 |
+
# Initialize tracking variables
|
| 657 |
+
metrics = JumpMetrics()
|
| 658 |
+
repetition_data = []
|
| 659 |
+
head_y_history = []
|
| 660 |
+
ankle_y_history = []
|
| 661 |
+
head_y_buffer = []
|
| 662 |
+
last_detected_ankles_y = None
|
| 663 |
+
|
| 664 |
+
# Process each frame
|
| 665 |
+
while cap.isOpened():
|
| 666 |
+
ret, frame = cap.read()
|
| 667 |
+
if not ret:
|
| 668 |
+
break
|
| 669 |
+
|
| 670 |
+
annotated_frame = frame.copy()
|
| 671 |
+
if metrics.repetition_count >= repetitions:
|
| 672 |
+
out.write(annotated_frame)
|
| 673 |
+
continue
|
| 674 |
+
|
| 675 |
+
# Process frame keypoints
|
| 676 |
+
keypoints_valid, current_ankle_y, current_head_y, keypoints = process_frame_keypoints(model, annotated_frame)
|
| 677 |
+
|
| 678 |
+
if keypoints_valid:
|
| 679 |
+
last_detected_ankles_y = current_ankle_y
|
| 680 |
+
|
| 681 |
+
# Smooth positions
|
| 682 |
+
ankle_y_history.append(current_ankle_y)
|
| 683 |
+
if len(ankle_y_history) > SMOOTHING_WINDOW:
|
| 684 |
+
ankle_y_history.pop(0)
|
| 685 |
+
smoothed_ankle_y = np.mean(ankle_y_history)
|
| 686 |
+
|
| 687 |
+
head_y_history.append(current_head_y)
|
| 688 |
+
if len(head_y_history) > SMOOTHING_WINDOW:
|
| 689 |
+
head_y_history.pop(0)
|
| 690 |
+
smoothed_head_y = np.mean(head_y_history)
|
| 691 |
+
|
| 692 |
+
# Calculate velocity
|
| 693 |
+
head_y_buffer.append(smoothed_head_y)
|
| 694 |
+
if len(head_y_buffer) > VELOCITY_WINDOW:
|
| 695 |
+
head_y_buffer.pop(0)
|
| 696 |
+
metrics.velocity_vertical = calculate_velocity(head_y_buffer, PX_PER_METER, fps)
|
| 697 |
+
|
| 698 |
+
# Detect jump events
|
| 699 |
+
should_stop = detect_jump_events(metrics, smoothed_ankle_y, smoothed_head_y,
|
| 700 |
+
repetition_data, player_height, body_mass_kg, repetitions)
|
| 701 |
+
if should_stop:
|
| 702 |
+
break
|
| 703 |
+
|
| 704 |
+
# Calculate jump metrics during jump
|
| 705 |
+
calculate_jump_metrics(metrics, smoothed_head_y, PX_PER_METER, body_mass_kg, head_y_buffer, fps)
|
| 706 |
else:
|
|
|
|
|
|
|
|
|
|
| 707 |
last_detected_ankles_y = None
|
| 708 |
+
metrics.velocity_vertical = 0.0
|
| 709 |
+
|
| 710 |
+
# Draw overlay and skeleton
|
| 711 |
+
high_jump = calculate_high_jump(player_height, metrics.max_jump_height)
|
| 712 |
+
annotated_frame = draw_metrics_overlay(
|
| 713 |
+
frame=annotated_frame,
|
| 714 |
+
max_jump_height=metrics.max_jump_height,
|
| 715 |
+
salto_alto=high_jump,
|
| 716 |
+
velocity_vertical=metrics.velocity_vertical,
|
| 717 |
+
peak_power_sayer=metrics.peak_power_sayer,
|
| 718 |
+
repetition_count=metrics.repetition_count,
|
| 719 |
+
last_detected_ankles_y=last_detected_ankles_y,
|
| 720 |
+
initial_left_shoulder_x=initial_left_shoulder_x,
|
| 721 |
+
initial_right_shoulder_x=initial_right_shoulder_x,
|
| 722 |
+
width=width,
|
| 723 |
+
height=height,
|
| 724 |
+
colors=COLORS,
|
| 725 |
+
metrics_below_feet_offset=METRICS_BELOW_FEET_OFFSET,
|
| 726 |
+
horizontal_offset_factor=HORIZONTAL_OFFSET_FACTOR
|
| 727 |
+
)
|
| 728 |
+
|
| 729 |
+
if keypoints_valid and keypoints is not None:
|
| 730 |
+
draw_skeleton(annotated_frame, keypoints)
|
| 731 |
+
|
| 732 |
+
out.write(annotated_frame)
|
| 733 |
+
|
| 734 |
+
# Prepare results
|
| 735 |
+
results_dict = {
|
| 736 |
+
"video_analysis": {
|
| 737 |
+
"output_video": str(output_video),
|
|
|
|
|
|
|
|
|
|
| 738 |
},
|
| 739 |
+
"repetition_data": [
|
| 740 |
+
{
|
| 741 |
+
"repetition": int(rep["repetition"]),
|
| 742 |
+
"distancia_elevada": float(rep["distancia_elevada"]),
|
| 743 |
+
"salto_alto": float(rep["salto_alto"]),
|
| 744 |
+
"potencia_sayer": float(rep["potencia_sayer"])
|
| 745 |
+
} for rep in repetition_data
|
| 746 |
+
]
|
| 747 |
+
}
|
| 748 |
|
| 749 |
+
cap.release()
|
| 750 |
+
out.release()
|
| 751 |
+
|
| 752 |
+
return results_dict
|
| 753 |
+
|
| 754 |
+
except Exception as e:
|
| 755 |
+
print(f"Error in analyze_jump_video: {e}")
|
| 756 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 757 |
|
| 758 |
|
| 759 |
def calculate_peak_power_sayer(jump_height_m, body_mass_kg):
|
|
|
|
| 786 |
return player_height + max_jump_height
|
| 787 |
|
| 788 |
|
| 789 |
+
def draw_rounded_rect(img, pt1, pt2, color, thickness=-1, lineType=cv2.LINE_AA, radius=10):
|
| 790 |
+
"""
|
| 791 |
+
Draw a rectangle with rounded corners on an image.
|
| 792 |
+
|
| 793 |
+
This function creates a rounded rectangle by drawing four corner ellipses
|
| 794 |
+
and connecting them with straight rectangular sections.
|
| 795 |
+
|
| 796 |
+
Args:
|
| 797 |
+
img (numpy.ndarray): Image to draw on (modified in-place)
|
| 798 |
+
pt1 (tuple): Top-left corner coordinates (x, y)
|
| 799 |
+
pt2 (tuple): Bottom-right corner coordinates (x, y)
|
| 800 |
+
color (tuple): BGR color tuple (B, G, R)
|
| 801 |
+
thickness (int, optional): Line thickness. -1 for filled rectangle. Defaults to -1.
|
| 802 |
+
lineType (int, optional): Type of line drawing. Defaults to cv2.LINE_AA.
|
| 803 |
+
radius (int, optional): Corner radius in pixels. Defaults to 10.
|
| 804 |
+
|
| 805 |
+
Returns:
|
| 806 |
+
numpy.ndarray: The modified image with rounded rectangle drawn
|
| 807 |
+
|
| 808 |
+
Note:
|
| 809 |
+
- If radius is 0, draws a regular rectangle
|
| 810 |
+
- For filled rectangles, use thickness=-1
|
| 811 |
+
- Corner ellipses are drawn at each corner with specified radius
|
| 812 |
+
- Rectangle sections fill the gaps between ellipses
|
| 813 |
+
"""
|
| 814 |
+
x1, y1 = pt1
|
| 815 |
+
x2, y2 = pt2
|
| 816 |
+
if radius > 0:
|
| 817 |
+
img = cv2.ellipse(img, (x1 + radius, y1 + radius), (radius, radius), 0, 0, 90, color, thickness, lineType)
|
| 818 |
+
img = cv2.ellipse(img, (x2 - radius, y1 + radius), (radius, radius), 0, 90, 180, color, thickness, lineType)
|
| 819 |
+
img = cv2.ellipse(img, (x2 - radius, y2 - radius), (radius, radius), 0, 180, 270, color, thickness, lineType)
|
| 820 |
+
img = cv2.ellipse(img, (x1 + radius, y2 - radius), (radius, radius), 0, 270, 360, color, thickness, lineType)
|
| 821 |
+
|
| 822 |
+
img = cv2.rectangle(img, (x1, y1 + radius), (x2, y2 - radius), color, thickness, lineType)
|
| 823 |
+
img = cv2.rectangle(img, (x1 + radius, y1), (x2 - radius, y2), color, thickness, lineType)
|
| 824 |
+
else:
|
| 825 |
+
img = cv2.rectangle(img, pt1, pt2, color, thickness, lineType)
|
| 826 |
+
return img
|
| 827 |
+
|
| 828 |
+
|
| 829 |
+
def draw_main_title(overlay, config: OverlayConfig, width: int, colors: Dict):
|
| 830 |
+
"""
|
| 831 |
+
Draw the main title text centered at the top of the video frame.
|
| 832 |
+
|
| 833 |
+
This function renders "Ejercicio de Salto" (Jump Exercise) as the main title
|
| 834 |
+
using specified font configuration and centers it horizontally.
|
| 835 |
+
|
| 836 |
+
Args:
|
| 837 |
+
overlay (numpy.ndarray): Image overlay to draw on (modified in-place)
|
| 838 |
+
config (OverlayConfig): Configuration object containing font settings
|
| 839 |
+
width (int): Width of the video frame in pixels
|
| 840 |
+
colors (Dict): Dictionary containing color definitions
|
| 841 |
+
|
| 842 |
+
Returns:
|
| 843 |
+
None
|
| 844 |
+
|
| 845 |
+
Side Effects:
|
| 846 |
+
- Draws text on the overlay image using white color
|
| 847 |
+
- Text is positioned at the top center of the frame
|
| 848 |
+
- Uses config.font_scale_title_main and config.font_thickness_title_main
|
| 849 |
+
"""
|
| 850 |
+
title_text = "Ejercicio de Salto"
|
| 851 |
+
title_text_size = cv2.getTextSize(title_text, config.font, config.font_scale_title_main, config.font_thickness_title_main)[0]
|
| 852 |
+
title_x = (width - title_text_size[0]) // 2
|
| 853 |
+
title_y = config.title_y_offset
|
| 854 |
+
cv2.putText(overlay, title_text, (title_x, title_y), config.font, config.font_scale_title_main,
|
| 855 |
+
colors["white"], config.font_thickness_title_main, cv2.LINE_AA)
|
| 856 |
+
|
| 857 |
+
|
| 858 |
+
def calculate_metric_box_size(title: str, value: str, config: OverlayConfig) -> Tuple[int, int]:
|
| 859 |
+
"""
|
| 860 |
+
Calculate the required dimensions for a metric display box.
|
| 861 |
+
|
| 862 |
+
This function determines the width and height needed to display a metric
|
| 863 |
+
with its title and value, including padding and spacing requirements.
|
| 864 |
+
|
| 865 |
+
Args:
|
| 866 |
+
title (str): The metric title text (e.g., "SALTO ALTO")
|
| 867 |
+
value (str): The metric value text (e.g., "2.15 m")
|
| 868 |
+
config (OverlayConfig): Configuration object with font and spacing settings
|
| 869 |
+
|
| 870 |
+
Returns:
|
| 871 |
+
Tuple[int, int]: A tuple containing:
|
| 872 |
+
- bg_width: Required width in pixels for the metric box
|
| 873 |
+
- bg_height: Required height in pixels for the metric box
|
| 874 |
+
|
| 875 |
+
Note:
|
| 876 |
+
- Width is based on the maximum of title and value text widths
|
| 877 |
+
- Height accounts for both text lines plus vertical padding
|
| 878 |
+
- Includes horizontal padding on both sides
|
| 879 |
+
"""
|
| 880 |
+
title_size = cv2.getTextSize(title, config.font, config.font_scale_title_metric, config.font_thickness_metric)[0]
|
| 881 |
+
value_size = cv2.getTextSize(value, config.font, config.font_scale_value, config.font_thickness_metric)[0]
|
| 882 |
+
|
| 883 |
+
bg_width = max(title_size[0], value_size[0]) + 2 * config.padding_horizontal
|
| 884 |
+
bg_height = config.line_height_title_metric + config.line_height_value + 2 * config.padding_vertical
|
| 885 |
+
|
| 886 |
+
return bg_width, bg_height
|
| 887 |
+
|
| 888 |
+
|
| 889 |
+
def draw_metric_box(overlay, title: str, value: str, x: int, y: int, bg_width: int, bg_height: int,
|
| 890 |
+
config: OverlayConfig, colors: Dict):
|
| 891 |
+
"""
|
| 892 |
+
Draw a styled metric box with title and value text.
|
| 893 |
+
|
| 894 |
+
This function creates a rounded rectangle background and draws metric information
|
| 895 |
+
with proper text alignment and styling for video overlay display.
|
| 896 |
+
|
| 897 |
+
Args:
|
| 898 |
+
overlay (numpy.ndarray): Image overlay to draw on (modified in-place)
|
| 899 |
+
title (str): Metric title text (displayed in smaller font)
|
| 900 |
+
value (str): Metric value text (displayed in larger font)
|
| 901 |
+
x (int): X-coordinate of box top-left corner
|
| 902 |
+
y (int): Y-coordinate of box top-left corner
|
| 903 |
+
bg_width (int): Width of the background box in pixels
|
| 904 |
+
bg_height (int): Height of the background box in pixels
|
| 905 |
+
config (OverlayConfig): Configuration object with styling settings
|
| 906 |
+
colors (Dict): Dictionary containing color definitions
|
| 907 |
+
|
| 908 |
+
Returns:
|
| 909 |
+
numpy.ndarray: The modified overlay with the metric box drawn
|
| 910 |
+
|
| 911 |
+
Side Effects:
|
| 912 |
+
- Draws a rounded rectangle background with gray fill and white border
|
| 913 |
+
- Centers title text in light gray color
|
| 914 |
+
- Centers value text in white color below the title
|
| 915 |
+
- Uses different font scales for title and value
|
| 916 |
+
"""
|
| 917 |
+
pt1 = (x, y)
|
| 918 |
+
pt2 = (x + bg_width, y + bg_height)
|
| 919 |
+
|
| 920 |
+
# Draw background
|
| 921 |
+
overlay = draw_rounded_rect(overlay, pt1, pt2, colors["gray"], cv2.FILLED, cv2.LINE_AA, config.corner_radius)
|
| 922 |
+
cv2.rectangle(overlay, pt1, pt2, colors["white"], config.border_thickness, cv2.LINE_AA)
|
| 923 |
+
|
| 924 |
+
# Draw title
|
| 925 |
+
title_size = cv2.getTextSize(title, config.font, config.font_scale_title_metric, config.font_thickness_metric)[0]
|
| 926 |
+
title_x = x + (bg_width - title_size[0]) // 2
|
| 927 |
+
title_y = y + config.padding_vertical + config.line_height_title_metric // 2 + 2
|
| 928 |
+
cv2.putText(overlay, title, (title_x, title_y), config.font, config.font_scale_title_metric,
|
| 929 |
+
colors["light_gray"], config.font_thickness_metric, cv2.LINE_AA)
|
| 930 |
+
|
| 931 |
+
# Draw value
|
| 932 |
+
value_size = cv2.getTextSize(value, config.font, config.font_scale_value, config.font_thickness_metric)[0]
|
| 933 |
+
value_x = x + (bg_width - value_size[0]) // 2
|
| 934 |
+
value_y = y + config.padding_vertical + config.line_height_title_metric + config.line_height_value // 2 + 5
|
| 935 |
+
cv2.putText(overlay, value, (value_x, value_y), config.font, config.font_scale_value,
|
| 936 |
+
colors["white"], config.font_thickness_metric, cv2.LINE_AA)
|
| 937 |
+
|
| 938 |
+
return overlay
|
| 939 |
+
|
| 940 |
+
|
| 941 |
+
def calculate_positions(width: int, height: int, last_detected_ankles_y: Optional[float],
|
| 942 |
+
initial_left_shoulder_x: Optional[int], initial_right_shoulder_x: Optional[int],
|
| 943 |
+
config: OverlayConfig, horizontal_offset_factor: float,
|
| 944 |
+
metrics_below_feet_offset: int) -> Dict[str, Tuple[int, int]]:
|
| 945 |
+
"""
|
| 946 |
+
Calculate optimal positions for all metric display boxes on the video frame.
|
| 947 |
+
|
| 948 |
+
This function determines where to place metric boxes based on detected body positions
|
| 949 |
+
to avoid overlapping with the person while maintaining good visibility.
|
| 950 |
+
|
| 951 |
+
Args:
|
| 952 |
+
width (int): Video frame width in pixels
|
| 953 |
+
height (int): Video frame height in pixels
|
| 954 |
+
last_detected_ankles_y (Optional[float]): Y-coordinate of last detected ankles
|
| 955 |
+
initial_left_shoulder_x (Optional[int]): X-coordinate of left shoulder reference
|
| 956 |
+
initial_right_shoulder_x (Optional[int]): X-coordinate of right shoulder reference
|
| 957 |
+
config (OverlayConfig): Configuration object with layout settings
|
| 958 |
+
horizontal_offset_factor (float): Factor for horizontal positioning relative to shoulders
|
| 959 |
+
metrics_below_feet_offset (int): Vertical offset below feet for metric placement
|
| 960 |
+
|
| 961 |
+
Returns:
|
| 962 |
+
Dict[str, Tuple[int, int]]: Dictionary mapping metric names to (x, y) positions:
|
| 963 |
+
- "relativo": Position for relative jump metric
|
| 964 |
+
- "alto": Position for high jump metric
|
| 965 |
+
- "reps": Position for repetitions counter
|
| 966 |
+
- "velocidad": Position for velocity metric (if ankles detected)
|
| 967 |
+
- "potencia": Position for power metric (if ankles detected)
|
| 968 |
+
|
| 969 |
+
Note:
|
| 970 |
+
- Positions are calculated to avoid overlapping with the detected person
|
| 971 |
+
- Some metrics are positioned relative to body parts when available
|
| 972 |
+
- Falls back to default positions when body parts are not detected
|
| 973 |
+
"""
|
| 974 |
+
positions = {}
|
| 975 |
+
|
| 976 |
+
# Relative jump box (left side, dynamically positioned)
|
| 977 |
+
relativo_bg_width, relativo_bg_height = calculate_metric_box_size("SALTO RELATIVO", "0.00 m", config)
|
| 978 |
+
x_relativo = 20
|
| 979 |
+
|
| 980 |
+
if last_detected_ankles_y is not None:
|
| 981 |
+
y_relativo = int(last_detected_ankles_y - relativo_bg_height - 10)
|
| 982 |
+
if y_relativo < config.title_y_offset + 50:
|
| 983 |
+
y_relativo = int(last_detected_ankles_y + metrics_below_feet_offset)
|
| 984 |
+
else:
|
| 985 |
+
y_relativo = height - 150
|
| 986 |
+
|
| 987 |
+
positions["relativo"] = (x_relativo, y_relativo)
|
| 988 |
+
|
| 989 |
+
# High jump box (top right)
|
| 990 |
+
alto_bg_width, alto_bg_height = calculate_metric_box_size("SALTO ALTO", "0.00 m", config)
|
| 991 |
+
x_alto = width - alto_bg_width - 20
|
| 992 |
+
|
| 993 |
+
if initial_right_shoulder_x is not None:
|
| 994 |
+
available_space = width - initial_right_shoulder_x
|
| 995 |
+
x_alto_calculated = initial_right_shoulder_x + int(available_space * (1 - horizontal_offset_factor)) - alto_bg_width
|
| 996 |
+
if (x_alto_calculated > x_relativo + relativo_bg_width + config.spacing_horizontal + 10 and
|
| 997 |
+
x_alto_calculated + alto_bg_width < width - 10):
|
| 998 |
+
x_alto = x_alto_calculated
|
| 999 |
+
|
| 1000 |
+
positions["alto"] = (x_alto, config.metrics_y_offset_alto)
|
| 1001 |
+
|
| 1002 |
+
# Repetitions box (below relative jump)
|
| 1003 |
+
positions["reps"] = (x_relativo, y_relativo + relativo_bg_height + 10)
|
| 1004 |
+
|
| 1005 |
+
# Velocity and power boxes (centered below feet)
|
| 1006 |
+
if last_detected_ankles_y is not None:
|
| 1007 |
+
velocidad_bg_width, velocidad_bg_height = calculate_metric_box_size("VELOCIDAD VERTICAL", "0.00 m/s", config)
|
| 1008 |
+
x_velocidad = int(width / 2 - velocidad_bg_width / 2)
|
| 1009 |
+
y_velocidad = int(last_detected_ankles_y + metrics_below_feet_offset + velocidad_bg_height)
|
| 1010 |
+
|
| 1011 |
+
positions["velocidad"] = (x_velocidad, y_velocidad - velocidad_bg_height)
|
| 1012 |
+
positions["potencia"] = (x_velocidad, y_velocidad + 5)
|
| 1013 |
+
|
| 1014 |
+
return positions
|
| 1015 |
+
|
| 1016 |
+
|
| 1017 |
def draw_metrics_overlay(frame, max_jump_height, salto_alto, velocity_vertical, peak_power_sayer,
|
| 1018 |
repetition_count, last_detected_ankles_y, initial_left_shoulder_x,
|
| 1019 |
initial_right_shoulder_x, width, height, colors, metrics_below_feet_offset=20,
|
|
|
|
| 1040 |
Returns:
|
| 1041 |
Frame with metrics overlay
|
| 1042 |
"""
|
| 1043 |
+
overlay = frame.copy()
|
| 1044 |
+
config = OverlayConfig()
|
| 1045 |
|
| 1046 |
+
# Draw main title
|
| 1047 |
+
draw_main_title(overlay, config, width, colors)
|
| 1048 |
|
| 1049 |
+
# Calculate positions for all metric boxes
|
| 1050 |
+
positions = calculate_positions(width, height, last_detected_ankles_y,
|
| 1051 |
+
initial_left_shoulder_x, initial_right_shoulder_x,
|
| 1052 |
+
config, horizontal_offset_factor, metrics_below_feet_offset)
|
| 1053 |
|
| 1054 |
+
# Draw relative jump box
|
| 1055 |
+
if "relativo" in positions:
|
| 1056 |
+
relativo_value = f"{max(0, max_jump_height):.2f} m"
|
| 1057 |
+
bg_width, bg_height = calculate_metric_box_size("SALTO RELATIVO", relativo_value, config)
|
| 1058 |
+
x, y = positions["relativo"]
|
| 1059 |
+
overlay = draw_metric_box(overlay, "SALTO RELATIVO", relativo_value, x, y, bg_width, bg_height, config, colors)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1060 |
|
| 1061 |
+
# Draw high jump box
|
| 1062 |
+
if "alto" in positions:
|
| 1063 |
+
alto_value = f"{max(0, salto_alto):.2f} m"
|
| 1064 |
+
bg_width, bg_height = calculate_metric_box_size("SALTO ALTO", alto_value, config)
|
| 1065 |
+
x, y = positions["alto"]
|
| 1066 |
+
overlay = draw_metric_box(overlay, "SALTO ALTO", alto_value, x, y, bg_width, bg_height, config, colors)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1067 |
|
| 1068 |
+
# Draw repetitions box
|
| 1069 |
+
if "reps" in positions:
|
| 1070 |
+
reps_value = f"{repetition_count}"
|
| 1071 |
+
bg_width, bg_height = calculate_metric_box_size("REPETICIONES", reps_value, config)
|
| 1072 |
+
x, y = positions["reps"]
|
| 1073 |
+
overlay = draw_metric_box(overlay, "REPETICIONES", reps_value, x, y, bg_width, bg_height, config, colors)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1074 |
|
| 1075 |
+
# Draw velocity box (only if ankles detected)
|
| 1076 |
+
if "velocidad" in positions:
|
| 1077 |
+
velocidad_value = f"{abs(velocity_vertical):.2f} m/s"
|
| 1078 |
+
bg_width, bg_height = calculate_metric_box_size("VELOCIDAD VERTICAL", velocidad_value, config)
|
| 1079 |
+
x, y = positions["velocidad"]
|
| 1080 |
+
overlay = draw_metric_box(overlay, "VELOCIDAD VERTICAL", velocidad_value, x, y, bg_width, bg_height, config, colors)
|
| 1081 |
+
|
| 1082 |
+
# Draw power box (only if ankles detected)
|
| 1083 |
+
if "potencia" in positions:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1084 |
potencia_value = f"{peak_power_sayer:.2f} W"
|
| 1085 |
+
bg_width, bg_height = calculate_metric_box_size("POTENCIA SAYER", potencia_value, config)
|
| 1086 |
+
x, y = positions["potencia"]
|
| 1087 |
+
overlay = draw_metric_box(overlay, "POTENCIA SAYER", potencia_value, x, y, bg_width, bg_height, config, colors)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1088 |
|
| 1089 |
# Blend overlay with original frame
|
| 1090 |
+
result = cv2.addWeighted(overlay, config.alpha, frame, 1 - config.alpha, 0)
|
| 1091 |
return result
|