Spaces:
Runtime error
Runtime error
Update i2v_enhance/thirdparty/VFI/Trainer.py
Browse files- i2v_enhance/thirdparty/VFI/Trainer.py +168 -168
i2v_enhance/thirdparty/VFI/Trainer.py
CHANGED
|
@@ -1,168 +1,168 @@
|
|
| 1 |
-
# Adapted from https://github.com/MCG-NJU/EMA-VFI/blob/main/Trainer.py
|
| 2 |
-
import torch
|
| 3 |
-
import torch.nn.functional as F
|
| 4 |
-
from torch.nn.parallel import DistributedDataParallel as DDP
|
| 5 |
-
from torch.optim import AdamW
|
| 6 |
-
from i2v_enhance.thirdparty.VFI.model.loss import *
|
| 7 |
-
from i2v_enhance.thirdparty.VFI.config import *
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
class Model:
|
| 11 |
-
def __init__(self, local_rank):
|
| 12 |
-
backbonetype, multiscaletype = MODEL_CONFIG['MODEL_TYPE']
|
| 13 |
-
backbonecfg, multiscalecfg = MODEL_CONFIG['MODEL_ARCH']
|
| 14 |
-
self.net = multiscaletype(backbonetype(**backbonecfg), **multiscalecfg)
|
| 15 |
-
self.name = MODEL_CONFIG['LOGNAME']
|
| 16 |
-
self.device()
|
| 17 |
-
|
| 18 |
-
# train
|
| 19 |
-
self.optimG = AdamW(self.net.parameters(), lr=2e-4, weight_decay=1e-4)
|
| 20 |
-
self.lap = LapLoss()
|
| 21 |
-
if local_rank != -1:
|
| 22 |
-
self.net = DDP(self.net, device_ids=[local_rank], output_device=local_rank)
|
| 23 |
-
|
| 24 |
-
def train(self):
|
| 25 |
-
self.net.train()
|
| 26 |
-
|
| 27 |
-
def eval(self):
|
| 28 |
-
self.net.eval()
|
| 29 |
-
|
| 30 |
-
def device(self):
|
| 31 |
-
self.net.to(torch.device("cuda"))
|
| 32 |
-
|
| 33 |
-
def unload(self):
|
| 34 |
-
self.net.to(torch.device("cpu"))
|
| 35 |
-
|
| 36 |
-
def load_model(self, name=None, rank=0):
|
| 37 |
-
def convert(param):
|
| 38 |
-
return {
|
| 39 |
-
k.replace("module.", ""): v
|
| 40 |
-
for k, v in param.items()
|
| 41 |
-
if "module." in k and 'attn_mask' not in k and 'HW' not in k
|
| 42 |
-
}
|
| 43 |
-
if rank <= 0 :
|
| 44 |
-
if name is None:
|
| 45 |
-
name = self.name
|
| 46 |
-
# self.net.load_state_dict(convert(torch.load(f'ckpt/{name}.pkl')))
|
| 47 |
-
self.net.load_state_dict(convert(torch.load(f'{name}')))
|
| 48 |
-
|
| 49 |
-
def save_model(self, rank=0):
|
| 50 |
-
if rank == 0:
|
| 51 |
-
torch.save(self.net.state_dict(),f'ckpt/{self.name}.pkl')
|
| 52 |
-
|
| 53 |
-
@torch.no_grad()
|
| 54 |
-
def hr_inference(self, img0, img1, TTA = False, down_scale = 1.0, timestep = 0.5, fast_TTA = False):
|
| 55 |
-
'''
|
| 56 |
-
Infer with down_scale flow
|
| 57 |
-
Noting: return BxCxHxW
|
| 58 |
-
'''
|
| 59 |
-
def infer(imgs):
|
| 60 |
-
img0, img1 = imgs[:, :3], imgs[:, 3:6]
|
| 61 |
-
imgs_down = F.interpolate(imgs, scale_factor=down_scale, mode="bilinear", align_corners=False)
|
| 62 |
-
|
| 63 |
-
flow, mask = self.net.calculate_flow(imgs_down, timestep)
|
| 64 |
-
|
| 65 |
-
flow = F.interpolate(flow, scale_factor = 1/down_scale, mode="bilinear", align_corners=False) * (1/down_scale)
|
| 66 |
-
mask = F.interpolate(mask, scale_factor = 1/down_scale, mode="bilinear", align_corners=False)
|
| 67 |
-
|
| 68 |
-
af, _ = self.net.feature_bone(img0, img1)
|
| 69 |
-
pred = self.net.coraseWarp_and_Refine(imgs, af, flow, mask)
|
| 70 |
-
return pred
|
| 71 |
-
|
| 72 |
-
imgs = torch.cat((img0, img1), 1)
|
| 73 |
-
if fast_TTA:
|
| 74 |
-
imgs_ = imgs.flip(2).flip(3)
|
| 75 |
-
input = torch.cat((imgs, imgs_), 0)
|
| 76 |
-
preds = infer(input)
|
| 77 |
-
return (preds[0] + preds[1].flip(1).flip(2)).unsqueeze(0) / 2.
|
| 78 |
-
|
| 79 |
-
if TTA == False:
|
| 80 |
-
return infer(imgs)
|
| 81 |
-
else:
|
| 82 |
-
return (infer(imgs) + infer(imgs.flip(2).flip(3)).flip(2).flip(3)) / 2
|
| 83 |
-
|
| 84 |
-
@torch.no_grad()
|
| 85 |
-
def inference(self, img0, img1, TTA = False, timestep = 0.5, fast_TTA = False):
|
| 86 |
-
imgs = torch.cat((img0, img1), 1)
|
| 87 |
-
'''
|
| 88 |
-
Noting: return BxCxHxW
|
| 89 |
-
'''
|
| 90 |
-
if fast_TTA:
|
| 91 |
-
imgs_ = imgs.flip(2).flip(3)
|
| 92 |
-
input = torch.cat((imgs, imgs_), 0)
|
| 93 |
-
_, _, _, preds = self.net(input, timestep=timestep)
|
| 94 |
-
return (preds[0] + preds[1].flip(1).flip(2)).unsqueeze(0) / 2.
|
| 95 |
-
|
| 96 |
-
_, _, _, pred = self.net(imgs, timestep=timestep)
|
| 97 |
-
if TTA == False:
|
| 98 |
-
return pred
|
| 99 |
-
else:
|
| 100 |
-
_, _, _, pred2 = self.net(imgs.flip(2).flip(3), timestep=timestep)
|
| 101 |
-
return (pred + pred2.flip(2).flip(3)) / 2
|
| 102 |
-
|
| 103 |
-
@torch.no_grad()
|
| 104 |
-
def multi_inference(self, img0, img1, TTA = False, down_scale = 1.0, time_list=[], fast_TTA = False):
|
| 105 |
-
'''
|
| 106 |
-
Run backbone once, get multi frames at different timesteps
|
| 107 |
-
Noting: return a list of [CxHxW]
|
| 108 |
-
'''
|
| 109 |
-
assert len(time_list) > 0, 'Time_list should not be empty!'
|
| 110 |
-
def infer(imgs):
|
| 111 |
-
img0, img1 = imgs[:, :3], imgs[:, 3:6]
|
| 112 |
-
af, mf = self.net.feature_bone(img0, img1)
|
| 113 |
-
imgs_down = None
|
| 114 |
-
if down_scale != 1.0:
|
| 115 |
-
imgs_down = F.interpolate(imgs, scale_factor=down_scale, mode="bilinear", align_corners=False)
|
| 116 |
-
afd, mfd = self.net.feature_bone(imgs_down[:, :3], imgs_down[:, 3:6])
|
| 117 |
-
|
| 118 |
-
pred_list = []
|
| 119 |
-
for timestep in time_list:
|
| 120 |
-
if imgs_down is None:
|
| 121 |
-
flow, mask = self.net.calculate_flow(imgs, timestep, af, mf)
|
| 122 |
-
else:
|
| 123 |
-
flow, mask = self.net.calculate_flow(imgs_down, timestep, afd, mfd)
|
| 124 |
-
flow = F.interpolate(flow, scale_factor = 1/down_scale, mode="bilinear", align_corners=False) * (1/down_scale)
|
| 125 |
-
mask = F.interpolate(mask, scale_factor = 1/down_scale, mode="bilinear", align_corners=False)
|
| 126 |
-
|
| 127 |
-
pred = self.net.coraseWarp_and_Refine(imgs, af, flow, mask)
|
| 128 |
-
pred_list.append(pred)
|
| 129 |
-
|
| 130 |
-
return pred_list
|
| 131 |
-
|
| 132 |
-
imgs = torch.cat((img0, img1), 1)
|
| 133 |
-
if fast_TTA:
|
| 134 |
-
imgs_ = imgs.flip(2).flip(3)
|
| 135 |
-
input = torch.cat((imgs, imgs_), 0)
|
| 136 |
-
preds_lst = infer(input)
|
| 137 |
-
return [(preds_lst[i][0] + preds_lst[i][1].flip(1).flip(2))/2 for i in range(len(time_list))]
|
| 138 |
-
|
| 139 |
-
preds = infer(imgs)
|
| 140 |
-
if TTA is False:
|
| 141 |
-
return [preds[i][0] for i in range(len(time_list))]
|
| 142 |
-
else:
|
| 143 |
-
flip_pred = infer(imgs.flip(2).flip(3))
|
| 144 |
-
return [(preds[i][0] + flip_pred[i][0].flip(1).flip(2))/2 for i in range(len(time_list))]
|
| 145 |
-
|
| 146 |
-
def update(self, imgs, gt, learning_rate=0, training=True):
|
| 147 |
-
for param_group in self.optimG.param_groups:
|
| 148 |
-
param_group['lr'] = learning_rate
|
| 149 |
-
if training:
|
| 150 |
-
self.train()
|
| 151 |
-
else:
|
| 152 |
-
self.eval()
|
| 153 |
-
|
| 154 |
-
if training:
|
| 155 |
-
flow, mask, merged, pred = self.net(imgs)
|
| 156 |
-
loss_l1 = (self.lap(pred, gt)).mean()
|
| 157 |
-
|
| 158 |
-
for merge in merged:
|
| 159 |
-
loss_l1 += (self.lap(merge, gt)).mean() * 0.5
|
| 160 |
-
|
| 161 |
-
self.optimG.zero_grad()
|
| 162 |
-
loss_l1.backward()
|
| 163 |
-
self.optimG.step()
|
| 164 |
-
return pred, loss_l1
|
| 165 |
-
else:
|
| 166 |
-
with torch.no_grad():
|
| 167 |
-
flow, mask, merged, pred = self.net(imgs)
|
| 168 |
-
return pred, 0
|
|
|
|
| 1 |
+
# Adapted from https://github.com/MCG-NJU/EMA-VFI/blob/main/Trainer.py
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
from torch.nn.parallel import DistributedDataParallel as DDP
|
| 5 |
+
from torch.optim import AdamW
|
| 6 |
+
from i2v_enhance.thirdparty.VFI.model.loss import *
|
| 7 |
+
from i2v_enhance.thirdparty.VFI.config import *
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class Model:
|
| 11 |
+
def __init__(self, local_rank):
|
| 12 |
+
backbonetype, multiscaletype = MODEL_CONFIG['MODEL_TYPE']
|
| 13 |
+
backbonecfg, multiscalecfg = MODEL_CONFIG['MODEL_ARCH']
|
| 14 |
+
self.net = multiscaletype(backbonetype(**backbonecfg), **multiscalecfg)
|
| 15 |
+
self.name = MODEL_CONFIG['LOGNAME']
|
| 16 |
+
# self.device()
|
| 17 |
+
|
| 18 |
+
# train
|
| 19 |
+
self.optimG = AdamW(self.net.parameters(), lr=2e-4, weight_decay=1e-4)
|
| 20 |
+
self.lap = LapLoss()
|
| 21 |
+
if local_rank != -1:
|
| 22 |
+
self.net = DDP(self.net, device_ids=[local_rank], output_device=local_rank)
|
| 23 |
+
|
| 24 |
+
def train(self):
|
| 25 |
+
self.net.train()
|
| 26 |
+
|
| 27 |
+
def eval(self):
|
| 28 |
+
self.net.eval()
|
| 29 |
+
|
| 30 |
+
def device(self):
|
| 31 |
+
self.net.to(torch.device("cuda"))
|
| 32 |
+
|
| 33 |
+
def unload(self):
|
| 34 |
+
self.net.to(torch.device("cpu"))
|
| 35 |
+
|
| 36 |
+
def load_model(self, name=None, rank=0):
|
| 37 |
+
def convert(param):
|
| 38 |
+
return {
|
| 39 |
+
k.replace("module.", ""): v
|
| 40 |
+
for k, v in param.items()
|
| 41 |
+
if "module." in k and 'attn_mask' not in k and 'HW' not in k
|
| 42 |
+
}
|
| 43 |
+
if rank <= 0 :
|
| 44 |
+
if name is None:
|
| 45 |
+
name = self.name
|
| 46 |
+
# self.net.load_state_dict(convert(torch.load(f'ckpt/{name}.pkl')))
|
| 47 |
+
self.net.load_state_dict(convert(torch.load(f'{name}')))
|
| 48 |
+
|
| 49 |
+
def save_model(self, rank=0):
|
| 50 |
+
if rank == 0:
|
| 51 |
+
torch.save(self.net.state_dict(),f'ckpt/{self.name}.pkl')
|
| 52 |
+
|
| 53 |
+
@torch.no_grad()
|
| 54 |
+
def hr_inference(self, img0, img1, TTA = False, down_scale = 1.0, timestep = 0.5, fast_TTA = False):
|
| 55 |
+
'''
|
| 56 |
+
Infer with down_scale flow
|
| 57 |
+
Noting: return BxCxHxW
|
| 58 |
+
'''
|
| 59 |
+
def infer(imgs):
|
| 60 |
+
img0, img1 = imgs[:, :3], imgs[:, 3:6]
|
| 61 |
+
imgs_down = F.interpolate(imgs, scale_factor=down_scale, mode="bilinear", align_corners=False)
|
| 62 |
+
|
| 63 |
+
flow, mask = self.net.calculate_flow(imgs_down, timestep)
|
| 64 |
+
|
| 65 |
+
flow = F.interpolate(flow, scale_factor = 1/down_scale, mode="bilinear", align_corners=False) * (1/down_scale)
|
| 66 |
+
mask = F.interpolate(mask, scale_factor = 1/down_scale, mode="bilinear", align_corners=False)
|
| 67 |
+
|
| 68 |
+
af, _ = self.net.feature_bone(img0, img1)
|
| 69 |
+
pred = self.net.coraseWarp_and_Refine(imgs, af, flow, mask)
|
| 70 |
+
return pred
|
| 71 |
+
|
| 72 |
+
imgs = torch.cat((img0, img1), 1)
|
| 73 |
+
if fast_TTA:
|
| 74 |
+
imgs_ = imgs.flip(2).flip(3)
|
| 75 |
+
input = torch.cat((imgs, imgs_), 0)
|
| 76 |
+
preds = infer(input)
|
| 77 |
+
return (preds[0] + preds[1].flip(1).flip(2)).unsqueeze(0) / 2.
|
| 78 |
+
|
| 79 |
+
if TTA == False:
|
| 80 |
+
return infer(imgs)
|
| 81 |
+
else:
|
| 82 |
+
return (infer(imgs) + infer(imgs.flip(2).flip(3)).flip(2).flip(3)) / 2
|
| 83 |
+
|
| 84 |
+
@torch.no_grad()
|
| 85 |
+
def inference(self, img0, img1, TTA = False, timestep = 0.5, fast_TTA = False):
|
| 86 |
+
imgs = torch.cat((img0, img1), 1)
|
| 87 |
+
'''
|
| 88 |
+
Noting: return BxCxHxW
|
| 89 |
+
'''
|
| 90 |
+
if fast_TTA:
|
| 91 |
+
imgs_ = imgs.flip(2).flip(3)
|
| 92 |
+
input = torch.cat((imgs, imgs_), 0)
|
| 93 |
+
_, _, _, preds = self.net(input, timestep=timestep)
|
| 94 |
+
return (preds[0] + preds[1].flip(1).flip(2)).unsqueeze(0) / 2.
|
| 95 |
+
|
| 96 |
+
_, _, _, pred = self.net(imgs, timestep=timestep)
|
| 97 |
+
if TTA == False:
|
| 98 |
+
return pred
|
| 99 |
+
else:
|
| 100 |
+
_, _, _, pred2 = self.net(imgs.flip(2).flip(3), timestep=timestep)
|
| 101 |
+
return (pred + pred2.flip(2).flip(3)) / 2
|
| 102 |
+
|
| 103 |
+
@torch.no_grad()
|
| 104 |
+
def multi_inference(self, img0, img1, TTA = False, down_scale = 1.0, time_list=[], fast_TTA = False):
|
| 105 |
+
'''
|
| 106 |
+
Run backbone once, get multi frames at different timesteps
|
| 107 |
+
Noting: return a list of [CxHxW]
|
| 108 |
+
'''
|
| 109 |
+
assert len(time_list) > 0, 'Time_list should not be empty!'
|
| 110 |
+
def infer(imgs):
|
| 111 |
+
img0, img1 = imgs[:, :3], imgs[:, 3:6]
|
| 112 |
+
af, mf = self.net.feature_bone(img0, img1)
|
| 113 |
+
imgs_down = None
|
| 114 |
+
if down_scale != 1.0:
|
| 115 |
+
imgs_down = F.interpolate(imgs, scale_factor=down_scale, mode="bilinear", align_corners=False)
|
| 116 |
+
afd, mfd = self.net.feature_bone(imgs_down[:, :3], imgs_down[:, 3:6])
|
| 117 |
+
|
| 118 |
+
pred_list = []
|
| 119 |
+
for timestep in time_list:
|
| 120 |
+
if imgs_down is None:
|
| 121 |
+
flow, mask = self.net.calculate_flow(imgs, timestep, af, mf)
|
| 122 |
+
else:
|
| 123 |
+
flow, mask = self.net.calculate_flow(imgs_down, timestep, afd, mfd)
|
| 124 |
+
flow = F.interpolate(flow, scale_factor = 1/down_scale, mode="bilinear", align_corners=False) * (1/down_scale)
|
| 125 |
+
mask = F.interpolate(mask, scale_factor = 1/down_scale, mode="bilinear", align_corners=False)
|
| 126 |
+
|
| 127 |
+
pred = self.net.coraseWarp_and_Refine(imgs, af, flow, mask)
|
| 128 |
+
pred_list.append(pred)
|
| 129 |
+
|
| 130 |
+
return pred_list
|
| 131 |
+
|
| 132 |
+
imgs = torch.cat((img0, img1), 1)
|
| 133 |
+
if fast_TTA:
|
| 134 |
+
imgs_ = imgs.flip(2).flip(3)
|
| 135 |
+
input = torch.cat((imgs, imgs_), 0)
|
| 136 |
+
preds_lst = infer(input)
|
| 137 |
+
return [(preds_lst[i][0] + preds_lst[i][1].flip(1).flip(2))/2 for i in range(len(time_list))]
|
| 138 |
+
|
| 139 |
+
preds = infer(imgs)
|
| 140 |
+
if TTA is False:
|
| 141 |
+
return [preds[i][0] for i in range(len(time_list))]
|
| 142 |
+
else:
|
| 143 |
+
flip_pred = infer(imgs.flip(2).flip(3))
|
| 144 |
+
return [(preds[i][0] + flip_pred[i][0].flip(1).flip(2))/2 for i in range(len(time_list))]
|
| 145 |
+
|
| 146 |
+
def update(self, imgs, gt, learning_rate=0, training=True):
|
| 147 |
+
for param_group in self.optimG.param_groups:
|
| 148 |
+
param_group['lr'] = learning_rate
|
| 149 |
+
if training:
|
| 150 |
+
self.train()
|
| 151 |
+
else:
|
| 152 |
+
self.eval()
|
| 153 |
+
|
| 154 |
+
if training:
|
| 155 |
+
flow, mask, merged, pred = self.net(imgs)
|
| 156 |
+
loss_l1 = (self.lap(pred, gt)).mean()
|
| 157 |
+
|
| 158 |
+
for merge in merged:
|
| 159 |
+
loss_l1 += (self.lap(merge, gt)).mean() * 0.5
|
| 160 |
+
|
| 161 |
+
self.optimG.zero_grad()
|
| 162 |
+
loss_l1.backward()
|
| 163 |
+
self.optimG.step()
|
| 164 |
+
return pred, loss_l1
|
| 165 |
+
else:
|
| 166 |
+
with torch.no_grad():
|
| 167 |
+
flow, mask, merged, pred = self.net(imgs)
|
| 168 |
+
return pred, 0
|