Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,124 +1,75 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
from transformers import AutoProcessor, AutoModelForCausalLM
|
| 3 |
-
import re
|
| 4 |
-
from PIL import Image
|
| 5 |
import os
|
| 6 |
-
import
|
| 7 |
-
import spaces
|
| 8 |
import subprocess
|
|
|
|
|
|
|
|
|
|
| 9 |
import torch
|
|
|
|
| 10 |
|
| 11 |
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
).eval()
|
| 18 |
-
processor = AutoProcessor.from_pretrained(
|
| 19 |
-
'PJMixers-Images/Florence-2-base-Castollux-v0.5',
|
| 20 |
-
trust_remote_code=True
|
| 21 |
-
)
|
| 22 |
|
| 23 |
TITLE = "# [PJMixers-Images/Florence-2-base-Castollux-v0.5](https://huggingface.co/PJMixers-Images/Florence-2-base-Castollux-v0.5)"
|
| 24 |
|
| 25 |
|
| 26 |
-
@spaces.GPU
|
| 27 |
def process_image(image):
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
image
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
return "Invalid folder path."
|
| 68 |
-
|
| 69 |
-
processed_files = []
|
| 70 |
-
skipped_files = []
|
| 71 |
-
for filename in os.listdir(folder_path):
|
| 72 |
-
if filename.lower().endswith(('.png', '.jpg', '.jpeg', '.gif', '.bmp', '.webp', '.heic')):
|
| 73 |
-
image_path = os.path.join(folder_path, filename)
|
| 74 |
-
txt_filename = os.path.splitext(filename)[0] + '.txt'
|
| 75 |
-
txt_path = os.path.join(folder_path, txt_filename)
|
| 76 |
-
|
| 77 |
-
# Check if the corresponding text file already exists
|
| 78 |
-
if os.path.exists(txt_path):
|
| 79 |
-
skipped_files.append(f"Skipped {filename} (text file already exists)")
|
| 80 |
-
continue
|
| 81 |
-
|
| 82 |
-
# Check if the image has multiple frames
|
| 83 |
-
with Image.open(image_path) as img:
|
| 84 |
-
if getattr(img, "is_animated", False) and img.n_frames > 1:
|
| 85 |
-
# Extract frames
|
| 86 |
-
frames = extract_frames(image_path, folder_path)
|
| 87 |
-
for frame_path in frames:
|
| 88 |
-
frame_txt_filename = os.path.splitext(os.path.basename(frame_path))[0] + '.txt'
|
| 89 |
-
frame_txt_path = os.path.join(folder_path, frame_txt_filename)
|
| 90 |
-
|
| 91 |
-
# Check if the corresponding text file for the frame already exists
|
| 92 |
-
if os.path.exists(frame_txt_path):
|
| 93 |
-
skipped_files.append(f"Skipped {os.path.basename(frame_path)} (text file already exists)")
|
| 94 |
-
continue
|
| 95 |
-
|
| 96 |
-
caption = process_image(frame_path)
|
| 97 |
-
|
| 98 |
-
with open(frame_txt_path, 'w', encoding='utf-8') as f:
|
| 99 |
-
f.write(caption)
|
| 100 |
-
|
| 101 |
-
processed_files.append(f"Processed {os.path.basename(frame_path)} -> {frame_txt_filename}")
|
| 102 |
-
else:
|
| 103 |
-
# Process single image
|
| 104 |
-
caption = process_image(image_path)
|
| 105 |
-
|
| 106 |
-
with open(txt_path, 'w', encoding='utf-8') as f:
|
| 107 |
-
f.write(caption)
|
| 108 |
-
|
| 109 |
-
processed_files.append(f"Processed {filename} -> {txt_filename}")
|
| 110 |
-
|
| 111 |
-
result = "\n".join(processed_files + skipped_files)
|
| 112 |
-
|
| 113 |
-
return result if result else "No image files found or all files were skipped in the specified folder."
|
| 114 |
|
|
|
|
|
|
|
| 115 |
css = """
|
| 116 |
#output { height: 500px; overflow: auto; border: 1px solid #ccc; }
|
| 117 |
"""
|
| 118 |
|
| 119 |
with gr.Blocks(css=css) as demo:
|
| 120 |
gr.Markdown(TITLE)
|
| 121 |
-
|
| 122 |
with gr.Tab(label="Single Image Processing"):
|
| 123 |
with gr.Row():
|
| 124 |
with gr.Column():
|
|
@@ -126,7 +77,7 @@ with gr.Blocks(css=css) as demo:
|
|
| 126 |
submit_btn = gr.Button(value="Submit")
|
| 127 |
with gr.Column():
|
| 128 |
output_text = gr.Textbox(label="Output Text")
|
| 129 |
-
|
| 130 |
gr.Examples(
|
| 131 |
[
|
| 132 |
["eval_img_1.jpg"],
|
|
@@ -136,22 +87,15 @@ with gr.Blocks(css=css) as demo:
|
|
| 136 |
["eval_img_5.jpg"],
|
| 137 |
["eval_img_6.jpg"],
|
| 138 |
["eval_img_7.png"],
|
| 139 |
-
["eval_img_8.jpg"]
|
| 140 |
],
|
| 141 |
inputs=[input_img],
|
| 142 |
outputs=[output_text],
|
| 143 |
fn=process_image,
|
| 144 |
-
label=
|
| 145 |
)
|
| 146 |
-
|
| 147 |
-
submit_btn.click(process_image, [input_img], [output_text])
|
| 148 |
|
| 149 |
-
|
| 150 |
-
with gr.Row():
|
| 151 |
-
folder_input = gr.Textbox(label="Input Folder Path")
|
| 152 |
-
batch_submit_btn = gr.Button(value="Process Folder")
|
| 153 |
-
batch_output = gr.Textbox(label="Batch Processing Results", lines=10)
|
| 154 |
-
|
| 155 |
-
batch_submit_btn.click(process_folder, [folder_input], [batch_output])
|
| 156 |
|
| 157 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
+
import re
|
|
|
|
| 3 |
import subprocess
|
| 4 |
+
import numpy as np
|
| 5 |
+
from PIL import Image
|
| 6 |
+
import gradio as gr
|
| 7 |
import torch
|
| 8 |
+
from transformers import AutoProcessor, AutoModelForCausalLM
|
| 9 |
|
| 10 |
|
| 11 |
+
# Load model and processor, enabling trust_remote_code if needed
|
| 12 |
+
model_name = "PJMixers-Images/Florence-2-base-Castollux-v0.5"
|
| 13 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True).eval()
|
| 14 |
+
processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True)
|
| 15 |
|
| 16 |
+
# Set device (GPU if available)
|
| 17 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 18 |
+
model.to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
TITLE = "# [PJMixers-Images/Florence-2-base-Castollux-v0.5](https://huggingface.co/PJMixers-Images/Florence-2-base-Castollux-v0.5)"
|
| 21 |
|
| 22 |
|
|
|
|
| 23 |
def process_image(image):
|
| 24 |
+
"""
|
| 25 |
+
Process a single image to generate a caption.
|
| 26 |
+
Supports image input as file path, numpy array, or PIL Image.
|
| 27 |
+
"""
|
| 28 |
+
try:
|
| 29 |
+
# Convert input to PIL image if necessary
|
| 30 |
+
if isinstance(image, np.ndarray):
|
| 31 |
+
image = Image.fromarray(image)
|
| 32 |
+
elif isinstance(image, str):
|
| 33 |
+
image = Image.open(image)
|
| 34 |
+
if image.mode != "RGB":
|
| 35 |
+
image = image.convert("RGB")
|
| 36 |
+
|
| 37 |
+
# Prepare inputs for the model
|
| 38 |
+
inputs = processor(text="<CAPTION>", images=image, return_tensors="pt")
|
| 39 |
+
# Move tensors to the appropriate device
|
| 40 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
| 41 |
+
|
| 42 |
+
# Disable gradients during inference
|
| 43 |
+
with torch.no_grad():
|
| 44 |
+
generated_ids = model.generate(
|
| 45 |
+
input_ids=inputs["input_ids"],
|
| 46 |
+
pixel_values=inputs["pixel_values"],
|
| 47 |
+
max_new_tokens=1024,
|
| 48 |
+
num_beams=5,
|
| 49 |
+
do_sample=True,
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
# Decode and post-process the generated text
|
| 53 |
+
generated_text = processor.batch_decode(
|
| 54 |
+
generated_ids, skip_special_tokens=False
|
| 55 |
+
)[0]
|
| 56 |
+
caption = processor.post_process_generation(
|
| 57 |
+
generated_text, task="<CAPTION>", image_size=(image.width, image.height)
|
| 58 |
+
)
|
| 59 |
+
return caption
|
| 60 |
+
|
| 61 |
+
except Exception as e:
|
| 62 |
+
return f"Error processing image: {e}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
+
|
| 65 |
+
# Custom CSS to style the output box
|
| 66 |
css = """
|
| 67 |
#output { height: 500px; overflow: auto; border: 1px solid #ccc; }
|
| 68 |
"""
|
| 69 |
|
| 70 |
with gr.Blocks(css=css) as demo:
|
| 71 |
gr.Markdown(TITLE)
|
| 72 |
+
|
| 73 |
with gr.Tab(label="Single Image Processing"):
|
| 74 |
with gr.Row():
|
| 75 |
with gr.Column():
|
|
|
|
| 77 |
submit_btn = gr.Button(value="Submit")
|
| 78 |
with gr.Column():
|
| 79 |
output_text = gr.Textbox(label="Output Text")
|
| 80 |
+
|
| 81 |
gr.Examples(
|
| 82 |
[
|
| 83 |
["eval_img_1.jpg"],
|
|
|
|
| 87 |
["eval_img_5.jpg"],
|
| 88 |
["eval_img_6.jpg"],
|
| 89 |
["eval_img_7.png"],
|
| 90 |
+
["eval_img_8.jpg"],
|
| 91 |
],
|
| 92 |
inputs=[input_img],
|
| 93 |
outputs=[output_text],
|
| 94 |
fn=process_image,
|
| 95 |
+
label="Try captioning on below examples",
|
| 96 |
)
|
|
|
|
|
|
|
| 97 |
|
| 98 |
+
submit_btn.click(process_image, [input_img], [output_text])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
|
| 100 |
+
if __name__ == "__main__":
|
| 101 |
+
demo.launch(debug=True)
|