File size: 7,325 Bytes
398f8eb 425d406 1d32d95 cde4f1b 1d32d95 398f8eb cde4f1b 425d406 cde4f1b 425d406 cde4f1b 425d406 cde4f1b 425d406 398f8eb cde4f1b 398f8eb cde4f1b 425d406 398f8eb 1d32d95 425d406 398f8eb 1d32d95 425d406 398f8eb 1d32d95 425d406 1d32d95 398f8eb cde4f1b 425d406 398f8eb 1d32d95 425d406 1d32d95 398f8eb 1d32d95 425d406 398f8eb 1d32d95 398f8eb 425d406 cde4f1b 425d406 cde4f1b 425d406 cde4f1b 398f8eb cde4f1b 398f8eb 425d406 398f8eb 1d32d95 398f8eb 1d32d95 398f8eb 1d32d95 398f8eb cde4f1b 398f8eb cde4f1b 398f8eb 425d406 1d32d95 398f8eb 425d406 1d32d95 398f8eb 425d406 1d32d95 398f8eb 425d406 1d32d95 398f8eb 1d32d95 398f8eb 425d406 cde4f1b 425d406 1d32d95 398f8eb 425d406 1d32d95 425d406 1d32d95 425d406 1d32d95 425d406 cde4f1b 1d32d95 cde4f1b 398f8eb cde4f1b 425d406 cde4f1b 1d32d95 398f8eb 1d32d95 425d406 1d32d95 398f8eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
import gradio as gr
import numpy as np
import onnxruntime as ort
from PIL import Image
from huggingface_hub import hf_hub_download
from transformers import AutoTokenizer, AutoConfig, AutoModelForCausalLM
import torch
# ---------------------------------------------------------
# Helper functions
# ---------------------------------------------------------
def softmax(x):
e = np.exp(x - np.max(x))
return e / e.sum()
def greedy_decode_onnx(session, tokenizer, prompt, max_new_tokens=64):
"""Greedy decoding loop for ONNX decoder-only models."""
ids = tokenizer(prompt, return_tensors="np")["input_ids"].astype(np.int64)
for _ in range(max_new_tokens):
ort_inputs = {"input_ids": ids}
logits = session.run(None, ort_inputs)[0]
next_token_logits = logits[:, -1, :]
next_token = int(np.argmax(next_token_logits, axis=-1)[0])
ids = np.concatenate([ids, [[next_token]]], axis=1)
if next_token == tokenizer.eos_token_id:
break
return tokenizer.decode(ids[0], skip_special_tokens=True)
# ---------------------------------------------------------
# Load ONNX models + tokenizers + configs
# ---------------------------------------------------------
# --- Model 1: Multilingual DistilBERT ---
m_onx = hf_hub_download(
repo_id="lxyuan/distilbert-base-multilingual-cased-sentiments-student",
filename="onnx/model.onnx"
)
tokenizer_multilingual = AutoTokenizer.from_pretrained(
"lxyuan/distilbert-base-multilingual-cased-sentiments-student"
)
config_multilingual = AutoConfig.from_pretrained(
"lxyuan/distilbert-base-multilingual-cased-sentiments-student"
)
labels_multilingual = config_multilingual.id2label
session_multilingual = ort.InferenceSession(m_onx, providers=["CPUExecutionProvider"])
# --- Model 2: SDG-BERT ---
sdg_onx = hf_hub_download("sadickam/sdgBERT", "onnx/model.onnx")
tokenizer_sdg = AutoTokenizer.from_pretrained("sadickam/sdgBERT")
config_sdg = AutoConfig.from_pretrained("sadickam/sdgBERT")
labels_sdg = config_sdg.id2label
session_sdg = ort.InferenceSession(sdg_onx, providers=["CPUExecutionProvider"])
# --- Model 3: German Sentiment ---
g_onx = hf_hub_download("oliverguhr/german-sentiment-bert", "onnx/model.onnx")
tokenizer_german = AutoTokenizer.from_pretrained("oliverguhr/german-sentiment-bert")
config_german = AutoConfig.from_pretrained("oliverguhr/german-sentiment-bert")
labels_german = config_german.id2label
session_german = ort.InferenceSession(g_onx, providers=["CPUExecutionProvider"])
# --- Model 4: ViT Image Classifier ---
vit_onx = hf_hub_download("WinKawaks/vit-small-patch16-224", "onnx/model.onnx")
session_vit = ort.InferenceSession(vit_onx, providers=["CPUExecutionProvider"])
IMAGE_SIZE = 224
MEAN = [0.485, 0.456, 0.406]
STD = [0.229, 0.224, 0.225]
# ---------------------------------------------------------
# NEW: Model 5 β DeepSeek Coder from HF Hub (NOT ONNX)
# ---------------------------------------------------------
DS_REPO = "guychuk/dpsk-exmpl"
tokenizer_ds = AutoTokenizer.from_pretrained(
DS_REPO,
trust_remote_code=True
)
model_ds = AutoModelForCausalLM.from_pretrained(
DS_REPO,
device_map="auto",
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
low_cpu_mem_usage=True,
trust_remote_code=True
)
model_ds.eval()
def run_deepseek(prompt, max_new_tokens=128, temperature=0.7, top_p=0.9):
"""Generate using PyTorch (DeepSeek HF model)."""
if not prompt.strip():
return "Please enter a prompt."
inputs = tokenizer_ds(prompt, return_tensors="pt").to(model_ds.device)
with torch.no_grad():
out = model_ds.generate(
**inputs,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
top_p=top_p,
pad_token_id=tokenizer_ds.eos_token_id
)
return tokenizer_ds.decode(out[0], skip_special_tokens=True)
# ---------------------------------------------------------
# Inference functions for classification models
# ---------------------------------------------------------
def run_multilingual(text):
inputs = tokenizer_multilingual(text, return_tensors="np", truncation=True, padding=True)
inputs = {k: v.astype(np.int64) for k, v in inputs.items()}
logits = session_multilingual.run(None, inputs)[0][0]
probs = softmax(logits)
return {labels_multilingual[i]: float(probs[i]) for i in range(len(probs))}
def run_sdg(text):
inputs = tokenizer_sdg(text, return_tensors="np", truncation=True, padding=True)
inputs = {k: v.astype(np.int64) for k, v in inputs.items()}
logits = session_sdg.run(None, inputs)[0][0]
probs = softmax(logits)
return {labels_sdg[i]: float(probs[i]) for i in range(len(probs))}
def run_german(text):
inputs = tokenizer_german(text, return_tensors="np", truncation=True, padding=True)
inputs = {k: v.astype(np.int64) for k, v in inputs.items()}
logits = session_german.run(None, inputs)[0][0]
probs = softmax(logits)
return {labels_german[i]: float(probs[i]) for i in range(len(probs))}
def preprocess_vit(image):
image = image.convert("RGB").resize((IMAGE_SIZE, IMAGE_SIZE))
arr = np.array(image).astype(np.float32) / 255.0
arr = (arr - MEAN) / STD
arr = arr.transpose(2, 0, 1)
return arr[np.newaxis, :]
def run_vit(image):
arr = preprocess_vit(image)
input_name = session_vit.get_inputs()[0].name
logits = session_vit.run(None, {input_name: arr})[0][0]
probs = softmax(logits)
top5 = probs.argsort()[::-1][:5]
return {f"class_{i}": float(probs[i]) for i in top5}
# ---------------------------------------------------------
# Unified model router
# ---------------------------------------------------------
def inference(model_name, text, image):
if model_name == "Multilingual Sentiment":
return run_multilingual(text)
elif model_name == "SDG Classification":
return run_sdg(text)
elif model_name == "German Sentiment":
return run_german(text)
elif model_name == "ViT Image Classification":
if image is None:
return {"error": "Please upload an image."}
return run_vit(image)
elif model_name == "DeepSeek Coder":
return {"generated_text": run_deepseek(text)}
else:
return {"error": "Invalid model selected."}
# ---------------------------------------------------------
# Gradio UI
# ---------------------------------------------------------
with gr.Blocks() as demo:
gr.Markdown("# π Multi-Model Inference Demo (ONNX + DeepSeek Coder)")
model_selector = gr.Dropdown(
[
"Multilingual Sentiment",
"SDG Classification",
"German Sentiment",
# "ViT Image Classification",
"DeepSeek Coder"
],
label="Choose a Model"
)
text_input = gr.Textbox(lines=3, label="Text Prompt / Input")
# image_input = gr.Image(type="pil", label="Image Input (ViT only)")
output_box = gr.JSON(label="Output")
run_button = gr.Button("Run")
run_button.click(
inference,
inputs=[
model_selector,
text_input,
# image_input
],
outputs=output_box
)
demo.launch()
|