Spaces:
Running
on
A10G
Running
on
A10G
| import math | |
| from abc import abstractmethod | |
| import numpy as np | |
| import torch as th | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from .util import ( | |
| checkpoint,conv_nd,linear,avg_pool_nd, | |
| zero_module,normalization,timestep_embedding, | |
| ) | |
| from ..modules.attention.spatial_transformer import SpatialTransformer | |
| # dummy replace | |
| def convert_module_to_f16(param): | |
| """ | |
| Convert primitive modules to float16. | |
| """ | |
| if isinstance(param, (nn.Linear, nn.Conv2d, nn.ConvTranspose2d)): | |
| param.weight.data = param.weight.data.half() | |
| if param.bias is not None: | |
| param.bias.data = param.bias.data.half() | |
| def convert_module_to_f32(x): pass | |
| ## go | |
| class TimestepBlock(nn.Module): | |
| """ | |
| Any module where forward() takes timestep embeddings as a second argument. | |
| """ | |
| def forward(self, x, emb): | |
| """ | |
| Apply the module to `x` given `emb` timestep embeddings. | |
| """ | |
| class TimestepEmbedSequential(nn.Sequential, TimestepBlock): | |
| """ | |
| A sequential module that passes timestep embeddings to the children that | |
| support it as an extra input. | |
| """ | |
| def forward(self, x, emb, context=None): | |
| for layer in self: | |
| if isinstance(layer, TimestepBlock): | |
| x = layer(x, emb) | |
| elif isinstance(layer, SpatialTransformer): | |
| x = layer(x, context) | |
| else: | |
| x = layer(x) | |
| return x | |
| class Upsample(nn.Module): | |
| """ | |
| An upsampling layer with an optional convolution. | |
| :param channels: channels in the inputs and outputs. | |
| :param use_conv: a bool determining if a convolution is applied. | |
| :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then | |
| upsampling occurs in the inner-two dimensions. | |
| """ | |
| def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1): | |
| super().__init__() | |
| self.channels = channels | |
| self.out_channels = out_channels or channels | |
| self.use_conv = use_conv | |
| self.dims = dims | |
| if use_conv: | |
| self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding) | |
| def forward(self, x): | |
| assert x.shape[1] == self.channels | |
| if self.dims == 3: | |
| x = F.interpolate(x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest") | |
| else: | |
| x = F.interpolate(x, scale_factor=2, mode="nearest") | |
| if self.use_conv: | |
| x = self.conv(x) | |
| return x | |
| class TransposedUpsample(nn.Module): | |
| "Learned 2x upsampling without padding" | |
| def __init__(self, channels, out_channels=None, ks=5): | |
| super().__init__() | |
| self.channels = channels | |
| self.out_channels = out_channels or channels | |
| self.up = nn.ConvTranspose2d(self.channels, self.out_channels, kernel_size=ks, stride=2) | |
| def forward(self, x): | |
| return self.up(x) | |
| class Downsample(nn.Module): | |
| """ | |
| A downsampling layer with an optional convolution. | |
| :param channels: channels in the inputs and outputs. | |
| :param use_conv: a bool determining if a convolution is applied. | |
| :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then | |
| downsampling occurs in the inner-two dimensions. | |
| """ | |
| def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1): | |
| super().__init__() | |
| self.channels = channels | |
| self.out_channels = out_channels or channels | |
| self.use_conv = use_conv | |
| self.dims = dims | |
| stride = 2 if dims != 3 else (1, 2, 2) | |
| if use_conv: | |
| self.op = conv_nd(dims,self.channels,self.out_channels,3,stride=stride,padding=padding,) | |
| else: | |
| assert self.channels == self.out_channels | |
| self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride) | |
| def forward(self, x): | |
| assert x.shape[1] == self.channels | |
| return self.op(x) | |
| class ResBlock(TimestepBlock): | |
| """ | |
| A residual block that can optionally change the number of channels. | |
| :param channels: the number of input channels. | |
| :param emb_channels: the number of timestep embedding channels. | |
| :param dropout: the rate of dropout. | |
| :param out_channels: if specified, the number of out channels. | |
| :param use_conv: if True and out_channels is specified, use a spatial | |
| convolution instead of a smaller 1x1 convolution to change the | |
| channels in the skip connection. | |
| :param dims: determines if the signal is 1D, 2D, or 3D. | |
| :param use_checkpoint: if True, use gradient checkpointing on this module. | |
| :param up: if True, use this block for upsampling. | |
| :param down: if True, use this block for downsampling. | |
| """ | |
| def __init__( | |
| self,channels,emb_channels,dropout,out_channels=None,use_conv=False,use_scale_shift_norm=False, | |
| dims=2,use_checkpoint=False,up=False,down=False | |
| ): | |
| super().__init__() | |
| self.channels = channels | |
| self.emb_channels = emb_channels | |
| self.dropout = dropout | |
| self.out_channels = out_channels or channels | |
| self.use_conv = use_conv | |
| self.use_checkpoint = use_checkpoint | |
| self.use_scale_shift_norm = use_scale_shift_norm | |
| self.in_layers = nn.Sequential( | |
| normalization(channels), | |
| nn.SiLU(), | |
| conv_nd(dims, channels, self.out_channels, 3, padding=1), | |
| ) | |
| self.updown = up or down | |
| if up: | |
| self.h_upd = Upsample(channels, False, dims) | |
| self.x_upd = Upsample(channels, False, dims) | |
| elif down: | |
| self.h_upd = Downsample(channels, False, dims) | |
| self.x_upd = Downsample(channels, False, dims) | |
| else: | |
| self.h_upd = self.x_upd = nn.Identity() | |
| self.emb_layers = nn.Sequential( | |
| nn.SiLU(), | |
| linear(emb_channels, 2 * self.out_channels if use_scale_shift_norm else self.out_channels, ), | |
| ) | |
| self.out_layers = nn.Sequential( | |
| normalization(self.out_channels), | |
| nn.SiLU(), | |
| nn.Dropout(p=dropout), | |
| zero_module(conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)), | |
| ) | |
| if self.out_channels == channels: | |
| self.skip_connection = nn.Identity() | |
| elif use_conv: | |
| self.skip_connection = conv_nd(dims, channels, self.out_channels, 3, padding=1) | |
| else: | |
| self.skip_connection = conv_nd(dims, channels, self.out_channels, 1) | |
| def forward(self, x, emb): | |
| """ | |
| Apply the block to a Tensor, conditioned on a timestep embedding. | |
| :param x: an [N x C x ...] Tensor of features. | |
| :param emb: an [N x emb_channels] Tensor of timestep embeddings. | |
| :return: an [N x C x ...] Tensor of outputs. | |
| """ | |
| return checkpoint(self._forward, (x, emb), self.parameters(), self.use_checkpoint) | |
| def _forward(self, x, emb): | |
| if self.updown: | |
| in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1] | |
| h = in_rest(x) | |
| h = self.h_upd(h) | |
| x = self.x_upd(x) | |
| h = in_conv(h) | |
| else: | |
| h = self.in_layers(x) | |
| emb_out = self.emb_layers(emb).type(h.dtype) | |
| while len(emb_out.shape) < len(h.shape): | |
| emb_out = emb_out[..., None] | |
| if self.use_scale_shift_norm: | |
| out_norm, out_rest = self.out_layers[0], self.out_layers[1:] | |
| scale, shift = th.chunk(emb_out, 2, dim=1) | |
| h = out_norm(h) * (1 + scale) + shift | |
| h = out_rest(h) | |
| else: | |
| h = h + emb_out | |
| h = self.out_layers(h) | |
| return self.skip_connection(x) + h | |
| class UNetModel(nn.Module): | |
| """ | |
| The full UNet model with attention and timestep embedding. | |
| :param in_channels: channels in the input Tensor. | |
| :param model_channels: base channel count for the model. | |
| :param out_channels: channels in the output Tensor. | |
| :param num_res_blocks: number of residual blocks per downsample. | |
| :param attention_resolutions: a collection of downsample rates at which | |
| attention will take place. May be a set, list, or tuple. | |
| For example, if this contains 4, then at 4x downsampling, attention | |
| will be used. | |
| :param dropout: the dropout probability. | |
| :param channel_mult: channel multiplier for each level of the UNet. | |
| :param conv_resample: if True, use learned convolutions for upsampling and | |
| downsampling. | |
| :param dims: determines if the signal is 1D, 2D, or 3D. | |
| :param num_classes: if specified (as an int), then this model will be | |
| class-conditional with `num_classes` classes. | |
| :param use_checkpoint: use gradient checkpointing to reduce memory usage. | |
| :param num_heads: the number of attention heads in each attention layer. | |
| :param num_heads_channels: if specified, ignore num_heads and instead use | |
| a fixed channel width per attention head. | |
| :param num_heads_upsample: works with num_heads to set a different number | |
| of heads for upsampling. Deprecated. | |
| :param use_scale_shift_norm: use a FiLM-like conditioning mechanism. | |
| :param resblock_updown: use residual blocks for up/downsampling. | |
| :param use_new_attention_order: use a different attention pattern for potentially | |
| increased efficiency. | |
| """ | |
| def __init__( | |
| self,image_size,in_channels,model_channels,out_channels,num_res_blocks,attention_resolutions,dropout=0, | |
| channel_mult=(1, 2, 4, 8),conv_resample=True,dims=2,num_classes=None,use_checkpoint=False,use_fp16=False, | |
| use_bf16=False,num_heads=-1,num_head_channels=-1,num_heads_upsample=-1,use_scale_shift_norm=False,resblock_updown=False, | |
| use_new_attention_order=False,use_spatial_transformer=False,transformer_depth=1,context_dim=None, | |
| n_embed=None,legacy=True,disable_self_attentions=None,num_attention_blocks=None,disable_middle_self_attn=False, | |
| use_linear_in_transformer=False,adm_in_channels=None, | |
| ): | |
| super().__init__() | |
| if context_dim is not None: | |
| from omegaconf.listconfig import ListConfig | |
| if type(context_dim) == ListConfig: | |
| context_dim = list(context_dim) | |
| if num_heads_upsample == -1: | |
| num_heads_upsample = num_heads | |
| self.image_size = image_size | |
| self.in_channels = in_channels | |
| self.model_channels = model_channels | |
| self.out_channels = out_channels | |
| if isinstance(num_res_blocks, int): self.num_res_blocks = len(channel_mult) * [num_res_blocks] | |
| else: self.num_res_blocks = num_res_blocks | |
| self.attention_resolutions = attention_resolutions | |
| self.dropout = dropout | |
| self.channel_mult = channel_mult | |
| self.conv_resample = conv_resample | |
| self.num_classes = num_classes | |
| self.use_checkpoint = use_checkpoint | |
| self.dtype = th.float16 if use_fp16 else th.float32 | |
| self.dtype = th.bfloat16 if use_bf16 else self.dtype | |
| self.num_heads = num_heads | |
| self.num_head_channels = num_head_channels | |
| self.num_heads_upsample = num_heads_upsample | |
| self.predict_codebook_ids = n_embed is not None | |
| time_embed_dim = model_channels * 4 | |
| self.time_embed = nn.Sequential( | |
| linear(model_channels, time_embed_dim), | |
| nn.SiLU(), | |
| linear(time_embed_dim, time_embed_dim), | |
| ) | |
| if self.num_classes is not None: | |
| if isinstance(self.num_classes, int): | |
| self.label_emb = nn.Embedding(num_classes, time_embed_dim) | |
| elif self.num_classes == "continuous": | |
| print("setting up linear c_adm embedding layer") | |
| self.label_emb = nn.Linear(1, time_embed_dim) | |
| elif self.num_classes == "sequential": | |
| assert adm_in_channels is not None | |
| self.label_emb = nn.Sequential( | |
| nn.Sequential( | |
| linear(adm_in_channels, time_embed_dim), | |
| nn.SiLU(), | |
| linear(time_embed_dim, time_embed_dim), | |
| ) | |
| ) | |
| else: | |
| raise ValueError() | |
| self.input_blocks = nn.ModuleList([ | |
| TimestepEmbedSequential( | |
| conv_nd(dims, in_channels, model_channels, 3, padding=1) | |
| ) | |
| ]) | |
| self._feature_size = model_channels | |
| input_block_chans = [model_channels] | |
| ch = model_channels | |
| ds = 1 | |
| for level, mult in enumerate(channel_mult): | |
| for nr in range(self.num_res_blocks[level]): | |
| layers = [ | |
| ResBlock( | |
| ch,time_embed_dim,dropout,out_channels=mult * model_channels,dims=dims, | |
| use_checkpoint=use_checkpoint,use_scale_shift_norm=use_scale_shift_norm, | |
| ) | |
| ] | |
| ch = mult * model_channels | |
| if ds in attention_resolutions: | |
| if num_head_channels == -1: | |
| dim_head = ch // num_heads | |
| else: | |
| num_heads = ch // num_head_channels | |
| dim_head = num_head_channels | |
| if legacy: | |
| # num_heads = 1 | |
| dim_head = (ch // num_heads if use_spatial_transformer else num_head_channels) | |
| if disable_self_attentions is not None: | |
| disabled_sa = disable_self_attentions[level] | |
| else: | |
| disabled_sa = False | |
| if num_attention_blocks is None or nr < num_attention_blocks[level]: | |
| layers.append( | |
| SpatialTransformer( | |
| ch,num_heads,dim_head,depth=transformer_depth,context_dim=context_dim, | |
| disable_self_attn=disabled_sa,use_linear=use_linear_in_transformer,use_checkpoint=use_checkpoint, | |
| ) | |
| ) | |
| self.input_blocks.append(TimestepEmbedSequential(*layers)) | |
| self._feature_size += ch | |
| input_block_chans.append(ch) | |
| if level != len(channel_mult) - 1: | |
| out_ch = ch | |
| self.input_blocks.append( | |
| TimestepEmbedSequential( | |
| ResBlock( | |
| ch,time_embed_dim,dropout,out_channels=out_ch,dims=dims,use_checkpoint=use_checkpoint, | |
| use_scale_shift_norm=use_scale_shift_norm,down=True, | |
| ) | |
| if resblock_updown | |
| else Downsample(ch, conv_resample, dims=dims, out_channels=out_ch) | |
| ) | |
| ) | |
| ch = out_ch | |
| input_block_chans.append(ch) | |
| ds *= 2 | |
| self._feature_size += ch | |
| if num_head_channels == -1: | |
| dim_head = ch // num_heads | |
| else: | |
| num_heads = ch // num_head_channels | |
| dim_head = num_head_channels | |
| if legacy: | |
| # num_heads = 1 | |
| dim_head = ch // num_heads if use_spatial_transformer else num_head_channels | |
| self.middle_block = TimestepEmbedSequential( | |
| ResBlock( | |
| ch,time_embed_dim,dropout,dims=dims, | |
| use_checkpoint=use_checkpoint,use_scale_shift_norm=use_scale_shift_norm, | |
| ), | |
| SpatialTransformer( # always uses a self-attn | |
| ch,num_heads,dim_head,depth=transformer_depth,context_dim=context_dim,disable_self_attn=disable_middle_self_attn, | |
| use_linear=use_linear_in_transformer,use_checkpoint=use_checkpoint, | |
| ), | |
| ResBlock( | |
| ch,time_embed_dim,dropout,dims=dims,use_checkpoint=use_checkpoint, | |
| use_scale_shift_norm=use_scale_shift_norm, | |
| ), | |
| ) | |
| self._feature_size += ch | |
| self.output_blocks = nn.ModuleList([]) | |
| for level, mult in list(enumerate(channel_mult))[::-1]: | |
| for i in range(self.num_res_blocks[level] + 1): | |
| ich = input_block_chans.pop() | |
| layers = [ | |
| ResBlock( | |
| ch + ich,time_embed_dim,dropout,out_channels=model_channels * mult,dims=dims, | |
| use_checkpoint=use_checkpoint,use_scale_shift_norm=use_scale_shift_norm, | |
| ) | |
| ] | |
| ch = model_channels * mult | |
| if ds in attention_resolutions: | |
| if num_head_channels == -1: | |
| dim_head = ch // num_heads | |
| else: | |
| num_heads = ch // num_head_channels | |
| dim_head = num_head_channels | |
| if legacy: | |
| # num_heads = 1 | |
| dim_head = ( | |
| ch // num_heads | |
| if use_spatial_transformer | |
| else num_head_channels | |
| ) | |
| if disable_self_attentions is not None: | |
| disabled_sa = disable_self_attentions[level] | |
| else: | |
| disabled_sa = False | |
| if (num_attention_blocks is None or i < num_attention_blocks[level]): | |
| layers.append( | |
| SpatialTransformer( | |
| ch,num_heads,dim_head,depth=transformer_depth,context_dim=context_dim,disable_self_attn=disabled_sa, | |
| use_linear=use_linear_in_transformer,use_checkpoint=use_checkpoint, | |
| ) | |
| ) | |
| if level and i == self.num_res_blocks[level]: | |
| out_ch = ch | |
| layers.append( | |
| ResBlock( | |
| ch,time_embed_dim,dropout,out_channels=out_ch,dims=dims, | |
| use_checkpoint=use_checkpoint,use_scale_shift_norm=use_scale_shift_norm,up=True, | |
| ) | |
| if resblock_updown | |
| else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch) | |
| ) | |
| ds //= 2 | |
| self.output_blocks.append(TimestepEmbedSequential(*layers)) | |
| self._feature_size += ch | |
| self.out = nn.Sequential( | |
| normalization(ch), | |
| nn.SiLU(), | |
| zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)), | |
| ) | |
| if self.predict_codebook_ids: | |
| self.id_predictor = nn.Sequential( | |
| normalization(ch), | |
| conv_nd(dims, model_channels, n_embed, 1), | |
| ) | |
| def convert_to_fp16(self): | |
| """ | |
| Convert the torso of the model to float16. | |
| """ | |
| self.input_blocks.apply(convert_module_to_f16) | |
| self.middle_block.apply(convert_module_to_f16) | |
| self.output_blocks.apply(convert_module_to_f16) | |
| def convert_to_fp32(self): | |
| """ | |
| Convert the torso of the model to float32. | |
| """ | |
| self.input_blocks.apply(convert_module_to_f32) | |
| self.middle_block.apply(convert_module_to_f32) | |
| self.output_blocks.apply(convert_module_to_f32) | |
| def forward(self, x, timesteps=None, context=None, y=None, **kwargs): | |
| """ | |
| Apply the model to an input batch. | |
| :param x: an [N x C x ...] Tensor of inputs. | |
| :param timesteps: a 1-D batch of timesteps. | |
| :param context: conditioning plugged in via crossattn | |
| :return: an [N x C x ...] Tensor of outputs. | |
| """ | |
| hs = [] | |
| t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False) | |
| emb = self.time_embed(t_emb) | |
| if self.num_classes is not None: | |
| assert y.shape[0] == x.shape[0] | |
| emb = emb + self.label_emb(y) | |
| h = x.type(self.dtype) | |
| for module in self.input_blocks: | |
| h = module(h, emb, context) | |
| hs.append(h) | |
| h = self.middle_block(h, emb, context) | |
| for module in self.output_blocks: | |
| h = th.cat([h, hs.pop()], dim=1) | |
| h = module(h, emb, context) | |
| h = h.type(x.dtype) | |
| if self.predict_codebook_ids: | |
| return self.id_predictor(h) | |
| else: | |
| return self.out(h) | |