Spaces:
Sleeping
Sleeping
Update try_page.html
Browse files- try_page.html +149 -146
try_page.html
CHANGED
|
@@ -300,10 +300,10 @@
|
|
| 300 |
const detectionCanvas = document.getElementById('detectionCanvas');
|
| 301 |
const ctx = detectionCanvas.getContext('2d');
|
| 302 |
const debugOutput = document.getElementById('debugOutput');
|
| 303 |
-
|
| 304 |
// Enable debug mode (set to false in production)
|
| 305 |
const DEBUG = true;
|
| 306 |
-
|
| 307 |
// API endpoint URL
|
| 308 |
const API_URL = '/api/predict';
|
| 309 |
|
|
@@ -313,73 +313,73 @@
|
|
| 313 |
let processingWidth = 0;
|
| 314 |
let processingHeight = 0;
|
| 315 |
let responseData = null;
|
| 316 |
-
|
| 317 |
// Tab switching functionality
|
| 318 |
tabButtons.forEach(button => {
|
| 319 |
button.addEventListener('click', () => {
|
| 320 |
const tabName = button.getAttribute('data-tab');
|
| 321 |
-
|
| 322 |
// Update button states
|
| 323 |
tabButtons.forEach(btn => btn.classList.remove('active'));
|
| 324 |
button.classList.add('active');
|
| 325 |
-
|
| 326 |
// Update tab content visibility
|
| 327 |
tabContents.forEach(content => content.classList.remove('active'));
|
| 328 |
document.getElementById(tabName + 'Tab').classList.add('active');
|
| 329 |
-
|
| 330 |
// If switching to visual tab and we have data, ensure visualization is rendered
|
| 331 |
if (tabName === 'visual' && responseData && originalImage) {
|
| 332 |
visualizeResults(originalImage, responseData);
|
| 333 |
}
|
| 334 |
});
|
| 335 |
});
|
| 336 |
-
|
| 337 |
// Handle file input change
|
| 338 |
fileInput.addEventListener('change', (event) => {
|
| 339 |
const file = event.target.files[0];
|
| 340 |
-
|
| 341 |
// Clear previous selections
|
| 342 |
imageFile = null;
|
| 343 |
imagePreview.style.display = 'none';
|
| 344 |
sendButton.disabled = true;
|
| 345 |
originalImage = null;
|
| 346 |
responseData = null;
|
| 347 |
-
|
| 348 |
// Validate file
|
| 349 |
if (!file) return;
|
| 350 |
-
|
| 351 |
if (file.size > 2 * 1024 * 1024) {
|
| 352 |
showMessage('File size exceeds 2MB limit.', 'error');
|
| 353 |
return;
|
| 354 |
}
|
| 355 |
-
|
| 356 |
if (!['image/png', 'image/jpeg'].includes(file.type)) {
|
| 357 |
showMessage('Only PNG and JPEG formats are supported.', 'error');
|
| 358 |
return;
|
| 359 |
}
|
| 360 |
-
|
| 361 |
// Store file for upload
|
| 362 |
imageFile = file;
|
| 363 |
-
|
| 364 |
// Show image preview
|
| 365 |
const reader = new FileReader();
|
| 366 |
reader.onload = (e) => {
|
| 367 |
const image = new Image();
|
| 368 |
image.src = e.target.result;
|
| 369 |
-
|
| 370 |
image.onload = () => {
|
| 371 |
// Store original image for visualization
|
| 372 |
originalImage = image;
|
| 373 |
-
|
| 374 |
// Set preview
|
| 375 |
imagePreview.src = e.target.result;
|
| 376 |
imagePreview.style.display = 'block';
|
| 377 |
-
|
| 378 |
// Update image info
|
| 379 |
imageSizeInfo.textContent = `Original size: ${image.width}x${image.height} pixels`;
|
| 380 |
-
|
| 381 |
-
//
|
| 382 |
-
|
| 383 |
|
| 384 |
// Enable send button
|
| 385 |
sendButton.disabled = false;
|
|
@@ -388,12 +388,16 @@
|
|
| 388 |
};
|
| 389 |
reader.readAsDataURL(file);
|
| 390 |
});
|
| 391 |
-
|
| 392 |
-
//
|
| 393 |
-
function
|
|
|
|
| 394 |
const maxWidth = 640;
|
| 395 |
const maxHeight = 320;
|
| 396 |
-
|
|
|
|
|
|
|
|
|
|
| 397 |
// Calculate dimensions
|
| 398 |
if (width > height) {
|
| 399 |
if (width > maxWidth) {
|
|
@@ -406,56 +410,65 @@
|
|
| 406 |
height = maxHeight;
|
| 407 |
}
|
| 408 |
}
|
| 409 |
-
|
| 410 |
// Store processing dimensions for visualization
|
| 411 |
processingWidth = width;
|
| 412 |
processingHeight = height;
|
| 413 |
-
|
| 414 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 415 |
// Handle send button click
|
| 416 |
sendButton.addEventListener('click', async () => {
|
| 417 |
if (!imageFile) {
|
| 418 |
showMessage('No image selected.', 'error');
|
| 419 |
return;
|
| 420 |
}
|
| 421 |
-
|
| 422 |
// Clear previous response
|
| 423 |
responseOutput.textContent = "// Processing...";
|
| 424 |
clearCanvas();
|
| 425 |
responseData = null;
|
| 426 |
debugOutput.style.display = 'none';
|
| 427 |
-
|
| 428 |
// Show loading state
|
| 429 |
loading.style.display = 'block';
|
| 430 |
message.style.display = 'none';
|
| 431 |
-
|
| 432 |
// Reset processing time
|
| 433 |
processingTimeInfo.textContent = '';
|
| 434 |
-
|
| 435 |
// Record start time
|
| 436 |
startTime = performance.now();
|
| 437 |
-
|
| 438 |
// Create form data for HTTP request
|
| 439 |
const formData = new FormData();
|
| 440 |
formData.append('file', imageFile);
|
| 441 |
-
|
| 442 |
try {
|
| 443 |
// Send HTTP request
|
| 444 |
const response = await fetch(API_URL, {
|
| 445 |
method: 'POST',
|
| 446 |
body: formData
|
| 447 |
});
|
| 448 |
-
|
| 449 |
// Handle response
|
| 450 |
if (!response.ok) {
|
| 451 |
const errorText = await response.text();
|
| 452 |
throw new Error(`HTTP error ${response.status}: ${errorText}`);
|
| 453 |
}
|
| 454 |
-
|
| 455 |
// Parse JSON response
|
| 456 |
const data = await response.json();
|
| 457 |
responseData = data;
|
| 458 |
-
|
| 459 |
// Calculate processing time
|
| 460 |
const endTime = performance.now();
|
| 461 |
const timeTaken = endTime - startTime;
|
|
@@ -463,12 +476,12 @@
|
|
| 463 |
// Format and display raw response
|
| 464 |
responseOutput.textContent = JSON.stringify(data, null, 2);
|
| 465 |
processingTimeInfo.textContent = `Processing time: ${timeTaken.toFixed(2)} ms`;
|
| 466 |
-
|
| 467 |
// Visualize the results
|
| 468 |
if (originalImage) {
|
| 469 |
visualizeResults(originalImage, data);
|
| 470 |
}
|
| 471 |
-
|
| 472 |
// Show success message
|
| 473 |
showMessage('Image processed successfully!', 'success');
|
| 474 |
} catch (error) {
|
|
@@ -484,52 +497,42 @@
|
|
| 484 |
loading.style.display = 'none';
|
| 485 |
}
|
| 486 |
});
|
| 487 |
-
|
| 488 |
// Visualize detection results
|
| 489 |
-
// Visualize detection results
|
| 490 |
function visualizeResults(image, data) {
|
| 491 |
try {
|
| 492 |
// Set canvas dimensions
|
| 493 |
detectionCanvas.width = processingWidth;
|
| 494 |
detectionCanvas.height = processingHeight;
|
| 495 |
|
| 496 |
-
// Draw the original image
|
| 497 |
ctx.drawImage(image, 0, 0, processingWidth, processingHeight);
|
| 498 |
|
| 499 |
// Set styles for bounding boxes
|
| 500 |
ctx.lineWidth = 3;
|
| 501 |
ctx.font = 'bold 14px Arial';
|
| 502 |
|
| 503 |
-
// Find detections
|
| 504 |
let detections = [];
|
| 505 |
-
let detectionSource = '';
|
| 506 |
-
|
| 507 |
if (data.detections && Array.isArray(data.detections)) {
|
| 508 |
detections = data.detections;
|
| 509 |
-
detectionSource = 'detections';
|
| 510 |
} else if (data.predictions && Array.isArray(data.predictions)) {
|
| 511 |
detections = data.predictions;
|
| 512 |
-
detectionSource = 'predictions';
|
| 513 |
} else if (data.objects && Array.isArray(data.objects)) {
|
| 514 |
detections = data.objects;
|
| 515 |
-
detectionSource = 'objects';
|
| 516 |
} else if (data.results && Array.isArray(data.results)) {
|
| 517 |
detections = data.results;
|
| 518 |
-
detectionSource = 'results';
|
| 519 |
} else {
|
| 520 |
// Try to look one level deeper if no detections found
|
| 521 |
for (const key in data) {
|
| 522 |
if (typeof data[key] === 'object' && data[key] !== null) {
|
| 523 |
if (Array.isArray(data[key])) {
|
| 524 |
detections = data[key];
|
| 525 |
-
detectionSource = key;
|
| 526 |
break;
|
| 527 |
} else {
|
| 528 |
-
// Look one more level down
|
| 529 |
for (const subKey in data[key]) {
|
| 530 |
if (Array.isArray(data[key][subKey])) {
|
| 531 |
detections = data[key][subKey];
|
| 532 |
-
detectionSource = `${key}.${subKey}`;
|
| 533 |
break;
|
| 534 |
}
|
| 535 |
}
|
|
@@ -538,19 +541,21 @@
|
|
| 538 |
}
|
| 539 |
}
|
| 540 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 541 |
// Process each detection
|
| 542 |
detections.forEach((detection, index) => {
|
| 543 |
-
// Try to extract bounding box information
|
| 544 |
let bbox = null;
|
| 545 |
let label = null;
|
| 546 |
let confidence = null;
|
| 547 |
let distance = null;
|
| 548 |
|
| 549 |
-
// Extract label
|
| 550 |
if (detection.class !== undefined) {
|
| 551 |
label = detection.class;
|
| 552 |
} else {
|
| 553 |
-
// Fallback to other common property names
|
| 554 |
for (const key of ['label', 'name', 'category', 'className']) {
|
| 555 |
if (detection[key] !== undefined) {
|
| 556 |
label = detection[key];
|
|
@@ -558,11 +563,9 @@
|
|
| 558 |
}
|
| 559 |
}
|
| 560 |
}
|
| 561 |
-
|
| 562 |
-
// Default label if none found
|
| 563 |
if (!label) label = `Object ${index + 1}`;
|
| 564 |
|
| 565 |
-
// Extract confidence score
|
| 566 |
for (const key of ['confidence', 'score', 'probability', 'conf']) {
|
| 567 |
if (detection[key] !== undefined) {
|
| 568 |
confidence = detection[key];
|
|
@@ -570,11 +573,10 @@
|
|
| 570 |
}
|
| 571 |
}
|
| 572 |
|
| 573 |
-
// Extract distance
|
| 574 |
if (detection.distance_estimated !== undefined) {
|
| 575 |
distance = detection.distance_estimated;
|
| 576 |
} else {
|
| 577 |
-
// Fallback to other common distance properties
|
| 578 |
for (const key of ['distance', 'depth', 'z', 'dist', 'range']) {
|
| 579 |
if (detection[key] !== undefined) {
|
| 580 |
distance = detection[key];
|
|
@@ -583,7 +585,7 @@
|
|
| 583 |
}
|
| 584 |
}
|
| 585 |
|
| 586 |
-
//
|
| 587 |
if (detection.features &&
|
| 588 |
detection.features.xmin !== undefined &&
|
| 589 |
detection.features.ymin !== undefined &&
|
|
@@ -597,11 +599,9 @@
|
|
| 597 |
ymax: detection.features.ymax
|
| 598 |
};
|
| 599 |
} else {
|
| 600 |
-
//
|
| 601 |
-
function findBBox(obj
|
| 602 |
if (!obj || typeof obj !== 'object') return null;
|
| 603 |
-
|
| 604 |
-
// Check if this object looks like a bbox
|
| 605 |
if ((obj.x !== undefined && obj.y !== undefined &&
|
| 606 |
(obj.width !== undefined || obj.w !== undefined ||
|
| 607 |
obj.height !== undefined || obj.h !== undefined)) ||
|
|
@@ -609,142 +609,145 @@
|
|
| 609 |
obj.xmax !== undefined && obj.ymax !== undefined)) {
|
| 610 |
return obj;
|
| 611 |
}
|
| 612 |
-
|
| 613 |
-
// Check if it's an array of 4 numbers (potential bbox)
|
| 614 |
if (Array.isArray(obj) && obj.length === 4 &&
|
| 615 |
obj.every(item => typeof item === 'number')) {
|
| 616 |
return obj;
|
| 617 |
}
|
| 618 |
-
|
| 619 |
-
// Check common bbox property names
|
| 620 |
for (const key of ['bbox', 'box', 'bounding_box', 'boundingBox']) {
|
| 621 |
if (obj[key] !== undefined) {
|
| 622 |
return obj[key];
|
| 623 |
}
|
| 624 |
}
|
| 625 |
-
|
| 626 |
-
// Search nested properties
|
| 627 |
for (const key in obj) {
|
| 628 |
-
const result = findBBox(obj[key]
|
| 629 |
if (result) return result;
|
| 630 |
}
|
| 631 |
-
|
| 632 |
return null;
|
| 633 |
}
|
| 634 |
-
|
| 635 |
-
// Find bbox using recursive search as fallback
|
| 636 |
bbox = findBBox(detection);
|
| 637 |
}
|
| 638 |
|
| 639 |
-
// If
|
| 640 |
if (bbox) {
|
| 641 |
-
// Parse different bbox formats
|
| 642 |
let x, y, width, height;
|
| 643 |
-
|
| 644 |
if (Array.isArray(bbox)) {
|
| 645 |
-
// Try to determine array format
|
| 646 |
if (bbox.length === 4) {
|
| 647 |
-
if
|
| 648 |
-
|
|
|
|
| 649 |
x = bbox[0] * processingWidth;
|
| 650 |
y = bbox[1] * processingHeight;
|
| 651 |
width = (bbox[2] - bbox[0]) * processingWidth;
|
| 652 |
height = (bbox[3] - bbox[1]) * processingHeight;
|
| 653 |
} else if (bbox[2] > bbox[0] && bbox[3] > bbox[1]) {
|
| 654 |
-
//
|
| 655 |
-
x = bbox[0];
|
| 656 |
-
y = bbox[1];
|
| 657 |
-
width = bbox[2] - bbox[0];
|
| 658 |
-
height = bbox[3] - bbox[1];
|
| 659 |
} else {
|
| 660 |
-
//
|
| 661 |
-
x = bbox[0];
|
| 662 |
-
y = bbox[1];
|
| 663 |
-
width = bbox[2];
|
| 664 |
-
height = bbox[3];
|
| 665 |
}
|
| 666 |
}
|
| 667 |
} else {
|
| 668 |
-
// Object format
|
| 669 |
if (bbox.x !== undefined && bbox.y !== undefined) {
|
|
|
|
| 670 |
x = bbox.x;
|
| 671 |
y = bbox.y;
|
| 672 |
width = bbox.width || bbox.w || 0;
|
| 673 |
height = bbox.height || bbox.h || 0;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 674 |
} else if (bbox.xmin !== undefined && bbox.ymin !== undefined) {
|
| 675 |
x = bbox.xmin;
|
| 676 |
y = bbox.ymin;
|
| 677 |
width = (bbox.xmax || 0) - bbox.xmin;
|
| 678 |
height = (bbox.ymax || 0) - bbox.ymin;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 679 |
}
|
| 680 |
}
|
| 681 |
|
| 682 |
-
//
|
| 683 |
-
if (x
|
| 684 |
-
|
| 685 |
-
|
| 686 |
-
|
| 687 |
-
|
| 688 |
-
|
| 689 |
-
|
| 690 |
-
|
| 691 |
-
|
| 692 |
-
|
| 693 |
-
|
| 694 |
-
|
| 695 |
-
|
| 696 |
-
|
| 697 |
-
|
| 698 |
-
|
| 699 |
-
|
| 700 |
-
|
| 701 |
-
|
| 702 |
-
|
| 703 |
-
|
| 704 |
-
|
| 705 |
-
|
| 706 |
-
// Format confidence value
|
| 707 |
-
let confidenceText = "";
|
| 708 |
-
if (confidence !== null && confidence !== undefined) {
|
| 709 |
-
// Convert to percentage if it's a probability (0-1)
|
| 710 |
-
if (confidence <= 1) {
|
| 711 |
-
confidence = (confidence * 100).toFixed(0);
|
| 712 |
-
} else {
|
| 713 |
-
confidence = confidence.toFixed(0);
|
| 714 |
}
|
| 715 |
-
confidenceText = ` ${confidence}%`;
|
| 716 |
-
}
|
| 717 |
|
| 718 |
-
|
| 719 |
-
|
| 720 |
-
|
| 721 |
-
|
| 722 |
-
|
| 723 |
-
|
| 724 |
-
// Create label text
|
| 725 |
-
const labelText = `${label}${confidenceText}${distanceText}`;
|
| 726 |
|
| 727 |
-
|
| 728 |
-
|
|
|
|
| 729 |
|
| 730 |
-
|
| 731 |
-
|
| 732 |
-
|
| 733 |
|
| 734 |
-
|
| 735 |
-
|
| 736 |
-
|
|
|
|
| 737 |
}
|
| 738 |
});
|
| 739 |
-
|
| 740 |
} catch (error) {
|
| 741 |
console.error('Error visualizing results:', error);
|
|
|
|
| 742 |
debugOutput.style.display = 'block';
|
| 743 |
-
debugOutput.textContent += `VISUALIZATION ERROR: ${error.message}\n`;
|
| 744 |
-
debugOutput.textContent += `Error stack: ${error.stack}\n`;
|
| 745 |
}
|
| 746 |
}
|
| 747 |
|
|
|
|
| 748 |
// Generate consistent hue for string
|
| 749 |
function stringToHue(str) {
|
| 750 |
let hash = 0;
|
|
@@ -753,21 +756,21 @@
|
|
| 753 |
}
|
| 754 |
return hash % 360;
|
| 755 |
}
|
| 756 |
-
|
| 757 |
// Clear canvas
|
| 758 |
function clearCanvas() {
|
| 759 |
if (detectionCanvas.getContext) {
|
| 760 |
ctx.clearRect(0, 0, detectionCanvas.width, detectionCanvas.height);
|
| 761 |
}
|
| 762 |
}
|
| 763 |
-
|
| 764 |
// Show message function
|
| 765 |
function showMessage(text, type) {
|
| 766 |
message.textContent = text;
|
| 767 |
message.className = '';
|
| 768 |
message.classList.add(type);
|
| 769 |
message.style.display = 'block';
|
| 770 |
-
|
| 771 |
if (type === 'info') {
|
| 772 |
setTimeout(() => {
|
| 773 |
message.style.display = 'none';
|
|
|
|
| 300 |
const detectionCanvas = document.getElementById('detectionCanvas');
|
| 301 |
const ctx = detectionCanvas.getContext('2d');
|
| 302 |
const debugOutput = document.getElementById('debugOutput');
|
| 303 |
+
|
| 304 |
// Enable debug mode (set to false in production)
|
| 305 |
const DEBUG = true;
|
| 306 |
+
|
| 307 |
// API endpoint URL
|
| 308 |
const API_URL = '/api/predict';
|
| 309 |
|
|
|
|
| 313 |
let processingWidth = 0;
|
| 314 |
let processingHeight = 0;
|
| 315 |
let responseData = null;
|
| 316 |
+
|
| 317 |
// Tab switching functionality
|
| 318 |
tabButtons.forEach(button => {
|
| 319 |
button.addEventListener('click', () => {
|
| 320 |
const tabName = button.getAttribute('data-tab');
|
| 321 |
+
|
| 322 |
// Update button states
|
| 323 |
tabButtons.forEach(btn => btn.classList.remove('active'));
|
| 324 |
button.classList.add('active');
|
| 325 |
+
|
| 326 |
// Update tab content visibility
|
| 327 |
tabContents.forEach(content => content.classList.remove('active'));
|
| 328 |
document.getElementById(tabName + 'Tab').classList.add('active');
|
| 329 |
+
|
| 330 |
// If switching to visual tab and we have data, ensure visualization is rendered
|
| 331 |
if (tabName === 'visual' && responseData && originalImage) {
|
| 332 |
visualizeResults(originalImage, responseData);
|
| 333 |
}
|
| 334 |
});
|
| 335 |
});
|
| 336 |
+
|
| 337 |
// Handle file input change
|
| 338 |
fileInput.addEventListener('change', (event) => {
|
| 339 |
const file = event.target.files[0];
|
| 340 |
+
|
| 341 |
// Clear previous selections
|
| 342 |
imageFile = null;
|
| 343 |
imagePreview.style.display = 'none';
|
| 344 |
sendButton.disabled = true;
|
| 345 |
originalImage = null;
|
| 346 |
responseData = null;
|
| 347 |
+
|
| 348 |
// Validate file
|
| 349 |
if (!file) return;
|
| 350 |
+
|
| 351 |
if (file.size > 2 * 1024 * 1024) {
|
| 352 |
showMessage('File size exceeds 2MB limit.', 'error');
|
| 353 |
return;
|
| 354 |
}
|
| 355 |
+
|
| 356 |
if (!['image/png', 'image/jpeg'].includes(file.type)) {
|
| 357 |
showMessage('Only PNG and JPEG formats are supported.', 'error');
|
| 358 |
return;
|
| 359 |
}
|
| 360 |
+
|
| 361 |
// Store file for upload
|
| 362 |
imageFile = file;
|
| 363 |
+
|
| 364 |
// Show image preview
|
| 365 |
const reader = new FileReader();
|
| 366 |
reader.onload = (e) => {
|
| 367 |
const image = new Image();
|
| 368 |
image.src = e.target.result;
|
| 369 |
+
|
| 370 |
image.onload = () => {
|
| 371 |
// Store original image for visualization
|
| 372 |
originalImage = image;
|
| 373 |
+
|
| 374 |
// Set preview
|
| 375 |
imagePreview.src = e.target.result;
|
| 376 |
imagePreview.style.display = 'block';
|
| 377 |
+
|
| 378 |
// Update image info
|
| 379 |
imageSizeInfo.textContent = `Original size: ${image.width}x${image.height} pixels`;
|
| 380 |
+
|
| 381 |
+
// Resize image for processing
|
| 382 |
+
resizeImage(image, file.type);
|
| 383 |
|
| 384 |
// Enable send button
|
| 385 |
sendButton.disabled = false;
|
|
|
|
| 388 |
};
|
| 389 |
reader.readAsDataURL(file);
|
| 390 |
});
|
| 391 |
+
|
| 392 |
+
// Resize image function
|
| 393 |
+
function resizeImage(image, fileType) {
|
| 394 |
+
const canvas = document.createElement('canvas');
|
| 395 |
const maxWidth = 640;
|
| 396 |
const maxHeight = 320;
|
| 397 |
+
|
| 398 |
+
let width = image.width;
|
| 399 |
+
let height = image.height;
|
| 400 |
+
|
| 401 |
// Calculate dimensions
|
| 402 |
if (width > height) {
|
| 403 |
if (width > maxWidth) {
|
|
|
|
| 410 |
height = maxHeight;
|
| 411 |
}
|
| 412 |
}
|
| 413 |
+
|
| 414 |
// Store processing dimensions for visualization
|
| 415 |
processingWidth = width;
|
| 416 |
processingHeight = height;
|
| 417 |
+
|
| 418 |
+
// Set canvas dimensions and draw image
|
| 419 |
+
canvas.width = width;
|
| 420 |
+
canvas.height = height;
|
| 421 |
+
const ctx = canvas.getContext('2d');
|
| 422 |
+
ctx.drawImage(image, 0, 0, width, height);
|
| 423 |
+
|
| 424 |
+
// For API calls, we don't need to convert to binary
|
| 425 |
+
// but we keep this method to ensure dimensions are correctly calculated
|
| 426 |
+
}
|
| 427 |
+
|
| 428 |
// Handle send button click
|
| 429 |
sendButton.addEventListener('click', async () => {
|
| 430 |
if (!imageFile) {
|
| 431 |
showMessage('No image selected.', 'error');
|
| 432 |
return;
|
| 433 |
}
|
| 434 |
+
|
| 435 |
// Clear previous response
|
| 436 |
responseOutput.textContent = "// Processing...";
|
| 437 |
clearCanvas();
|
| 438 |
responseData = null;
|
| 439 |
debugOutput.style.display = 'none';
|
| 440 |
+
|
| 441 |
// Show loading state
|
| 442 |
loading.style.display = 'block';
|
| 443 |
message.style.display = 'none';
|
| 444 |
+
|
| 445 |
// Reset processing time
|
| 446 |
processingTimeInfo.textContent = '';
|
| 447 |
+
|
| 448 |
// Record start time
|
| 449 |
startTime = performance.now();
|
| 450 |
+
|
| 451 |
// Create form data for HTTP request
|
| 452 |
const formData = new FormData();
|
| 453 |
formData.append('file', imageFile);
|
| 454 |
+
|
| 455 |
try {
|
| 456 |
// Send HTTP request
|
| 457 |
const response = await fetch(API_URL, {
|
| 458 |
method: 'POST',
|
| 459 |
body: formData
|
| 460 |
});
|
| 461 |
+
|
| 462 |
// Handle response
|
| 463 |
if (!response.ok) {
|
| 464 |
const errorText = await response.text();
|
| 465 |
throw new Error(`HTTP error ${response.status}: ${errorText}`);
|
| 466 |
}
|
| 467 |
+
|
| 468 |
// Parse JSON response
|
| 469 |
const data = await response.json();
|
| 470 |
responseData = data;
|
| 471 |
+
|
| 472 |
// Calculate processing time
|
| 473 |
const endTime = performance.now();
|
| 474 |
const timeTaken = endTime - startTime;
|
|
|
|
| 476 |
// Format and display raw response
|
| 477 |
responseOutput.textContent = JSON.stringify(data, null, 2);
|
| 478 |
processingTimeInfo.textContent = `Processing time: ${timeTaken.toFixed(2)} ms`;
|
| 479 |
+
|
| 480 |
// Visualize the results
|
| 481 |
if (originalImage) {
|
| 482 |
visualizeResults(originalImage, data);
|
| 483 |
}
|
| 484 |
+
|
| 485 |
// Show success message
|
| 486 |
showMessage('Image processed successfully!', 'success');
|
| 487 |
} catch (error) {
|
|
|
|
| 497 |
loading.style.display = 'none';
|
| 498 |
}
|
| 499 |
});
|
| 500 |
+
|
| 501 |
// Visualize detection results
|
|
|
|
| 502 |
function visualizeResults(image, data) {
|
| 503 |
try {
|
| 504 |
// Set canvas dimensions
|
| 505 |
detectionCanvas.width = processingWidth;
|
| 506 |
detectionCanvas.height = processingHeight;
|
| 507 |
|
| 508 |
+
// Draw the resized original image
|
| 509 |
ctx.drawImage(image, 0, 0, processingWidth, processingHeight);
|
| 510 |
|
| 511 |
// Set styles for bounding boxes
|
| 512 |
ctx.lineWidth = 3;
|
| 513 |
ctx.font = 'bold 14px Arial';
|
| 514 |
|
| 515 |
+
// Find detections from various possible keys
|
| 516 |
let detections = [];
|
|
|
|
|
|
|
| 517 |
if (data.detections && Array.isArray(data.detections)) {
|
| 518 |
detections = data.detections;
|
|
|
|
| 519 |
} else if (data.predictions && Array.isArray(data.predictions)) {
|
| 520 |
detections = data.predictions;
|
|
|
|
| 521 |
} else if (data.objects && Array.isArray(data.objects)) {
|
| 522 |
detections = data.objects;
|
|
|
|
| 523 |
} else if (data.results && Array.isArray(data.results)) {
|
| 524 |
detections = data.results;
|
|
|
|
| 525 |
} else {
|
| 526 |
// Try to look one level deeper if no detections found
|
| 527 |
for (const key in data) {
|
| 528 |
if (typeof data[key] === 'object' && data[key] !== null) {
|
| 529 |
if (Array.isArray(data[key])) {
|
| 530 |
detections = data[key];
|
|
|
|
| 531 |
break;
|
| 532 |
} else {
|
|
|
|
| 533 |
for (const subKey in data[key]) {
|
| 534 |
if (Array.isArray(data[key][subKey])) {
|
| 535 |
detections = data[key][subKey];
|
|
|
|
| 536 |
break;
|
| 537 |
}
|
| 538 |
}
|
|
|
|
| 541 |
}
|
| 542 |
}
|
| 543 |
|
| 544 |
+
// Scaling factors based on original image vs resized processing dimensions
|
| 545 |
+
const scaleX = processingWidth / image.width;
|
| 546 |
+
const scaleY = processingHeight / image.height;
|
| 547 |
+
|
| 548 |
// Process each detection
|
| 549 |
detections.forEach((detection, index) => {
|
|
|
|
| 550 |
let bbox = null;
|
| 551 |
let label = null;
|
| 552 |
let confidence = null;
|
| 553 |
let distance = null;
|
| 554 |
|
| 555 |
+
// Extract label
|
| 556 |
if (detection.class !== undefined) {
|
| 557 |
label = detection.class;
|
| 558 |
} else {
|
|
|
|
| 559 |
for (const key of ['label', 'name', 'category', 'className']) {
|
| 560 |
if (detection[key] !== undefined) {
|
| 561 |
label = detection[key];
|
|
|
|
| 563 |
}
|
| 564 |
}
|
| 565 |
}
|
|
|
|
|
|
|
| 566 |
if (!label) label = `Object ${index + 1}`;
|
| 567 |
|
| 568 |
+
// Extract confidence score
|
| 569 |
for (const key of ['confidence', 'score', 'probability', 'conf']) {
|
| 570 |
if (detection[key] !== undefined) {
|
| 571 |
confidence = detection[key];
|
|
|
|
| 573 |
}
|
| 574 |
}
|
| 575 |
|
| 576 |
+
// Extract distance (using 'distance_estimated' first)
|
| 577 |
if (detection.distance_estimated !== undefined) {
|
| 578 |
distance = detection.distance_estimated;
|
| 579 |
} else {
|
|
|
|
| 580 |
for (const key of ['distance', 'depth', 'z', 'dist', 'range']) {
|
| 581 |
if (detection[key] !== undefined) {
|
| 582 |
distance = detection[key];
|
|
|
|
| 585 |
}
|
| 586 |
}
|
| 587 |
|
| 588 |
+
// Attempt to get bounding box coordinates
|
| 589 |
if (detection.features &&
|
| 590 |
detection.features.xmin !== undefined &&
|
| 591 |
detection.features.ymin !== undefined &&
|
|
|
|
| 599 |
ymax: detection.features.ymax
|
| 600 |
};
|
| 601 |
} else {
|
| 602 |
+
// Recursive search for bbox-like properties
|
| 603 |
+
function findBBox(obj) {
|
| 604 |
if (!obj || typeof obj !== 'object') return null;
|
|
|
|
|
|
|
| 605 |
if ((obj.x !== undefined && obj.y !== undefined &&
|
| 606 |
(obj.width !== undefined || obj.w !== undefined ||
|
| 607 |
obj.height !== undefined || obj.h !== undefined)) ||
|
|
|
|
| 609 |
obj.xmax !== undefined && obj.ymax !== undefined)) {
|
| 610 |
return obj;
|
| 611 |
}
|
|
|
|
|
|
|
| 612 |
if (Array.isArray(obj) && obj.length === 4 &&
|
| 613 |
obj.every(item => typeof item === 'number')) {
|
| 614 |
return obj;
|
| 615 |
}
|
|
|
|
|
|
|
| 616 |
for (const key of ['bbox', 'box', 'bounding_box', 'boundingBox']) {
|
| 617 |
if (obj[key] !== undefined) {
|
| 618 |
return obj[key];
|
| 619 |
}
|
| 620 |
}
|
|
|
|
|
|
|
| 621 |
for (const key in obj) {
|
| 622 |
+
const result = findBBox(obj[key]);
|
| 623 |
if (result) return result;
|
| 624 |
}
|
|
|
|
| 625 |
return null;
|
| 626 |
}
|
|
|
|
|
|
|
| 627 |
bbox = findBBox(detection);
|
| 628 |
}
|
| 629 |
|
| 630 |
+
// If bounding box found, process and draw it
|
| 631 |
if (bbox) {
|
|
|
|
| 632 |
let x, y, width, height;
|
|
|
|
| 633 |
if (Array.isArray(bbox)) {
|
|
|
|
| 634 |
if (bbox.length === 4) {
|
| 635 |
+
// Check if values are normalized (all between 0 and 1)
|
| 636 |
+
const isNormalized = bbox.every(val => val >= 0 && val <= 1);
|
| 637 |
+
if (isNormalized) {
|
| 638 |
x = bbox[0] * processingWidth;
|
| 639 |
y = bbox[1] * processingHeight;
|
| 640 |
width = (bbox[2] - bbox[0]) * processingWidth;
|
| 641 |
height = (bbox[3] - bbox[1]) * processingHeight;
|
| 642 |
} else if (bbox[2] > bbox[0] && bbox[3] > bbox[1]) {
|
| 643 |
+
// Absolute coordinates
|
| 644 |
+
x = bbox[0] * scaleX;
|
| 645 |
+
y = bbox[1] * scaleY;
|
| 646 |
+
width = (bbox[2] - bbox[0]) * scaleX;
|
| 647 |
+
height = (bbox[3] - bbox[1]) * scaleY;
|
| 648 |
} else {
|
| 649 |
+
// Format assumed to be [x, y, width, height]
|
| 650 |
+
x = bbox[0] * scaleX;
|
| 651 |
+
y = bbox[1] * scaleY;
|
| 652 |
+
width = bbox[2] * scaleX;
|
| 653 |
+
height = bbox[3] * scaleY;
|
| 654 |
}
|
| 655 |
}
|
| 656 |
} else {
|
| 657 |
+
// Object format handling
|
| 658 |
if (bbox.x !== undefined && bbox.y !== undefined) {
|
| 659 |
+
// x,y,width,height format
|
| 660 |
x = bbox.x;
|
| 661 |
y = bbox.y;
|
| 662 |
width = bbox.width || bbox.w || 0;
|
| 663 |
height = bbox.height || bbox.h || 0;
|
| 664 |
+
// Check if normalized
|
| 665 |
+
if (x <= 1 && y <= 1 && width <= 1 && height <= 1) {
|
| 666 |
+
x *= processingWidth;
|
| 667 |
+
y *= processingHeight;
|
| 668 |
+
width *= processingWidth;
|
| 669 |
+
height *= processingHeight;
|
| 670 |
+
} else {
|
| 671 |
+
// Assume coordinates are based on the original image
|
| 672 |
+
x *= scaleX;
|
| 673 |
+
y *= scaleY;
|
| 674 |
+
width *= scaleX;
|
| 675 |
+
height *= scaleY;
|
| 676 |
+
}
|
| 677 |
} else if (bbox.xmin !== undefined && bbox.ymin !== undefined) {
|
| 678 |
x = bbox.xmin;
|
| 679 |
y = bbox.ymin;
|
| 680 |
width = (bbox.xmax || 0) - bbox.xmin;
|
| 681 |
height = (bbox.ymax || 0) - bbox.ymin;
|
| 682 |
+
if (x <= 1 && y <= 1 && bbox.xmax <= 1 && bbox.ymax <= 1) {
|
| 683 |
+
x *= processingWidth;
|
| 684 |
+
y *= processingHeight;
|
| 685 |
+
width *= processingWidth;
|
| 686 |
+
height *= processingHeight;
|
| 687 |
+
} else {
|
| 688 |
+
x *= scaleX;
|
| 689 |
+
y *= scaleY;
|
| 690 |
+
width *= scaleX;
|
| 691 |
+
height *= scaleY;
|
| 692 |
+
}
|
| 693 |
}
|
| 694 |
}
|
| 695 |
|
| 696 |
+
// Draw the bounding box if coordinates are valid
|
| 697 |
+
if (x !== undefined && y !== undefined &&
|
| 698 |
+
width !== undefined && height !== undefined &&
|
| 699 |
+
width > 0 && height > 0) {
|
| 700 |
+
|
| 701 |
+
// Generate a color based on the label
|
| 702 |
+
const hue = stringToHue(label);
|
| 703 |
+
ctx.strokeStyle = `hsl(${hue}, 100%, 40%)`;
|
| 704 |
+
ctx.fillStyle = `hsla(${hue}, 100%, 40%, 0.3)`;
|
| 705 |
+
|
| 706 |
+
// Draw the bounding box rectangle
|
| 707 |
+
ctx.beginPath();
|
| 708 |
+
ctx.rect(x, y, width, height);
|
| 709 |
+
ctx.stroke();
|
| 710 |
+
ctx.fill();
|
| 711 |
+
|
| 712 |
+
// Format and display confidence value if available
|
| 713 |
+
let confidenceText = "";
|
| 714 |
+
if (confidence !== null && confidence !== undefined) {
|
| 715 |
+
if (confidence <= 1) {
|
| 716 |
+
confidenceText = ` ${(confidence * 100).toFixed(0)}%`;
|
| 717 |
+
} else {
|
| 718 |
+
confidenceText = ` ${confidence.toFixed(0)}%`;
|
| 719 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 720 |
}
|
|
|
|
|
|
|
| 721 |
|
| 722 |
+
// Format distance if available
|
| 723 |
+
let distanceText = "";
|
| 724 |
+
if (distance !== null && distance !== undefined) {
|
| 725 |
+
distanceText = ` : ${distance.toFixed(2)} m`;
|
| 726 |
+
}
|
|
|
|
|
|
|
|
|
|
| 727 |
|
| 728 |
+
// Prepare the label text
|
| 729 |
+
const labelText = `${label}${confidenceText}${distanceText}`;
|
| 730 |
+
const textWidth = ctx.measureText(labelText).width + 10;
|
| 731 |
|
| 732 |
+
// Draw label background
|
| 733 |
+
ctx.fillStyle = `hsl(${hue}, 100%, 40%)`;
|
| 734 |
+
ctx.fillRect(x, y - 20, textWidth, 20);
|
| 735 |
|
| 736 |
+
// Draw label text
|
| 737 |
+
ctx.fillStyle = "white";
|
| 738 |
+
ctx.fillText(labelText, x + 5, y - 5);
|
| 739 |
+
}
|
| 740 |
}
|
| 741 |
});
|
|
|
|
| 742 |
} catch (error) {
|
| 743 |
console.error('Error visualizing results:', error);
|
| 744 |
+
// Optional: Display debug information if needed
|
| 745 |
debugOutput.style.display = 'block';
|
| 746 |
+
debugOutput.textContent += `VISUALIZATION ERROR: ${error.message}\n${error.stack}\n`;
|
|
|
|
| 747 |
}
|
| 748 |
}
|
| 749 |
|
| 750 |
+
|
| 751 |
// Generate consistent hue for string
|
| 752 |
function stringToHue(str) {
|
| 753 |
let hash = 0;
|
|
|
|
| 756 |
}
|
| 757 |
return hash % 360;
|
| 758 |
}
|
| 759 |
+
|
| 760 |
// Clear canvas
|
| 761 |
function clearCanvas() {
|
| 762 |
if (detectionCanvas.getContext) {
|
| 763 |
ctx.clearRect(0, 0, detectionCanvas.width, detectionCanvas.height);
|
| 764 |
}
|
| 765 |
}
|
| 766 |
+
|
| 767 |
// Show message function
|
| 768 |
function showMessage(text, type) {
|
| 769 |
message.textContent = text;
|
| 770 |
message.className = '';
|
| 771 |
message.classList.add(type);
|
| 772 |
message.style.display = 'block';
|
| 773 |
+
|
| 774 |
if (type === 'info') {
|
| 775 |
setTimeout(() => {
|
| 776 |
message.style.display = 'none';
|