#!/usr/bin/env python3 # -*- coding: utf-8 -*- # HIVE 🐝 FULL MERGED ALL-IN-ONE **OPTIMIZED** # Offline-first + Online updates + Auto Wi-Fi + RBAC + Multilingual Voice (ASR/TTS + Phonics) # + Internal Optimization Stack (Change Manager: propose ➡️ sandbox ➡️ A/B test ➡️ apply/rollback with Owner policy) # Upload this single file and requirements.txt to a Hugging Face Space (or run locally). # - python app.py # --- BEGIN MEMORY MANIFEST (auto-updated) --- # (This block is auto-written by Hive to record what datasets/files # have already been converted into memory (curves). Do not edit by hand.) MEMORY_MANIFEST = { "updated_ts": 0, "datasets_done": [], "vectors_total": 0, "notes": "Set HIVE_ALLOW_SELF_WRITE_MANIFEST=0 to stop auto-updates." } # --- END MEMORY MANIFEST --- import os, sys, re, json, time, shutil, tempfile, subprocess, platform, socket, threading, importlib, hashlib, unicodedata, urllib.request, base64 from dataclasses import dataclass from typing import Optional, List, Dict, Tuple # ----------- light bootstrap (safe) ----------- def _ensure(pkgs: List[str]): for p in pkgs: # type: ignore mod = p.split("==")[0].split(">=")[0].split("<=")[0].split("[")[0] try: importlib.import_module(mod) except Exception: try: subprocess.check_call([sys.executable, "-m", "pip", "install", "--upgrade", p]) except Exception: pass _ensure(["numpy>=1.24.0","psutil>=5.9.0","requests>=2.31.0","gradio>=4.44.0","sentence-transformers>=3.0.0","faiss-cpu>=1.8.0", "transformers>=4.44.0","accelerate>=0.33.0","datasets>=2.21.0","soundfile>=0.12.1","faster-whisper>=1.0.0","langid>=1.1.6", "piper-tts>=1.2.0","g2p_en>=2.1.0","librosa>=0.10.1","scikit-learn>=1.1.0","feedparser>=6.0.11","duckduckgo_search>=6.2.10", "keyring>=24.3.1"]) import numpy as np, psutil, requests, feedparser, langid, librosa, gradio as gr, soundfile as sf from sentence_transformers import SentenceTransformer from duckduckgo_search import DDGS from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline from faster_whisper import WhisperModel from piper.voice import PiperVoice from g2p_en import G2p from sklearn.metrics.pairwise import cosine_similarity try: import torch except Exception: torch=None try: import faiss except Exception: subprocess.check_call([sys.executable,"-m","pip","install","--upgrade","faiss-cpu>=1.8.0"]) import faiss # Optional vision try: import cv2; _HAVE_CV=True except Exception: _HAVE_CV=False try: from PIL import Image import pytesseract; _HAVE_TESS=True and _HAVE_CV except Exception: _HAVE_TESS=False try: import keyring except Exception: keyring=None # ----------------------- config ----------------------- def ENV(name, default=None, cast=str): v=os.getenv(name, default) if v is None: return None if cast is bool: return str(v).lower() in ("1","true","yes","on") if cast is int: try: return int(v) # type: ignore except (ValueError, TypeError): return int(float(v)) return v CFG={ # auto-archive memory to curves.tar.gz "HIVE_AUTO_ARCHIVE": ENV("HIVE_AUTO_ARCHIVE", "1", bool), "HIVE_AUTO_ARCHIVE_MODE": ENV("HIVE_AUTO_ARCHIVE_MODE", "per_chain", str), # per_chain | per_dataset "HIVE_ARCHIVE_PATH": ENV("HIVE_ARCHIVE_PATH", "curves.tar.gz", str), # staged ingestion chaining (auto-run multiple stages this boot) "HIVE_INGEST_CHAIN": ENV("HIVE_INGEST_CHAIN", "1", bool), "HIVE_INGEST_CHAIN_MAX": ENV("HIVE_INGEST_CHAIN_MAX", "2", int), # max stages per boot # staged ingestion controls "HIVE_INGEST_STAGED": ENV("HIVE_INGEST_STAGED", "1", bool), "HIVE_INGEST_STAGE_SIZE": ENV("HIVE_INGEST_STAGE_SIZE", "3", int), "HIVE_INGEST_MIN_FREE_GB": ENV("HIVE_INGEST_MIN_FREE_GB", "8", int), "HIVE_INGEST_NEXT": ENV("HIVE_INGEST_NEXT", "0", bool), # self-edit manifest controls "HIVE_ALLOW_SELF_WRITE_MANIFEST": ENV("HIVE_ALLOW_SELF_WRITE_MANIFEST", "1", bool), "HIVE_SELF_WRITE_FILE": ENV("HIVE_SELF_WRITE_FILE", "", str), # memory auto-restore controls (admin memory) "CURVES_AUTO_RESTORE": ENV("HIVE_CURVES_AUTO_RESTORE", "1", bool), "CURVES_ARCHIVE_LOCAL": ENV("HIVE_CURVES_ARCHIVE_LOCAL", "curves.tar.gz", str), "CURVES_ARCHIVE_URL": ENV("HIVE_CURVES_ARCHIVE_URL", "", str), "CURVES_HF_DATASET": ENV("HIVE_CURVES_HF_DATASET", "", str), "CURVES_HF_SUBPATH": ENV("HIVE_CURVES_HF_SUBPATH", "", str), "HF_READ_TOKEN": ENV("HF_READ_TOKEN", "", str), # memory directory alias "HIVE_HOME": ENV("HIVE_HOME", "/home/hive/hive_data" if os.path.exists("/home/hive") else "./hive_data"), # type: ignore "CURVE_DIR": os.path.join(ENV("HIVE_HOME", "/home/hive/hive_data" if os.path.exists("/home/hive") else "./hive_data"), "curves"), # type: ignore "STATE_DIR": os.path.join(ENV("HIVE_HOME", "/home/hive/hive_data" if os.path.exists("/home/hive") else "./hive_data"), "system"), # type: ignore "LAUNCH_UI": ENV("HIVE_LAUNCH_UI","1",bool), "LLM_AUTOSIZE": ENV("HIVE_LLM_AUTOSIZE", "1", bool), # type: ignore "LLM_MAX_VRAM_GB": ENV("HIVE_LLM_MAX_VRAM_GB","0", int), "MODEL_OVERRIDE": ENV("HIVE_MODEL_ID",""), "CTX_TOKENS": ENV("HIVE_CTX_TOKENS","2048",int), "OWNER_NAME": ENV("HIVE_OWNER_USER","Rose"), "OWNER_PASS": ENV("HIVE_OWNER_PASS","Fehr2008"), "OWNER_SECOND": ENV("HIVE_OWNER_SECOND","Paulbear01"), "AGENT_NAME": ENV("HIVE_AGENT_NAME","Hive"), "NO_PROFANITY": ENV("HIVE_NO_PROFANITY","1",bool), "ASR_SIZE": ENV("HIVE_ASR_SIZE","small"), "TTS_LANG": ENV("HIVE_TTS_LANG","en"), "BOOTSTRAP_INGEST": ENV("HIVE_BOOTSTRAP_INGEST","1",bool), "FORCE_REINGEST": ENV("HIVE_FORCE_REINGEST","0",bool), "INGEST_SOURCES": ENV("HIVE_INGEST_SOURCES",""), "ONLINE_ENABLE": ENV("HIVE_ONLINE_ENABLE","1",bool), "ONLINE_AUTO": ENV("HIVE_ONLINE_AUTO","0",bool), "ONLINE_SOURCES": ENV("HIVE_ONLINE_SOURCES","https://hnrss.org/frontpage,https://rss.nytimes.com/services/xml/rss/nyt/World.xml"), "ONLINE_TIMEOUT": ENV("HIVE_ONLINE_TIMEOUT","8",int), "ONLINE_MAX_RESULTS": ENV("HIVE_ONLINE_MAX_RESULTS","5",int), "ONLINE_TRIGGER": ENV("HIVE_ONLINE_TRIGGER","auto",str), # bounded self governance "HIVE_USE_HF_INFERENCE": ENV("HIVE_USE_HF_INFERENCE","0",bool), "HIVE_HF_ENDPOINT": ENV("HIVE_HF_ENDPOINT","",str), "ALLOW_SELF_REBOOT": ENV("HIVE_ALLOW_SELF_REBOOT","1",bool), "ALLOW_RUNTIME_HOTPATCH": ENV("HIVE_ALLOW_RUNTIME_HOTPATCH", "1", bool), "AUTO_SELF_OPTIMIZE": ENV("HIVE_AUTO_SELF_OPTIMIZE","1",bool), # internal optimization with sandbox + A/B (Owner policy) "OPT_ENABLE": ENV("HIVE_OPT_ENABLE","1",bool), "OPT_AUTO_APPLY": ENV("HIVE_OPT_AUTO_APPLY","0",bool), # OWNER MAY SET TO 1 "OPT_PKG_ALLOWLIST": ENV("HIVE_OPT_PKG_ALLOWLIST","transformers,accelerate,datasets,sentence-transformers,faiss-cpu,duckduckgo_search,feedparser,requests,gradio").split(","), "OPT_MODEL_ALLOWLIST": ENV("HIVE_OPT_MODEL_ALLOWLIST","meta-llama/Meta-Llama-3.1-8B-Instruct,meta-llama/Meta-Llama-3.1-70B-Instruct,TinyLlama/TinyLlama-1.1B-Chat-v1.0").split(","), "OPT_THRESH_LATENCY_MS": ENV("HIVE_OPT_THRESH_LATENCY_MS","0",int), "OPT_THRESH_TOKS_PER_S": ENV("HIVE_OPT_THRESH_TOKS_PER_S","0",float), "OPT_THRESH_QUALITY": ENV("HIVE_OPT_THRESH_QUALITY","0.02",float), "OPT_SANDBOX_TIMEOUT": ENV("HIVE_OPT_SANDBOX_TIMEOUT","180",int), } # Create all necessary directories based on the new specification HIVE_HOME = CFG["HIVE_HOME"] # type: ignore DIRS_TO_CREATE = [ CFG["CURVE_DIR"], CFG["STATE_DIR"], # type: ignore os.path.join(HIVE_HOME, "knowledge", "chunks"), os.path.join(HIVE_HOME, "users", "conversations"), # type: ignore os.path.join(HIVE_HOME, "voice", "voiceprints"), os.path.join(HIVE_HOME, "admin", "logs"), # type: ignore os.path.join(HIVE_HOME, "packages") # type: ignore ] # type: ignore for d in DIRS_TO_CREATE: os.makedirs(d, exist_ok=True) OVERLAY_DIR = os.path.join(CFG["STATE_DIR"], "runtime_overlay") RUNTIME_OVERRIDES = os.path.join(CFG["STATE_DIR"], "runtime_overrides.json") OPT_DIR = os.path.join(CFG["STATE_DIR"], "opt") OPT_PROPOSALS = os.path.join(OPT_DIR, "proposals.jsonl") OPT_RESULTS = os.path.join(OPT_DIR, "results.jsonl") for p in (OVERLAY_DIR, OPT_DIR): os.makedirs(p, exist_ok=True) # ----------------- sensing / model pick ----------------- def _has_gpu_env()->bool: accel=os.getenv("SPACE_ACCELERATOR","").lower() if accel in ("t4","a10","a100","l4","l40","h100"): return True try: return torch is not None and torch.cuda.is_available() except Exception: return False def probe_caps() -> Dict[str, any]: # type: ignore """ Implements the Environment Detector and Capability Profiler. Detects hardware and returns a profile for adaptive behavior. """ total_ram_gb = psutil.virtual_memory().total / (1024**3) available_ram_gb = psutil.virtual_memory().available / (1024**3) is_pi = 'raspberrypi' in platform.machine().lower() profile = { "device_type": "raspberry_pi" if is_pi else "generic_linux", "arch": platform.machine(), "total_ram_gb": round(total_ram_gb, 1), "available_ram_gb": round(available_ram_gb, 1), "gpu": _has_gpu_env(), "is_low_memory": total_ram_gb < 6, # Threshold for Pi-like devices "max_docs": 70000 if total_ram_gb > 16 else (50000 if total_ram_gb > 8 else 12000), "batch": 512 if total_ram_gb > 16 else (256 if total_ram_gb > 8 else 64) } return profile CANDIDATES=[ ("TinyLlama/TinyLlama-1.1B-Chat-v1.0", 0), ("meta-llama/Meta-Llama-3.1-8B-Instruct",12), ("meta-llama/Meta-Llama-3.1-70B-Instruct",100) ] def pick_model(caps: Dict[str, any]) -> Tuple[str, dict]: # type: ignore if CFG["MODEL_OVERRIDE"]: return CFG["MODEL_OVERRIDE"], {"device":"cuda" if _has_gpu_env() else "cpu"} max_vram=CFG["LLM_MAX_VRAM_GB"] if caps["gpu"]: for mid,need in reversed(CANDIDATES): if need and (max_vram==0 or need<=max_vram): return mid, {"device":"cuda"} # type: ignore else: ram=caps["total_ram_gb"] for mid,need in reversed(CANDIDATES): if need==0 and ram>=6: return mid, {"device":"cpu"} return "TinyLlama/TinyLlama-1.1B-Chat-v1.0", {"device":"cpu"} # ----------------- embeddings / curves ----------------- _EMB_ID=os.getenv("HIVE_EMB_ID","sentence-transformers/all-MiniLM-L6-v2") class GEC: def __init__(self): device = "cuda" if _has_gpu_env() else "cpu" self.model=SentenceTransformer(_EMB_ID).to(device) def encode(self, texts: List[str]): return self.model.encode(texts, normalize_embeddings=True) class CurveStore: def __init__(self, d): self.dir=d; os.makedirs(d, exist_ok=True) self.idx_path=os.path.join(d,"faiss.index") self.meta_path=os.path.join(d,"meta.jsonl") self.dim=384; self.gec=GEC() self.index=faiss.read_index(self.idx_path) if os.path.exists(self.idx_path) else faiss.IndexFlatIP(self.dim) def add_texts(self, docs:List[str], metas:List[Dict]): if not docs: return vecs=np.asarray(self.gec.encode(docs), dtype="float32") self.index.add(vecs) with open(self.meta_path,"a",encoding="utf-8") as f: for m in metas: f.write(json.dumps(m, ensure_ascii=False)+"\n") faiss.write_index(self.index, self.idx_path) def search(self, query:str, k:int=6)->List[Dict]: if self.index.ntotal==0: return [] qv=np.asarray(self.gec.encode([query]), dtype="float32") D,I=self.index.search(qv,k) lines=open(self.meta_path,"r",encoding="utf-8").read().splitlines() if os.path.exists(self.meta_path) else [] out=[] for i in I[0]: if 0<=i 100: penalty = 0.15 * (min(text_len, 400) / 400) # Penalize up to 0.15 metas.append(meta) scores.append(float(max(0.0, min(1.0, (sc if sc is not None else 0.0) - penalty)))) # type: ignore except: pass return metas, scores OFFLINE_MARK = os.path.join(CFG["CURVE_DIR"], ".offline_ready") def _curves_ready(curve_dir:str)->bool: idx=os.path.join(curve_dir,"faiss.index") if os.path.exists(OFFLINE_MARK): try: return json.load(open(OFFLINE_MARK)).get("ok",True) except Exception: return True if os.path.exists(idx): try: return faiss.read_index(idx).ntotal>0 except Exception: return False return False def _mark_offline_ready(): try: json.dump({"ok":True,"ts":time.time()}, open(OFFLINE_MARK,"w",encoding="utf-8")) except Exception: pass # ----------- HF Datasets bootstrap ----------- DEFAULT_SOURCES=["jhu-clsp/jflue","bea2019st/wi_locness","fce-m2109/mascorpus","rajpurkar/squad_v2", "OpenRL/daily_dialog","tetti/spelling-dataset-extended","Helsinki-NLP/opus-100","facebook/flores", "HuggingFaceH4/no_robots","bigscience/xP3","allenai/sciq","allenai/c4", "mozilla-foundation/common_voice_17_0","bene-ges/en_cmudict","openslr/librispeech_asr","conceptnet5/conceptnet5","grammarly/coedit"] def _iter_text(dataset_name:str, split="train"): from datasets import load_dataset ds=load_dataset(dataset_name, split=split, streaming=True) for ex in ds: text = ex.get("text") or ex.get("sentence") or ex.get("content") or ex.get("question") if not text: if "translation" in ex and isinstance(ex["translation"], dict): tdict=ex["translation"]; text=" | ".join([f"{k}:{v}" for k,v in tdict.items() if isinstance(v,str)]) else: text=str(ex) yield {"text": str(text)} def _plan_order(srcs: List[str])->List[str]: first=["jhu-clsp/jflue","bea2019st/wi_locness","fce-m2109/mascorpus","rajpurkar/squad_v2","OpenRL/daily_dialog","tetti/spelling-dataset-extended"] ordered=[s for s in first if s in srcs] for s in srcs: if s not in ordered: ordered.append(s) return ordered class LibrarianCurve: def __init__(self, store): self.store=store def ingest_pairs(self, texts, metas, scope): metas_scoped=[] for m,t in zip(metas,texts): m2=dict(m); m2["scope"]=scope; m2["text"]=t[:500] metas_scoped.append(m2) self.store.add_texts(texts, metas_scoped) def retrieve_scoped_with_scores(self, query, effective_role, caller_id, k=6): items, scores = self.store.search_with_scores(query, k=k*4) if effective_role=="owner": return items[:k], scores[:k] allowed={"general"} if caller_id: allowed.add(f"user:{caller_id}") filt_i,filt_s=[],[] for it,sc in zip(items, scores): if it.get("scope","general") in allowed: filt_i.append(it); filt_s.append(sc) if len(filt_i) >= k: break return filt_i, filt_s def ingest_all(curve_dir:str, sources: Optional[List[str]]=None, scope="general"): caps=probe_caps() store=CurveStore(curve_dir); lib=LibrarianCurve(store) os.makedirs(curve_dir, exist_ok=True) logf=os.path.join(curve_dir,"ingest_log.jsonl") count_total=0; sources=sources or DEFAULT_SOURCES for ds in _plan_order(sources): count=0; bt,bm=[],[] try: for rec in _iter_text(ds): txt=(rec.get("text") or "").strip() if not txt: continue bt.append(txt); bm.append({"dataset":ds,"text":txt[:500]}) if len(bt)>=caps["batch"]: lib.ingest_pairs(bt,bm,scope); count+=len(bt); count_total+=len(bt); bt,bm=[],[] if count>=caps["max_docs"]: break if bt: lib.ingest_pairs(bt,bm,scope); count+=len(bt); count_total+=len(bt); bt,bm=[],[] with open(logf,"a",encoding="utf-8") as f: f.write(json.dumps({"dataset":ds,"ingested":count})+"\n") except Exception as e: with open(logf,"a",encoding="utf-8") as f: f.write(json.dumps({"dataset":ds,"error":str(e)})+"\n") return count_total # ----------- live search + RSS ➡️ curves ----------- ONLINE_DB=os.path.join(CFG["STATE_DIR"],"online_seen.json") def _load_json(path, default): if os.path.exists(path): try: return json.load(open(path,"r",encoding="utf-8")) except Exception: return default return default def _save_json(path, data): json.dump(data, open(path,"w",encoding="utf-8"), indent=2) def online_available(timeout:int)->bool: try: requests.get("https://huggingface.co", timeout=timeout) return True except Exception: return False def _hash(s:str)->str: return hashlib.sha1(s.encode("utf-8","ignore")).hexdigest() def fetch_rss(urls:List[str], timeout:int=8, limit:int=50)->List[Dict]: items=[] for u in urls: try: f=feedparser.parse(u) # type: ignore for e in f.entries[:limit]: items.append({"title":e.get("title",""),"link":e.get("link",""),"summary":e.get("summary") or e.get("description",""),"published":e.get("published") or e.get("updated",""),"source":u}) except Exception as e: print(f"Warning: Failed to fetch or parse RSS feed from {u}. Error: {e}") return items def web_search_snippets(query:str, max_results:int=5, timeout:int=8)->list: out=[] try: with DDGS(timeout=timeout) as ddgs: for r in ddgs.text(query, max_results=max_results): if r and r.get("body"): out.append({"title":r.get("title",""),"href":r.get("href",""),"body":r.get("body","")}) except Exception as e: # type: ignore print(f"Warning: DuckDuckGo search failed for query '{query}'. Error: {e}") return out # ----------- RBAC / users / lockouts ----------- USERS_DB=os.path.join(CFG["STATE_DIR"],"users.json") LOCKS_DB=os.path.join(CFG["STATE_DIR"],"lockouts.json") VOICES_DB=os.path.join(CFG["STATE_DIR"],"voices.json") ADAPT_DB=os.path.join(CFG["STATE_DIR"],"speech_adapt.json") def _init_users(): d={"owner":{"id":"owner:1","name":CFG["OWNER_NAME"],"role":"owner","pass":CFG["OWNER_PASS"],"second":CFG["OWNER_SECOND"],"prefs":{"activation_names":[CFG["AGENT_NAME"]],"language":"en"}}, "admins_super":[],"admins_general":[],"users":[]} _save_json(USERS_DB,d); return d def _load_users(): d=_load_json(USERS_DB, None); return d if d else _init_users() def _find_user(d, name_or_id): pools=[("owner",[d.get("owner")]),("admin_super",d["admins_super"]),("admin_general",d["admins_general"]),("user",d["users"])] for role,pool in pools: for u in pool or []: if u and (u.get("id")==name_or_id or u.get("name")==name_or_id): return u, role return None, None PERMS={ "owner":{"can_add":["admin_super","admin_general","user"],"can_remove":["admin_super","admin_general","user"], "can_edit_role_of":["admin_super","admin_general","user"],"can_edit_profile_of":["owner","admin_super","admin_general","user"], "can_view_scopes":"all","maintenance":"full","code_edit":"approve_and_edit"}, "admin_super":{"can_add":["admin_general","user"],"can_remove":["admin_general","user"], "can_edit_role_of":["admin_general","user"],"can_edit_profile_of":["admin_general","user"], "can_view_scopes":"self_only","maintenance":"advanced","code_edit":"suggest_only"}, "admin_general":{"can_add":["user"],"can_remove":["user"],"can_edit_role_of":["user"],"can_edit_profile_of":["user"], "can_view_scopes":"self_only","maintenance":"basic","code_edit":"suggest_only"}, "user":{"can_add":[],"can_remove":[],"can_edit_role_of":[],"can_edit_profile_of":["user"], "can_view_scopes":"self_only","maintenance":"none","code_edit":"none"}, "guest":{"can_add":[],"can_remove":[],"can_edit_role_of":[],"can_edit_profile_of":[], "can_view_scopes":"self_only","maintenance":"none","code_edit":"none"}, } def attempt_login(name_or_id:str, password:str="", second:Optional[str]=None): d=_load_users(); locks=_load_json(LOCKS_DB,{ }) def lock_fail(lid, msg): st=locks.get(lid, {"fails":0,"until":0}); st["fails"]=st.get("fails",0)+1 dur=180 if st["fails"]>=3 else 0; st["until"]=time.time()+dur if dur else 0 locks[lid]=st; _save_json(LOCKS_DB,locks); return False, msg u,_=_find_user(d, name_or_id) if not u: return False, "Profile not found." role=u.get("role","user"); lid=str(u.get("id", u.get("name"))); now=time.time() st=locks.get(lid, {"fails":0,"until":0}) if now < st.get("until",0): return False, f"Locked; try again in ~{int(st['until']-now)}s." if role in ("admin_general","admin_super","owner"): if role=="owner": if password!=u.get("pass") or (u.get("second") and second!=u.get("second")): return lock_fail(lid, "Owner credentials incorrect.") else: if password!=u.get("pass"): return lock_fail(lid, "Admin password incorrect.") locks[lid]={"fails":0,"until":0}; _save_json(LOCKS_DB,locks) return True, f"Welcome, {u.get('name')} ({role})." # ----------- voice: ASR/TTS/phonics ----------- G2P = G2p() ASR_MODELS={"tiny":"tiny","base":"base","small":"small","medium":"medium","large-v3":"large-v3"} def _asr_model_name(): return ASR_MODELS.get(CFG["ASR_SIZE"],"small") _ASR=None def get_asr(): global _ASR if _ASR is not None: return _ASR size=_asr_model_name(); device="cuda" if (_has_gpu_env()) else "cpu" compute_type="float16" if device=="cuda" else "int8" _ASR=WhisperModel(size, device=device, compute_type=compute_type); return _ASR PIPER_MODELS={ "en": ("https://github.com/rhasspy/piper/releases/download/v0.0.2/en_US-amy-low.onnx", "https://github.com/rhasspy/piper/releases/download/v0.0.2/en_US-amy-low.onnx.json"), "es": ("https://github.com/rhasspy/piper/releases/download/v0.0.2/es_ES-davefx-medium.onnx", "https://github.com/rhasspy/piper/releases/download/v0.0.2/es_ES-davefx-medium.onnx.json"), "fr": ("https://github.com/rhasspy/piper/releases/download/v0.0.2/fr_FR-gilles-medium.onnx", "https://github.com/rhasspy/piper/releases/download/v0.0.2/fr_FR-gilles-medium.onnx.json"), "de": ("https://github.com/rhasspy/piper/releases/download/v0.0.2/de_DE-thorsten-low.onnx", "https://github.com/rhasspy/piper/releases/download/v0.0.2/de_DE-thorsten-low.onnx.json"), "zh": ("https://github.com/rhasspy/piper/releases/download/v0.0.2/zh_CN-huayan-low.onnx", "https://github.com/rhasspy/piper/releases/download/v0.0.2/zh_CN-huayan-low.onnx.json"), } def _download(url,dst, timeout=30): # type: ignore if os.path.exists(dst): return dst os.makedirs(os.path.dirname(dst),exist_ok=True); urllib.request.urlretrieve(url,dst); return dst # TODO: add timeout _TTS_CACHE={} def get_tts(lang: str = "en") -> PiperVoice: # type: ignore lang=lang if lang in PIPER_MODELS else "en" if lang in _TTS_CACHE: return _TTS_CACHE[lang] mu,cu=PIPER_MODELS[lang]; m=_download(mu,f"./models/piper/{os.path.basename(mu)}"); c=_download(cu,f"./models/piper/{os.path.basename(cu)}") v=PiperVoice.load(m,c); _TTS_CACHE[lang]=v; return v def _embed_mfcc(path)->np.ndarray: y, sr = librosa.load(path, sr=16000) mf=librosa.feature.mfcc(y=y, sr=sr, n_mfcc=20) return mf.mean(axis=1) def enroll_voice(uid:str, path:str) -> bool: db=_load_json(VOICES_DB, {}); db[uid]=_embed_mfcc(path).astype(float).tolist(); _save_json(VOICES_DB, db); return True def identify_voice(path:str, threshold:float=0.70) -> Optional[str]: db=_load_json(VOICES_DB, {}); if not db: return None emb=_embed_mfcc(path).reshape(1,-1) keys=list(db.keys()); mats=np.array([db[k] for k in keys]) sims=cosine_similarity(emb, mats)[0]; i=int(np.argmax(sims)); return keys[i] if sims[i]>=threshold else None _BASIC={'a':'a as in apple /æ/','e':'e as in elephant /ɛ/','i':'i as in igloo /ɪ/','o':'o as in octopus /ɒ/','u':'u as in umbrella /ʌ/', 'c':'c as in cat /k/ (before e/i/y often /s/)','g':'g as in goat /g/ (before e/i/y often soft /dʒ/)','y':'y as in yellow /j/ or happy /i/'} def phonics(word:str)->str: toks=G2P(word); phones=[t for t in toks if re.match(r"[A-Z]+[0-2]?$", t)] hints=[]; for ch in word.lower(): if ch in _BASIC and _BASIC[ch] not in hints: hints.append(_BASIC[ch]) return f"Phonemes: {' '.join(phones)} | Hints: {('; '.join(hints)) if hints else '🐝'}" def lid_chunk(text:str, min_len:int=12)->List[Tuple[str,str]]: parts=re.split(r"([.!?;\u2026\u2028\u2029])+\s{2,}|", text) chunks=[]; buf="" for p in parts: if not p: continue buf+=p if len(buf)>=min_len or re.match(r"[.!?;\u2026\u2028\u2029]", p): lang,_=langid.classify(buf.strip()); chunks.append((buf.strip(), lang)); buf="" if buf.strip(): lang,_=langid.classify(buf.strip()); chunks.append((buf.strip(), lang)) return chunks def asr_transcribe(path:str, uid: Optional[str], forced_lang: Optional[str]=None)->str: model=get_asr() prior=_load_json(ADAPT_DB,{}).get(uid or "guest",{}).get("lang_prior") language=forced_lang or prior or None segs, info = model.transcribe(path, language=language, beam_size=5, vad_filter=True) text=" ".join([s.text for s in segs]) if segs else "" if not forced_lang and text.strip(): lid,_=langid.classify(text); prof=_load_json(ADAPT_DB,{}); p=prof.get(uid or "guest",{}); p["lang_prior"]=lid; prof[uid or "guest"]=p; _save_json(ADAPT_DB,prof) return text def synthesize_multilang(text:str, fallback="en")->str: chunks=lid_chunk(text) sr=None; mix=None for ch, lg in chunks or [(text, fallback)]: lg2=lg if lg in PIPER_MODELS else fallback v=get_tts(lg2) aud, _ = v.synthesize(ch) if sr is None: sr=v.sample_rate mix = aud if mix is None else np.concatenate([mix,aud]) outp=os.path.join(tempfile.gettempdir(), f"hive_tts_{int(time.time())}.wav") sf.write(outp, mix if mix is not None else np.zeros(1), sr or 22050, subtype="PCM_16"); return outp # ----------- compiler / engine ----------- class EngineCurve: def __init__(self): self.stats={"runs":0,"ok":0,"latency_ms":[]} self.router_rules=[] def choose_route(self, msg:str)->str: for pat in self.router_rules or []: if isinstance(pat, re.Pattern) and pat.search(msg): s=pat.pattern.lower() # type: ignore if any(k in s for k in ["review", "essay", "feedback"]): return "essay_review" if any(k in s for k in ["pronounce", "say"]): return "pronounce" if len(msg.split()) > 50 and any(k in msg.lower() for k in ["review", "essay", "feedback"]): return "essay_review" return "tutor" # Default to tutor persona def run(self, message:str, snippets:List[Dict])->Dict: t0=time.time(); _route=self.choose_route(message); t1=time.time() self.stats["runs"]+=1; self.stats["ok"]+=1; self.stats["latency_ms"].append(int((t1-t0)*1000)) return {"ok":True,"route":_route} # ----------- wifi auto-connect (non-blocking) ----------- NET_STATE_DB=os.path.join(CFG["STATE_DIR"],"wifi_known.json") def _os_name(): return platform.system().lower() def _fast_probe(host="8.8.8.8", port=53, timeout=1.5)->bool: try: socket.setdefaulttimeout(timeout) s=socket.socket(socket.AF_INET, socket.SOCK_STREAM); s.connect((host,port)); s.close() return True except Exception: return False def _http_probe(url="https://huggingface.co", timeout=2.5)->float: try: t0=time.time(); r=requests.head(url, timeout=timeout) if r.status_code<500: return (time.time()-t0)*1000.0 except Exception: pass return -1.0 def _load_known()->List[dict]: data=_load_json(NET_STATE_DB, []); out=[] for d in data: if isinstance(d,dict) and "ssid" in d: out.append({"ssid":d["ssid"],"priority":int(d.get("priority",0))}) out.sort(key=lambda x: x.get("priority",0), reverse=True); return out def _get_saved_password(ssid:str)->Optional[str]: if keyring: try: return keyring.get_password("hive_wifi", ssid) or "" # type: ignore except Exception: return None return None def _connect_linux(ssid, password, timeout=12)->Tuple[bool,str]: try: cmd=["nmcli","device","wifi","connect",ssid]+(["password",password] if password else []) p=subprocess.run(cmd, capture_output=True, text=True, timeout=timeout) return (p.returncode==0), (p.stdout or p.stderr or "").strip() except Exception as e: return False, f"nmcli error: {e}" def _connect_windows(ssid, password)->Tuple[bool,str]: try: p=subprocess.run(["netsh","wlan","connect","name="+ssid,"ssid="+ssid], capture_output=True, text=True) if p.returncode==0 and "success" in (p.stdout+p.stderr).lower(): return True,"Connected." if not password: return False,"No saved password." xml=f''' {ssid}{ssid} ESSauto WPA2PSK AESfalse passPhrasefalse {password}''' tmp=os.path.join(os.getenv("TEMP","/tmp"), f"wifi_{int(time.time())}.xml"); open(tmp,"w",encoding="utf-8").write(xml) a=subprocess.run(["netsh","wlan","add","profile","filename="+tmp,"user=all"], capture_output=True, text=True) if a.returncode!=0: return False, a.stderr or a.stdout or "add profile failed" c=subprocess.run(["netsh","wlan","connect","name="+ssid,"ssid="+ssid], capture_output=True, text=True) return (c.returncode==0), (c.stderr or c.stdout or "").strip() except Exception as e: return False, f"netsh error: {e}" def _connect_macos(ssid, password)->Tuple[bool,str]: try: out=subprocess.check_output(["networksetup","-listallhardwaresports"], stderr=subprocess.DEVNULL).decode("utf-8","ignore") dev=None for block in out.split("\n\n"): if "Wi-Fi" in block or "AirPort" in block: for l in block.splitlines(): if l.strip().startswith("Device:"): dev=l.split(":",1)[1].strip(); break if dev: break if not dev: return False,"Wi-Fi device not found" cmd=["networksetup","-setairportnetwork",dev, ssid]+([password] if password else []) p=subprocess.run(cmd, capture_output=True, text=True) return (p.returncode==0), (p.stderr or p.stdout or "").strip() except Exception as e: return False, f"networksetup error: {e}" def _connect_os(ssid,password,timeout=12)->Tuple[bool,str]: osn=_os_name() if osn=="linux": return _connect_linux(ssid,password,timeout) if osn=="windows": return _connect_windows(ssid,password) if osn=="darwin": return _connect_macos(ssid,password) return False, f"Unsupported OS: {osn}" class AutoConnector: def __init__(self): self.last_attempt=0.0; self.cooldown_s=30.0; self.per_ssid_timeout=10.0; self.total_budget_s=18.0; self.thread=None; self._lock=threading.Lock() def online_quick(self)->bool: return _fast_probe(timeout=1.2) def quality_ms(self)->float: return _http_probe(timeout=2.0) def _run_once(self): if self.online_quick(): return known=_load_known(); if not known: return t_start=time.time() for item in known: if time.time()-t_start>self.total_budget_s: return ssid=item["ssid"]; pw=_get_saved_password(ssid) ok,_msg=_connect_os(ssid,pw,timeout=int(self.per_ssid_timeout)) if ok and self.online_quick(): return def kick_async(self): with self._lock: now=time.time() if now-self.last_attempt float: if not snippets or not scores: return 0.0 s = sorted(scores, reverse=True)[:3] base = sum(s) / len(s) if s else 0.0 # type: ignore bonus = min(0.15, 0.03 * len(snippets)) return float(max(0.0, min(1.0, base + bonus))) # ----------- overlay / hotpatch ----------- ALLOWED_PATCH_KEYS={"prompt_head","retrieval_k","token_budget","temperature","router_rules","web_threshold"} def _load_overrides(): if os.path.exists(RUNTIME_OVERRIDES): try: return json.load(open(RUNTIME_OVERRIDES,"r",encoding="utf-8")) except Exception: return {} return {} def _save_overrides(ovr:dict): json.dump(ovr, open(RUNTIME_OVERRIDES,"w",encoding="utf-8"), indent=2) class RuntimeOverlay: def __init__(self): self.ovr=_load_overrides() def apply_to(self, hive: "Hive"): o=self.ovr or {} if isinstance(o.get("prompt_head"),str): hive.compiler.override_head=o["prompt_head"] if isinstance(o.get("token_budget"),int): hive.compiler.override_budget=max(256, min(8192, o["token_budget"])) hive.retrieval_k=int(o.get("retrieval_k",6)); hive.retrieval_k=max(3,min(24,hive.retrieval_k)) hive.decoding_temperature=float(o.get("temperature",0.7)); hive.decoding_temperature=max(0.0,min(1.5,hive.decoding_temperature)) rr=o.get("router_rules") or [] if isinstance(rr,list): try: hive.engine.router_rules=[re.compile(pat,re.I) for pat in rr if isinstance(pat,str) and pat] except re.error: hive.engine.router_rules=[] t=o.get("web_threshold",None); hive.web_threshold=float(t) if isinstance(t,(int,float)) else 0.40 def patch(self, patch:dict, actor_role:str="hive")->Tuple[bool,str]: if not CFG["ALLOW_RUNTIME_HOTPATCH"]: return False,"Runtime hotpatch disabled." if actor_role not in ("hive","admin_general","admin_super","owner"): return False,"Unauthorized actor." for k in list(patch.keys()): if k not in ALLOWED_PATCH_KEYS: patch.pop(k,None) if not patch: return False,"No allowed keys." self.ovr.update(patch); _save_overrides(self.ovr); return True,"Patched." # ----------- safe reboot ----------- def _persist_before_reboot(): try: json.dump({"ts":time.time(),"note":"self-reboot"}, open(os.path.join(CFG["STATE_DIR"],"last_reboot.json"),"w",encoding="utf-8")) except Exception: pass def safe_reboot(reason:str="optimization"): if not CFG["ALLOW_SELF_REBOOT"]: return False,"Self-reboot disabled." _persist_before_reboot() try: os.execv(sys.executable, [sys.executable, os.path.abspath(__file__)] + sys.argv[1:]) except Exception: os._exit(3) return True, f"Rebooting: {reason}" # ----------- self optimizer (bounded) ----------- class SelfOptimizer(threading.Thread): def __init__(self, hive: "Hive"): super().__init__(daemon=True); self.hive=hive; self.stop=False; self.tick=45.0 self.last_pkg_check = 0 self.last_code_review = 0 self.code_review_interval = 3600 * 24 # Check for self-improvement once a day self.pkg_check_interval = 3600 * 6 # Check for package updates every 6 hours def _check_for_package_updates(self): """Checks for updates to packages in the allowlist and proposes changes.""" if time.time() - self.last_pkg_check < self.pkg_check_interval: return self.last_pkg_check = time.time() print("[SelfOptimizer] Checking for package updates...") try: # Use pip to check for outdated packages outdated_raw = subprocess.check_output([sys.executable, "-m", "pip", "list", "--outdated"], text=True) for line in outdated_raw.splitlines()[2:]: # Skip header parts = line.split() if len(parts) < 3: continue pkg_name, current_ver, latest_ver = parts[0], parts[1], parts[2] # If the outdated package is in our allowlist, propose an update if pkg_name in CFG["OPT_PKG_ALLOWLIST"]: print(f"[SelfOptimizer] Found update for {pkg_name}: {current_ver} -> {latest_ver}") proposal = ChangeProposal( kind="package", name=pkg_name, version=latest_ver, reason=f"Autonomous proposal to update from {current_ver} to {latest_ver}", proposer="hive_optimizer" ) proposal_id = self.hive.changes.propose(proposal) # Automatically test the new proposal test_result = self.hive.changes.test_and_compare(proposal_id, proposal) print(f"[SelfOptimizer] Test result for {pkg_name} update: {test_result.get('passed')}, Delta: {test_result.get('delta')}") except Exception as e: print(f"[SelfOptimizer] Error checking for package updates: {e}") def _propose_self_improvement(self): """Asks the LLM to review a part of its own code and proposes a change if valid.""" if time.time() - self.last_code_review < self.code_review_interval: return self.last_code_review = time.time() print("[SelfOptimizer] Performing autonomous code review...") try: # Read its own source code with open(__file__, 'r', encoding='utf-8') as f: own_code = f.read() # Select a function to review (e.g., coverage_score_from_snippets) target_func_name = "coverage_score_from_snippets" match = re.search(rf"def {target_func_name}\(.*?^$", own_code, re.S | re.M) if not match: print(f"[SelfOptimizer] Could not find function {target_func_name} to review.") return func_code = match.group(0) prompt = f""" Review the following Python function for correctness, efficiency, and adherence to best practices. If you find an improvement, provide ONLY the complete, new, improved function code. Do not add any explanation. If no improvement is needed, return the original code exactly as it is. Original function: ```python {func_code} ``` """ # Use the Hive's own chat method to get the LLM's suggestion suggested_code = self.hive.chat(prompt, "owner", "hive_optimizer") # If the suggestion is different and seems valid, propose it as a code change if suggested_code.strip() != func_code.strip() and "def" in suggested_code: new_source = own_code.replace(func_code, suggested_code) proposal = ChangeProposal(kind="code", name=__file__, patch_text=new_source, reason=f"Autonomous self-improvement of {target_func_name}", proposer="hive_optimizer") proposal_id = self.hive.changes.propose(proposal) print(f"[SelfOptimizer] Proposing self-improvement change {proposal_id}.") test_result = self.hive.changes.test_and_compare(proposal_id, proposal) print(f"[SelfOptimizer] Test result for self-improvement: {test_result.get('passed')}, Delta: {test_result.get('delta')}") except Exception as e: print(f"[SelfOptimizer] Error during self-improvement proposal: {e}") def run(self): while not self.stop: time.sleep(self.tick) if not CFG["AUTO_SELF_OPTIMIZE"]: continue # --- Autonomous Proposal Generation --- self._check_for_package_updates() self._propose_self_improvement() # --- Real-time Overlay Adjustments --- vm=psutil.virtual_memory(); ovr={} if vm.percent>88: # type: ignore ovr["token_budget"]=max(512,int(0.75*(self.hive.compiler.override_budget or CFG["CTX_TOKENS"]))) # type: ignore ovr["temperature"]=max(0.2,self.hive.decoding_temperature-0.1) lat=(sum(self.hive.engine.stats["latency_ms"][-10:])/max(1,len(self.hive.engine.stats["latency_ms"][-10:]))) if self.hive.engine.stats["latency_ms"] else 0 if lat>1200: ovr["retrieval_k"]=max(3,self.hive.retrieval_k-1) if ovr: ok,_=self.hive.overlay.patch(ovr, actor_role="hive") if ok: self.hive.overlay.apply_to(self.hive) if CFG["ALLOW_SELF_REBOOT"] and vm.percent>94: safe_reboot("refresh memory") # ----------- internal optimization stack ----------- def _append_jsonl(path, rec): with open(path, "a", encoding="utf-8") as f: f.write(json.dumps(rec, ensure_ascii=False) + "\n") @dataclass class ChangeProposal: kind: str # "model" | "package" | "code" name: str # model id / package name / file target version: str = "" patch_text: str = ""# for "code": full replacement or diff reason: str = "" created_ts: float = time.time() proposer: str = "hive" id: str = "" class Sandbox: def __init__(self): self.root=os.path.join(OPT_DIR, f"sandbox_{int(time.time())}") os.makedirs(self.root, exist_ok=True) self.venv=os.path.join(self.root,"venv") def _run(self, args, timeout): p=subprocess.run(args, capture_output=True, text=True, timeout=timeout) return p.returncode, (p.stdout or "") + (p.stderr or "") def create(self): rc,out=self._run([sys.executable,"-m","venv",self.venv], timeout=120) if rc!=0: raise RuntimeError("venv create failed: "+out) def pip(self, pkg_spec): py=os.path.join(self.venv,"bin","python") if os.name!="nt" else os.path.join(self.venv,"Scripts","python.exe") rc,out=self._run([py,"-m","pip","install","--upgrade",pkg_spec], timeout=CFG["OPT_SANDBOX_TIMEOUT"]) if rc!=0: raise RuntimeError("pip install failed: "+out) def run_snippet(self, code:str): py=os.path.join(self.venv,"bin","python") if os.name!="nt" else os.path.join(self.venv,"Scripts","python.exe") tmp=os.path.join(self.root,"snippet.py"); open(tmp,"w",encoding="utf-8").write(code) rc,out=self._run([py,tmp], timeout=CFG["OPT_SANDBOX_TIMEOUT"]); return rc,out def _synthetic_eval(hive_factory, prompts: List[str]) -> Dict: lat_ms=[]; toks_s=[]; quality=0.0 for p in prompts: t0=time.time() h=hive_factory() out=h.pipe(h.compiler.compile(p, []), max_new_tokens=64, do_sample=False, temperature=0.2) # type: ignore t1=time.time() text=out[0]["generated_text"] lat_ms.append((t1-t0)*1000) toks=max(1,len(text.split())); toks_s.append(toks/max(0.001,(t1-t0))) q=sum(1 for w in set(re.findall(r"\w+", p.lower())) if w in text.lower())/max(1,len(set(re.findall(r"\w+", p.lower())))) quality+=q n=max(1,len(prompts)) return {"lat_ms":sum(lat_ms)/n, "toks_s":sum(toks_s)/n, "quality":quality/n} class ChangeManager: def __init__(self, hive_cls): self.hive_cls=hive_cls def _allowed_pkg(self, name): return any(name.strip().startswith(allow.strip()) for allow in CFG["OPT_PKG_ALLOWLIST"]) def _allowed_model(self, mid): return mid in CFG["OPT_MODEL_ALLOWLIST"] def propose(self, cp: ChangeProposal)->str: cp.id=f"chg_{int(time.time())}_{abs(hash(cp.name))%100000}"; _append_jsonl(OPT_PROPOSALS, cp.__dict__); return cp.id def test_and_compare(self, cp_id:str, proposal: ChangeProposal)->Dict: def base_hive(): return self.hive_cls(model_id=None) prompts=["Summarize the water cycle.","Translate to French: the quick brown fox jumps over the lazy dog.","Two-sentence difference between TCP and UDP."] base=_synthetic_eval(base_hive, prompts) sand=Sandbox(); sand.create() model_override=None try: if proposal.kind=="package": if not self._allowed_pkg(proposal.name): return {"ok":False,"reason":"package not allowlisted"} spec=proposal.name + (("=="+proposal.version) if proposal.version else "") sand.pip(spec) elif proposal.kind=="model": if not self._allowed_model(proposal.name): return {"ok":False,"reason":"model not allowlisted"} model_override=proposal.name elif proposal.kind=="code": target=os.path.basename(__file__); patched=os.path.join(sand.root,target) with open(patched,"w",encoding="utf-8") as f: f.write(proposal.patch_text or "") code=f"import importlib.util, json; p=r'{patched}'; spec=importlib.util.spec_from_file_location('hmod',p); m=importlib.util.module_from_spec(spec); spec.loader.exec_module(m); h=m.Hive(); print(json.dumps({{'ok':True}}))" rc,out=sand.run_snippet(code) if rc!=0 or '"ok": true' not in out.lower(): return {"ok":False,"reason":"patch smoke test failed","out":out} except Exception as e: return {"ok":False,"reason":f"sandbox failed: {e}"} def cand_hive(): return self.hive_cls(model_id=model_override) if model_override else self.hive_cls(model_id=None) cand=_synthetic_eval(cand_hive, prompts) delta={"lat_ms": base["lat_ms"]-cand["lat_ms"], "toks_s": cand["toks_s"]-base["toks_s"], "quality": cand["quality"]-base["quality"]} passed=True if CFG["OPT_THRESH_LATENCY_MS"]>0 and delta["lat_ms"]0 and delta["toks_s"]Tuple[bool,str]: prop=result.get("proposal",{}); kind=prop.get("kind"); name=prop.get("name","") if not result.get("passed"): return False,"did not meet thresholds" if kind=="package": if not self._allowed_pkg(name): return False,"package not allowlisted" try: subprocess.check_call([sys.executable,"-m","pip","install","--upgrade", name + (("=="+prop.get("version","")) if prop.get("version") else "")]) return True,"package installed" except Exception as e: return False,f"pip failed: {e}" if kind=="model": if not self._allowed_model(name): return False,"model not allowlisted" pref=os.path.join(OPT_DIR,"preferred_model.json"); json.dump({"model_id":name,"ts":time.time()}, open(pref,"w",encoding="utf-8")) return True,"model preference recorded (takes effect after restart)" if kind=="code": if not CFG["OPT_AUTO_APPLY"]: return False,"awaiting Owner approval for code changes" try: target=os.path.abspath(__file__); backup=target+f".bak_{int(time.time())}"; shutil.copyfile(target,backup) open(target,"w",encoding="utf-8").write(prop.get("patch_text","")); return True,"code updated (backup created); restart recommended" except Exception as e: return False,f"code write failed: {e}" return False,"unknown change type" # ----------- Hive core ----------- # --- Memory & Manifest Helpers (auto-inserted) --- import tempfile, urllib.request, tarfile, zipfile from pathlib import Path as _Path def _human_ts(ts: int) -> str: import datetime try: return datetime.datetime.utcfromtimestamp(ts).strftime("%Y-%m-%d %H:%M:%S UTC") except Exception: return str(ts) INGEST_PROGRESS = os.path.join(CFG.get("STATE_DIR","./state"), "ingest_progress.json") def _load_progress(): try: if os.path.exists(INGEST_PROGRESS): return json.load(open(INGEST_PROGRESS, "r", encoding="utf-8")) except Exception: pass return {"done": [], "stage": 0, "ts": 0} def _save_progress(p): try: json.dump(p, open(INGEST_PROGRESS, "w", encoding="utf-8"), indent=2) except Exception: pass def update_self_manifest(datasets_done: list, vectors_total: int): """Rewrite the MEMORY_MANIFEST block inside this script.""" if not CFG.get("HIVE_ALLOW_SELF_WRITE_MANIFEST", True): return False, "self-write disabled" target = CFG.get("HIVE_SELF_WRITE_FILE") or os.path.abspath(__file__) try: with open(target, "r", encoding="utf-8") as f: src = f.read() except Exception as e: return False, f"read error: {e}" start_tag = "# --- BEGIN MEMORY MANIFEST (auto-updated) ---" end_tag = "# --- END MEMORY MANIFEST ---" if start_tag not in src or end_tag not in src: return False, "manifest markers not found" head, rest = src.split(start_tag, 1) _, tail = rest.split(end_tag, 1) payload = { "updated_ts": int(time.time()), "datasets_done": sorted(list({*datasets_done})), "vectors_total": int(vectors_total), "notes": "Set HIVE_ALLOW_SELF_WRITE_MANIFEST=0 to stop auto-updates." } block = start_tag + "\n# (This block is auto-written by Hive to record what datasets/files\n# have already been converted into memory (curves). Do not edit by hand.)\n" block += "MEMORY_MANIFEST = " + json.dumps(payload, indent=4, ensure_ascii=False) + "\n" block += end_tag new_src = head + block + tail tmp = target + ".tmp" try: with open(tmp, "w", encoding="utf-8") as f: f.write(new_src) os.replace(tmp, target) except Exception as e: return False, f"write error: {e}" return True, f"manifest updated ({_human_ts(payload['updated_ts'])})" def _curves_present(curve_dir: str) -> bool: idx = os.path.join(curve_dir, "faiss.index") meta = os.path.join(curve_dir, "meta.jsonl") return os.path.exists(idx) and os.path.getsize(idx) > 0 and os.path.exists(meta) def _extract_archive(archive_path: str, dest_dir: str) -> bool: os.makedirs(dest_dir, exist_ok=True) try: if archive_path.endswith(".tar.gz") or archive_path.endswith(".tgz"): with tarfile.open(archive_path, "r:gz") as tf: tf.extractall(dest_dir) return True if archive_path.endswith(".zip"): with zipfile.ZipFile(archive_path, "r") as z: z.extractall(dest_dir) return True except Exception as e: # type: ignore with open(os.path.join(CFG["STATE_DIR"], "restore_error.log"), "a", encoding="utf-8") as f: f.write(f"extract: {e}\n") return False def _restore_from_local_archive(curve_dir: str): arc = CFG.get("CURVES_ARCHIVE_LOCAL") or "curves.tar.gz" if not arc or not os.path.exists(arc): return False, "no local archive" ok = _extract_archive(arc, curve_dir) return (ok, "restored from local archive" if ok else "local extract failed") def _restore_from_url(curve_dir: str): url = (CFG.get("CURVES_ARCHIVE_URL") or "").strip() if not url: return False, "no URL provided" try: tmp = os.path.join(tempfile.gettempdir(), f"curves_{int(time.time())}.pkg") urllib.request.urlretrieve(url, tmp) ok = _extract_archive(tmp, curve_dir) try: os.remove(tmp) except: pass return (ok, "restored from URL" if ok else "URL extract failed") except Exception as e: # type: ignore open(os.path.join(CFG.get("STATE_DIR","./state"), "restore_error.log"), "a", encoding="utf-8").write(f"url: {e}\n") return False, "URL download error" def _restore_from_hf_dataset(curve_dir: str): repo_id = (CFG.get("CURVES_HF_DATASET") or "").strip() sub = (CFG.get("CURVES_HF_SUBPATH") or "").strip() if not repo_id: return False, "no dataset repo" try: from huggingface_hub import snapshot_download, hf_hub_download cache = os.path.join("/tmp", "hf_curves_cache") token = CFG.get("HF_READ_TOKEN") or None for fname in ["curves.tar.gz", "curves.zip"]: try: fp = hf_hub_download(repo_id=repo_id, filename=(sub + "/" + fname) if sub else fname, token=token, local_dir=cache, local_dir_use_symlinks=False) if _extract_archive(fp, curve_dir): return True, f"restored from HF dataset file {fname}" except Exception: pass local_dir = snapshot_download(repo_id=repo_id, token=token, local_dir=cache, local_dir_use_symlinks=False) # auto-archive after each dataset if configured if CFG.get("HIVE_AUTO_ARCHIVE", True) and str(CFG.get("HIVE_AUTO_ARCHIVE_MODE","per_chain")).lower() == "per_dataset": try: _ok_arc, _ap = _archive_memory(curve_dir) # type: ignore open(os.path.join(CFG["STATE_DIR"], "archive_status.log"), "a", encoding="utf-8").write( json.dumps({"ts": time.time(), "mode": "per_dataset", "ok": _ok_arc, "path": _ap}) + "\n" ) except Exception as _e_arc: open(os.path.join(CFG["STATE_DIR"], "archive_error.log"), "a", encoding="utf-8").write( "per_dataset: " + str(_e_arc) + "\n" ) # type: ignore src = os.path.join(local_dir, sub) if sub else local_dir if os.path.isdir(src): for root, dirs, files in os.walk(src): rel = os.path.relpath(root, src) dest_root = os.path.join(curve_dir, rel) if rel != "." else curve_dir os.makedirs(dest_root, exist_ok=True) for fn in files: shutil.copy2(os.path.join(root, fn), os.path.join(dest_root, fn)) return True, "restored from HF dataset snapshot" return False, "HF snapshot missing subpath" except Exception as e: # type: ignore open(os.path.join(CFG.get("STATE_DIR","./state"), "restore_error.log"), "a", encoding="utf-8").write(f"hf: {e}\n") return False, "HF restore error" def restore_curves_if_missing(curve_dir: str): if not CFG.get("HIVE_CURVES_AUTO_RESTORE", True): return False, "auto-restore disabled" if _curves_present(curve_dir): return True, "memory present" ok, msg = _restore_from_local_archive(curve_dir) if ok and _curves_present(curve_dir): return True, msg ok, msg = _restore_from_url(curve_dir) if ok and _curves_present(curve_dir): return True, msg ok, msg = _restore_from_hf_dataset(curve_dir) if ok and _curves_present(curve_dir): return True, msg return False, "no restore source succeeded" def _archive_memory(curve_dir: str, archive_path: str=None) -> tuple: # type: ignore """Tar+gzip the memory directory to archive_path (default curves.tar.gz).""" try: import tarfile, tempfile as _tf ap = archive_path or CFG.get("HIVE_ARCHIVE_PATH","curves.tar.gz") or "curves.tar.gz" # write to temp then move for atomicity tmp = os.path.join(_tf.gettempdir(), f"curves_{int(time.time())}.tar.gz") with tarfile.open(tmp, "w:gz") as tar: tar.add(curve_dir, arcname="curves") os.replace(tmp, ap) return True, ap except Exception as e: try: open(os.path.join(CFG["STATE_DIR"], "archive_error.log"), "a", encoding="utf-8").write(str(e)+"\n") except Exception: pass return False, str(e) if not CFG.get("CURVES_AUTO_RESTORE", True): return False, "auto-restore disabled" # type: ignore if _curves_present(curve_dir): return True, "curves already present" ok, msg = _restore_from_local_archive(curve_dir) if ok and _curves_present(curve_dir): return True, msg ok, msg = _restore_from_url(curve_dir) if ok and _curves_present(curve_dir): return True, msg ok, msg = _restore_from_hf_dataset(curve_dir) if ok and _curves_present(curve_dir): return True, msg return False, "no restore source succeeded" # --- End Memory & Manifest Helpers --- # --- Staged Ingestion Orchestrator (auto) --- def _plan_sources(): srcs = [s.strip() for s in (CFG.get("INGEST_SOURCES") or "").split(",") if s.strip()] return srcs or (DEFAULT_SOURCES if "DEFAULT_SOURCES" in globals() else []) def _next_batch(done: list, all_sources: list, k: int): todo = [s for s in all_sources if s not in set(done)] return todo[:max(k,0)] def staged_ingest_once(curve_dir: str) -> dict: """Ingest a single stage (up to HIVE_INGEST_STAGE_SIZE datasets), respecting disk floor. Updates progress + manifest.""" try: import shutil, time as _t floor = int(CFG.get("HIVE_INGEST_MIN_FREE_GB", 8)) free_gb = shutil.disk_usage(".").free / (1024**3) if free_gb < floor: return {"ok": False, "reason": f"free disk {free_gb:.1f} GB < floor {floor} GB"} all_sources = _plan_sources() prog = _load_progress() batch = _next_batch(prog.get("done", []), all_sources, int(CFG.get("HIVE_INGEST_STAGE_SIZE",3))) if not batch: return {"ok": True, "reason": "all sources already ingested", "done": prog.get("done", [])} total_added = 0 actually_ingested = [] for ds in batch: added = ingest_all(curve_dir, [ds], scope="general") total_added += added actually_ingested.append(ds) prog["done"].append(ds) # check disk after each dataset free_gb = shutil.disk_usage(".").free / (1024**3) if free_gb < floor: break prog["stage"] = int(prog.get("stage", 0)) + 1 prog["ts"] = int(_t.time()) _save_progress(prog) # manifest update try: # type: ignore vecs = 0 try: vecs = CurveStore(curve_dir).index.ntotal except Exception: pass update_self_manifest(prog.get("done", []), int(vecs)) except Exception: pass return {"ok": True, "ingested": actually_ingested, "added_vectors_est": total_added, "stage": prog["stage"]} except Exception as _e: try: open(os.path.join(CFG.get("STATE_DIR","./state"), "ingest_error.log"), "a", encoding="utf-8").write(str(_e)+"\n") except Exception: pass return {"ok": False, "error": str(_e)} def staged_ingest_chain_if_enabled(curve_dir: str) -> dict: """Run 0..N stages this boot depending on HIVE_INGEST_CHAIN and HIVE_INGEST_CHAIN_MAX, with safety checks.""" if not CFG.get("HIVE_INGEST_STAGED", True): return {"ok": True, "reason": "staged disabled"} results = [] max_stages = max(0, int(CFG.get("HIVE_INGEST_CHAIN_MAX", 2))) if CFG.get("HIVE_INGEST_CHAIN", True) else (1 if CFG.get("HIVE_INGEST_NEXT") else 0) for i in range(max_stages): r = staged_ingest_once(curve_dir) results.append(r) if not r.get("ok", False): break if r.get("reason") == "all sources already ingested": break # stop if no items were ingested (e.g., disk floor hit immediately) if not r.get("ingested"): break # auto-archive after chain if configured if CFG.get("HIVE_AUTO_ARCHIVE", True) and str(CFG.get("HIVE_AUTO_ARCHIVE_MODE","per_chain")).lower() in ("per_chain","perdataset","per-dataset"): try: _ok_arc, _ap = _archive_memory(curve_dir) # type: ignore open(os.path.join(CFG["STATE_DIR"], "archive_status.log"), "a", encoding="utf-8").write(json.dumps({"ts":time.time(),"mode":"per_chain","ok":_ok_arc,"path":_ap})+"\n") except Exception as _e_arc: open(os.path.join(CFG["STATE_DIR"], "archive_error.log"), "a", encoding="utf-8").write("per_chain: "+str(_e_arc)+"\n") return {"ok": True, "chain_results": results} # --- End Staged Ingestion Orchestrator --- # type: ignore class PromptCompiler: def __init__(self): self.override_head=None self.override_budget=None self.personas = { "default": "You are a helpful assistant. Use the provided facts to answer the user's question concisely.", "en": "You are an encouraging and patient English tutor. Use the facts to explain the topic clearly and simply.", "essay_review": "You are a writing critic. Provide a detailed review of the following essay, focusing on structure, clarity, and vocabulary. Use the provided facts for context if needed.", "pronounce": "You are a pronunciation coach. Explain how to say the word, using the provided phonetic hints.", # type: ignore } def compile(self, final_instruction: str, snippets: List[Dict], token_budget: int = 600, intent: str = "default", user_lang: str = "en") -> str: if self.override_budget: token_budget = self.override_budget # Simple ranker: prioritize snippets with more overlapping words. query_words = set(re.findall(r"\w+", final_instruction.lower())) def rank_score(snippet): # type: ignore text = (snippet.get("text", "") or "").lower() return len(query_words.intersection(re.findall(r"\w+", text))) ranked = sorted(snippets, key=rank_score, reverse=True) # Synthesize a concise "insight" from the best snippets instead of just listing them. # This creates a more natural and integrated prompt for the LLM. insight = "" if ranked: top_snippet_text = (ranked[0].get("text", "") or "").strip() # Create a very short, focused summary of the most relevant fact. insight_summary = ' '.join(top_snippet_text.split()[:25]) + ('...' if len(top_snippet_text.split()) > 25 else '') insight = f"Based on my knowledge, I know that: \"{insight_summary}\". Use this key insight to inform your answer." # Select persona based on intent, falling back to language-specific default head = self.override_head or self.personas.get(intent, self.personas.get(user_lang, self.personas["default"])) return f"{head} {insight}\n\nUser: {final_instruction}\nAssistant:" class Hive: def __init__(self, model_id: Optional[str]=None, device: Optional[str]=None, caps: Optional[Dict]=None, lite: bool = False): self.caps = caps or probe_caps() self.lite_mode = lite if not self.lite_mode: self.store=CurveStore(CFG["CURVE_DIR"]); self.librarian=LibrarianCurve(self.store) self.engine=EngineCurve() self.overlay=RuntimeOverlay() self.changes=ChangeManager(Hive) self.compiler=PromptCompiler() if not model_id: model_id, info = pick_model(self.caps) device = info.get("device","cpu") self.model_id=model_id or CFG["MODEL_OVERRIDE"] or CANDIDATES[0][0] trust=True; kwargs={} if torch and torch.cuda.is_available() and device=="cuda": kwargs.update(dict(torch_dtype=torch.float16)) use_remote = CFG["HIVE_USE_HF_INFERENCE"] if use_remote: # type: ignore from huggingface_hub import InferenceClient endpoint = CFG["HIVE_HF_ENDPOINT"] or None token = CFG["HF_READ_TOKEN"] or os.getenv("HF_TOKEN") or os.getenv("HUGGING_FACE_HUB_TOKEN") or None self.client = InferenceClient(model=self.model_id if endpoint is None else None, token=token, timeout=60, base_url=endpoint) def _remote_pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, **kw): # type: ignore stop = kw.get("stop_sequences") or ["", "Assistant:"] resp = self.client.text_generation(prompt, max_new_tokens=int(max_new_tokens), temperature=float(temperature), do_sample=bool(do_sample), stop_sequences=stop, stream=False) return [{"generated_text": resp}] self.pipe = _remote_pipe else: self.tok = AutoTokenizer.from_pretrained(self.model_id, trust_remote_code=trust) self.model = AutoModelForCausalLM.from_pretrained(self.model_id, trust_remote_code=trust, **kwargs) self.pipe = pipeline("text-generation", model=self.model, tokenizer=self.tok, device=0 if (torch and torch.cuda.is_available() and device=="cuda") else -1, return_full_text=False) if not self.lite_mode: self.retrieval_k=6; self.decoding_temperature=0.7; self.web_threshold=0.40 self.overlay.apply_to(self) self.selfopt=SelfOptimizer(self); self.selfopt.start() def summarize_for_memory(self, text:str, max_new_tokens:int=160)->str: prompt=("Condense the following content into 4–6 bullet points with names, dates, numbers, and a one-line takeaway. Keep it factual.\n\n" f"{text[:3000]}\n\nSummary:") out=self.pipe(prompt, max_new_tokens=max_new_tokens, do_sample=False, temperature=0.01) return out[0]["generated_text"].split("Summary:",1)[-1].strip() def add_curve(self, text:str, meta:Dict, scope:str="general"): if self.lite_mode: return self.librarian.ingest_pairs([text],[meta],scope) def online_update(self, query_hint: Optional[str]=None)->Dict: if self.lite_mode: return {"ok": False, "reason": "lite mode"} if not CFG["ONLINE_ENABLE"]: return {"ok":False,"reason":"online disabled"} if not online_available(int(CFG["ONLINE_TIMEOUT"])): return {"ok":False,"reason":"offline"} seen=_load_json(ONLINE_DB, {}) urls=[u.strip() for u in (CFG["ONLINE_SOURCES"] or "").split(",") if u.strip()] items=fetch_rss(urls, timeout=int(CFG["ONLINE_TIMEOUT"]), limit=30) added=0 for it in items: key=hashlib.sha1(((it.get("link") or "")+(it.get("title") or "")).encode("utf-8","ignore")).hexdigest() if key in seen: continue base=(it.get("title","")+"\n\n"+it.get("summary","")).strip() summ=self.summarize_for_memory(base) self.add_curve(summ, {"dataset":"online_rss","url":it.get("link"),"title":it.get("title"),"published":it.get("published")}, scope="general") seen[key]=int(time.time()); added+=1 _save_json(ONLINE_DB, seen); return {"ok":True,"added":added} def web_update_and_store(self, query:str, max_docs:int, timeout:int)->int: if self.lite_mode: return 0 if not (CFG["ONLINE_ENABLE"] and online_available(timeout)): return 0 hits=web_search_snippets(query, max_results=max_docs, timeout=timeout); added=0 for h in hits: body=(h.get("title","")+"\n\n"+(h.get("body","") or "")).strip() if not body: continue summ=self.summarize_for_memory(body) meta={"dataset":"web_update","source":h.get("href",""),"title":h.get("title",""),"ts":time.time()} self.add_curve(summ, meta, scope="general"); added+=1 return added def chat(self, message:str, effective_role:str, caller_id: Optional[str], k:int=None, max_new_tokens:int=256, temperature:float=None, prompt_override: Optional[str] = None) -> str: # type: ignore if self.lite_mode: # In lite mode, we bypass all complex logic and just chat. prompt = f"User: {message}\nAssistant:" temp = temperature if temperature is not None else 0.7 out = self.pipe(prompt, max_new_tokens=max_new_tokens, do_sample=True, temperature=temp) return out[0]["generated_text"].strip() online_now=NET.online_quick() if not online_now: NET.kick_async() kk = k if k is not None else self.retrieval_k temp = temperature if temperature is not None else self.decoding_temperature user_obj, _ = _find_user(_load_users(), caller_id) user_prefs = (user_obj.get("prefs", {}) or {}) if user_obj else {} user_lang = user_prefs.get("language", "en") phonics_on = user_prefs.get("phonics_on", False) intent = self.engine.choose_route(message) final_message = message if intent == "pronounce" or (phonics_on and user_lang == 'en'): match = re.search(r"(pronounce|say|spell|spelling of)\s+['\"]?([a-zA-Z\-']+)['\"]?", message, re.I) word_to_process = match.group(2) if match else (message.split()[-1] if len(message.split()) < 4 else None) if word_to_process: phonics_hint = phonics(word_to_process) # type: ignore final_message = f"Explain how to pronounce the word '{word_to_process}'. Use this phonics hint in your explanation: {phonics_hint}" elif prompt_override: final_message = f"{prompt_override}\n\nHere is the text to work on:\n{message}" if "review" in prompt_override.lower() or "essay" in prompt_override.lower(): intent = "essay_review" # type: ignore snippets, scores = self.librarian.retrieve_scoped_with_scores(message, effective_role, caller_id, k=kk) cov=coverage_score_from_snippets(snippets, scores) SHOULD_TRY_WEB=(CFG["ONLINE_TRIGGER"].lower()=="auto") and CFG["ONLINE_ENABLE"] and online_now if cov < self.web_threshold and SHOULD_TRY_WEB: try: self.web_update_and_store(message, max_docs=int(CFG["ONLINE_MAX_RESULTS"] or 5), timeout=int(CFG["ONLINE_TIMEOUT"] or 8)) # type: ignore snippets, scores = self.librarian.retrieve_scoped_with_scores(message, effective_role, caller_id, k=kk) # type: ignore except Exception: pass prompt=self.compiler.compile(final_message, snippets, token_budget=int(CFG["CTX_TOKENS"]), intent=intent, user_lang=user_lang) _=self.engine.run(message, snippets) # type: ignore out=self.pipe(prompt, max_new_tokens=max_new_tokens, do_sample=True, temperature=temp) reply=out[0]["generated_text"].strip() if CFG["NO_PROFANITY"]: reply=re.sub(r"\b(fuck|shit|bitch|asshole|cunt|dick|pussy|nigger|motherfucker)\b","[censored]",reply, flags=re.I) if caller_id: log_path = os.path.join(CFG["HIVE_HOME"], "users", "conversations", f"{caller_id}.jsonl") log_entry = { "ts": time.time(), "message": message, "effective_role": effective_role, "intent": intent, "snippets_used": [s.get("text", "")[:100] for s in snippets[:3]], "reply": reply } _append_jsonl(log_path, log_entry) return reply # --------------- UI --------------- HELP=f""" **Admin/User mode**: Admins (general/super) and Owner log in with password (Owner also needs second factor). After login choose Admin or User mode. **Owner-only code edits** are enforced via Change Manager policy. Hive can sandbox, test, and propose; code writes require Owner approval (`OPT_AUTO_APPLY=1`) unless Owner applies manually. **Offline/Online**: Works fully offline from curves. If online and enabled, fetches RSS/web snippets ➡️ summarizes locally ➡️ saves to curves (persists offline). **Voice**: Faster-Whisper ASR (auto language), Piper TTS mixed-language, phonics hints (English). **Privacy**: Sensitive/first-person inputs route to user-private library; neutral info to general. """ def launch_ui(bootstrap_instance: "Bootstrap"): # Lazily initialize a global Hive instance to be shared across UI callbacks HIVE_INSTANCE: Optional[Hive] = None def get_hive_instance(): """ Returns the appropriate Hive instance. If the full instance is ready, returns it. Otherwise, returns the 'lite' instance for immediate chat. """ nonlocal HIVE_INSTANCE # Check if the full instance is ready without blocking if bootstrap_instance.hive_ready.is_set(): if HIVE_INSTANCE is None or HIVE_INSTANCE == bootstrap_instance.hive_lite_instance: HIVE_INSTANCE = bootstrap_instance.hive_instance print("[UI] Full Hive instance attached.") elif HIVE_INSTANCE is None: HIVE_INSTANCE = bootstrap_instance.hive_lite_instance print("[UI] Lite Hive instance attached.") return HIVE_INSTANCE with gr.Blocks(title="Hive 🐝 Full Merged Optimized") as demo: gr.Markdown(f"## {CFG['AGENT_NAME']} 🐝 Full Merged, Offline-first + Online updates + Internal Optimization") with gr.Row(): login_name=gr.Textbox(label="Name or ID") login_pass=gr.Textbox(label="Password (admins only)", type="password") login_second=gr.Textbox(label="Second (owner only)", type="password") login_btn=gr.Button("Login") login_status=gr.Markdown() uid_state=gr.State(None); role_state=gr.State("guest"); mode_state=gr.State("user"); phonics_state=gr.State(False) def do_login(nm,pw,sec): ok, info=attempt_login(nm or "", pw or "", sec or None) d=_load_users(); u,_=_find_user(d, nm or "") role=u["role"] if u else "guest" prof=_load_json(ADAPT_DB,{}).get(u["id"] if u else "guest",{}); phon_on=bool(prof.get("phonics_on",False)) return info,(u["id"] if u else None),role,"user",phon_on login_btn.click(do_login,[login_name,login_pass,login_second],[login_status, uid_state, role_state, mode_state, phonics_state]) mode_picker=gr.Radio(choices=["user","admin"], value="user", label="Mode (admins/owner only)") def set_mode(role, pick): if role not in ("admin_general","admin_super","owner"): return "user" return pick mode_picker.change(set_mode, [role_state, mode_picker], [mode_state]) with gr.Tab("Hive"): core_status = gr.Markdown("⏳ **Initializing Full Hive Core...** You can chat with the Lite model now. Advanced features will be enabled shortly.") chat=gr.Chatbot(height=420) msg=gr.Textbox(placeholder=f"Talk to {CFG['AGENT_NAME']} (Lite Mode)", interactive=True) def talk(m, uid, role, mode, hist): hive_instance = get_hive_instance() eff = role if mode=="admin" else "user" # --- Tutor Intent Routing --- prompt_override = None max_tokens = 512 # Default for chat text_lower = (m or "").lower() if len((m or "").split()) > 100 and ("review" in text_lower or "feedback" in text_lower or "essay" in text_lower): prompt_override = "Please provide a detailed review of the following essay, focusing on structure, clarity, and vocabulary. Offer specific suggestions for improvement." max_tokens = 1024 # Larger budget for reviews elif "proofread" in text_lower or "grammar" in text_lower or "correct this" in text_lower: prompt_override = "Please proofread and correct the following text, providing clear explanations for each change to help me learn." max_tokens = 1024 # Larger budget for proofreading reply=hive_instance.chat(m or "", effective_role=eff, caller_id=uid, prompt_override=prompt_override, max_new_tokens=max_tokens) # In full mode, perform privacy routing and save to memory if not hive_instance.lite_mode: personal = False if re.search(r"\b(my|mine|me|I|our|we)\b", (m or ""), re.I) and re.search(r"\b(password|address|email|phone|ssn|school|kid|medical|bank|card|passport)\b", (m or ""), re.I): personal = True scope = f"user:{uid}" if (uid and personal) else "general" if hive_instance.librarian: hive_instance.librarian.ingest_pairs([m or ""],[{"dataset":"chat"}], scope=scope) return hist+[[m, reply]], "" msg.submit(talk,[msg,uid_state,role_state,mode_state,chat],[chat,msg]) with gr.Accordion("Tools & Settings", open=False): # This function will run on UI load, wait for the core, and then update the UI. def wait_for_hive_core(): # This function now just updates the UI when the full core is ready. bootstrap_instance.hive_ready.wait() # Re-fetch instance to ensure it's the full one. get_hive_instance() ready_placeholder = f"Talk to {CFG['AGENT_NAME']}" # The textbox is already interactive, we just update the status and placeholder return "✅ **Full Hive Core is Ready.**", gr.Textbox(placeholder=ready_placeholder) demo.load(wait_for_hive_core, [], [core_status, msg]) with gr.Row(): with gr.Column(): gr.Markdown("### Your Profile Settings") profile_status = gr.Markdown("Login to see your profile.") profile_lang = gr.Dropdown(choices=["en","es","fr","de","zh"], label="Preferred Language") profile_phonics = gr.Checkbox(label="Enable Phonics Assist (for English)") profile_save_btn = gr.Button("Save Profile") def load_profile(uid): if not uid: return "Login to see your profile.", "en", False d = _load_users(); u, _ = _find_user(d, uid) if not u: return "User not found.", "en", False prefs = u.get("prefs", {}) or {} lang = prefs.get("language", "en") phonics_on = prefs.get("phonics_on", False) return f"Logged in as **{u.get('name')}** ({u.get('role')})", lang, phonics_on demo.load(load_profile, [uid_state], [profile_status, profile_lang, profile_phonics]) def save_profile(uid, lang, phonics_on): if not uid: return "Login to save your profile." d = _load_users(); u, _ = _find_user(d, uid) if not u: return "User not found. Cannot save." if "prefs" not in u or not isinstance(u["prefs"], dict): u["prefs"] = {} u["prefs"].update({"language": lang, "phonics_on": phonics_on}); _save_json(USERS_DB, d) return "Profile saved successfully!" profile_save_btn.click(save_profile, [uid_state, profile_lang, profile_phonics], [profile_status]) with gr.Column(): gr.Markdown("### Voice Tools") mic=gr.Audio(sources=["microphone"], type="filepath", label="Speak (5–10s)") with gr.Row(): transcribe_btn=gr.Button("Transcribe") reply_btn=gr.Button("Reply + Speak") transcript=gr.Textbox(label="Transcript") reply_text=gr.Textbox(label="Assistant Reply") reply_audio=gr.Audio(type="filepath", label="Assistant Voice") def do_transcribe(path, uid): if not path: return "" text=asr_transcribe(path, uid, None) return text transcribe_btn.click(do_transcribe,[mic,uid_state],[transcript]) def do_reply(uid, role, mode, text, hist) -> tuple: if not text: return "", None, hist hive_instance = get_hive_instance() eff = role if mode=="admin" else "user"; print(eff) full_reply = hive_instance.chat(text, effective_role=eff, caller_id=uid) wav=synthesize_multilang(full_reply, CFG["TTS_LANG"]); return full_reply, wav, hist + [[text, full_reply]] reply_btn.click(do_reply,[uid_state, role_state, mode_state, transcript, chat],[reply_text, reply_audio, chat]) with gr.Row(): with gr.Column(): gr.Markdown("### Voice Enrollment") enroll_audio=gr.Audio(sources=["microphone"], type="filepath", label="Record 5–10s for voiceprint") enroll_btn=gr.Button("Enroll voice for current user"); enroll_status=gr.Markdown() def do_enroll(uid, path): if not uid: return "Login or specify user first." if not path: return "No audio." enroll_voice(uid, path); return "Voice enrolled." enroll_btn.click(do_enroll,[uid_state, enroll_audio],[enroll_status]) who_btn=gr.Button("Login by Voice (users only)") who_status=gr.Markdown() def do_login_voice(path): if not path: return "No audio.", None, "guest", "user" uidv=identify_voice(path) if not uidv: return "Voice not recognized. You can enroll as a new user.", None, "guest", "user" d=_load_users() for grp in ["users","admins_general","admins_super"]: for u in d.get(grp,[]): if u["id"]==uidv: if u["role"] in ("admin_general","admin_super"): return "Admin roles require password login.", None, "guest", "user" return f"Welcome back, {u['name']} (user).", uidv, "user", "user" if d["owner"]["id"]==uidv: return "Owner must login with password + second factor.", None, "guest", "user" return "Matched unknown id; please login manually.", None, "guest", "user" who_btn.click(do_login_voice,[mic],[who_status, uid_state, role_state, mode_state]) with gr.Column(): gr.Markdown("### Online & Wi-Fi") wifi_status=gr.Markdown("Wi-Fi: checking...") connect_now=gr.Button("Try auto-connect now (non-blocking)") online_now=gr.Button("Fetch updates now"); online_status=gr.Markdown() connect_now.click(lambda: (NET.kick_async() or "Auto-connect started in background."), [], [wifi_status]) online_now.click(lambda: ("Added %s new summaries to curves." % (get_hive_instance().online_update().get("added",0))), [], [online_status]) with gr.Tab("Help"): gr.Markdown(HELP) # ------ Admin Controls (no separate tab; visible in Admin mode) ------ with gr.Accordion("Admin Controls (switch to Admin mode to enable)", open=False, visible=True) as admin_controls: admin_info=gr.Markdown("Switch to **Admin mode** above to use these tools.") target=gr.Textbox(label="Target name or id") new_name=gr.Textbox(label="New name") with gr.Row(): ingest_status = gr.Markdown("Memory Ingestion: Idle") ingest_now_btn = gr.Button("Start Background Ingestion") with gr.Row(): mem_compress_btn=gr.Button("Compress Memory (archive)") compress_status=gr.Markdown("") def compress_memory(h): ok,msg= _archive_memory(str(h.store.dir)) # type: ignore return msg mem_compress_btn.click(lambda: compress_memory(get_hive_instance()), [], [compress_status]) with gr.Row(): hotpatch_patch=gr.Code(label="Paste hotpatch JSON (advanced)") hotpatch_status=gr.Markdown("Awaiting patch") hotpatch_apply=gr.Button("Apply Hotpatch") def do_hotpatch(patch_json): try: patch=json.loads(patch_json) except Exception: return "Bad JSON." ok,msg=get_hive_instance().overlay.patch(patch,get_hive_instance()) return msg def run_ingest_background(hive_instance): def ingest_task(): staged_ingest_chain_if_enabled(str(hive_instance.config["CURVE_DIR"])) threading.Thread(target=ingest_task, daemon=True).start() return "Background ingestion process started. See logs for details." ingest_now_btn.click(lambda: run_ingest_background(get_hive_instance()), [], [ingest_status]) new_pass=gr.Textbox(label="New password") new_role=gr.Dropdown(choices=["owner","admin_super","admin_general","user"], value="user", label="New role") add_name=gr.Textbox(label="Add: name") add_role=gr.Dropdown(choices=["admin_super","admin_general","user"], value="user", label="Add role") add_pass=gr.Textbox(label="Add password (admins only)") add_btn=gr.Button("Add user/admin") rename_btn=gr.Button("Rename") pass_btn=gr.Button("Change password") role_btn=gr.Button("Change role") out=gr.Markdown() def is_admin(mode, role): return (mode=="admin") and (role in ("admin_general","admin_super","owner")) def do_add(mode, role, caller, nm, rl, pw): if not is_admin(mode, role): return "Switch to Admin mode to use this." d=_load_users(); cu,_=_find_user(d, caller or "") if not cu: return "Login first as admin." if rl not in PERMS.get(cu["role"],{}).get("can_add",[]): return f"{cu['role']} cannot add {rl}." uid=f"{rl}:{int(time.time())}" entry={"id":uid,"name":nm,"role":rl,"pass":pw if rl!='user' else "", "prefs":{"activation_names":[CFG["AGENT_NAME"]],"language":"en"}} if rl=="owner": d["owner"]=entry elif rl=="admin_super": d["admins_super"].append(entry) elif rl=="admin_general": d["admins_general"].append(entry) else: d["users"].append(entry) _save_json(USERS_DB,d); return f"Added {rl}: {nm}" def do_automatic_profile_creation(mic_audio_filepath): if not mic_audio_filepath: return "Please record a voice sample" d = _load_users() rl = "user" # Automatically create a user uid = f"{rl}:{int(time.time())}" nm = f"User{int(time.time())}" entry = {"id": uid, "name": nm, "role": rl, "pass": "", # No password for auto-created users "prefs": {"activation_names": [CFG["AGENT_NAME"]], "language": "en"}} d["users"].append(entry) _save_json(USERS_DB, d) # Attempt voice enrollment for new user success = enroll_voice(uid, mic_audio_filepath) enroll_message = "Voice enrolled successfully!" if success else "Voice enrollment failed." return f"Added {rl}: {nm}. {enroll_message}" profile_creation_note = gr.Markdown("Profile will be created automatically when a voice sample is recorded.") auto_mic = gr.Audio(sources=["microphone"], type="filepath", label="Record a voice sample to automatically create a user profile (non-admin).") automatic_creation_button = gr.Button("Create profile") automatic_out = gr.Markdown() automatic_creation_button.click( do_automatic_profile_creation, [auto_mic], [automatic_out] ) add_btn.click(do_add, [mode_state, role_state, uid_state, add_name, add_role, add_pass], [out]) def do_rename(mode, role, caller, tgt, nm): if not is_admin(mode, role): return "Switch to Admin mode to use this." d=_load_users(); u,_=_find_user(d, tgt or "") if not u: return "Target not found." cu,_=_find_user(d, caller or "") if not cu: return "Login first." if u["role"] in PERMS.get(cu["role"],{}).get("can_edit_profile_of",[]): u["name"]=nm; _save_json(USERS_DB,d); return "Renamed." return "Not allowed." rename_btn.click(do_rename,[mode_state, role_state, uid_state, target, new_name],[out]) def do_pass(mode, role, caller, tgt, pw): if not is_admin(mode, role): return "Switch to Admin mode to use this." d=_load_users(); u,_=_find_user(d, tgt or "") if not u: return "Target not found." cu,_=_find_user(d, caller or "") if not cu: return "Login first." if u["role"] in PERMS.get(cu["role"],{}).get("can_edit_profile_of",[]): u["pass"]=pw; _save_json(USERS_DB,d); return "Password changed." return "Not allowed." pass_btn.click(do_pass,[mode_state, role_state, uid_state, target, new_pass],[out]) def do_role(mode, role, caller, tgt, rl): if not is_admin(mode, role): return "Switch to Admin mode to use this." d=_load_users(); u,_=_find_user(d, tgt or "") if not u: return "Target not found." cu,_=_find_user(d, caller or ""); if not cu: return "Login first." allowed_new = {"owner":["owner","admin_super","admin_general","user"], "admin_super":["admin_general","user"], "admin_general":["admin_general","user"]}.get(cu["role"], []) if u["role"] not in PERMS.get(cu["role"],{}).get("can_edit_role_of",[]) or rl not in allowed_new: return f"Not allowed to set {rl}." for grp in ["admins_super","admins_general","users"]: d[grp]=[x for x in d[grp] if x["id"]!=u["id"]] if rl=="owner": d["owner"]=u; u["role"]="owner" elif rl=="admin_super": d["admins_super"].append(u); u["role"]="admin_super" elif rl=="admin_general": d["admins_general"].append(u); u["role"]="admin_general" else: d["users"].append(u); u["role"]="user" _save_json(USERS_DB,d); return f"Role set to {rl}." role_btn.click(do_role,[mode_state, role_state, uid_state, target, new_role],[out]) # ------ Internal Optimization controls (Owner-gated) ------ gr.Markdown("### Internal Optimization (Change Manager)") prop_kind=gr.Dropdown(choices=["model","package","code"], value="model", label="Proposal type") prop_name=gr.Textbox(label="Model ID / Package Name") prop_ver=gr.Textbox(label="Package version (optional)") prop_reason=gr.Textbox(label="Why this change?") prop_patch=gr.Code(label="Code patch (for 'code' proposals): paste full replacement or diff") propose_btn=gr.Button("Propose"); test_btn=gr.Button("Test in sandbox"); apply_btn=gr.Button("Apply (policy-checked)") opt_out=gr.JSON() _last: Dict[str, any] = {"id": None, "obj": None} def do_propose(kind,name,ver,reason,patch): hive_instance = get_hive_instance() cp=ChangeProposal(kind=kind,name=name or "",version=ver or "",reason=reason or "",patch_text=patch or "") pid=hive_instance.changes.propose(cp); _last["id"]=pid; _last["obj"]=cp return f"Proposed {kind}: {name or '(code patch)'} (id:{pid})" def do_test(): if not _last["obj"]: return "No proposal in memory. Submit one first." res=get_hive_instance().changes.test_and_compare(str(_last["id"]), _last["obj"]); return res # type: ignore def do_apply(role, mode): hive_instance = get_hive_instance() if role not in ("admin_super","owner") or mode!="admin": return "Only admin_super or owner may apply." if not _last["obj"]: return "No proposal loaded." res=hive_instance.changes.test_and_compare(str(_last["id"]), _last["obj"]) if not res.get("ok"): return f"Test failed: {res.get('reason','unknown')}" if _last["obj"].kind=="code" and role!="owner" and not CFG["OPT_AUTO_APPLY"]: return "Awaiting Owner approval for code changes." # type: ignore ok,msg=hive_instance.changes.apply(res); return msg if ok else f"Apply failed: {msg}" propose_btn.click(do_propose, [prop_kind,prop_name,prop_ver,prop_reason,prop_patch],[opt_out]) hotpatch_apply.click(do_hotpatch,[hotpatch_patch],[hotpatch_status]) test_btn.click(lambda: do_test(), [], [opt_out]) apply_btn.click(do_apply, [role_state, mode_state], [opt_out]) demo.launch(server_name="0.0.0.0", server_port=int(os.environ.get("PORT", "7860")), share=False) class Bootstrap: """Handles the entire application startup sequence cleanly.""" def __init__(self, config: Dict): self.config = config self.caps: Optional[Dict] = None self.hive_instance: Optional[Hive] = None self.hive_lite_instance: Optional[Hive] = None self.hive_ready = threading.Event() def run(self): """Executes the full startup sequence.""" print("[Bootstrap] Starting Hive System...") self.caps = probe_caps() print(f"[Bootstrap] System capabilities: {self.caps}") # Create a 'lite' instance immediately for basic chat print("[Bootstrap] Initializing Lite Hive core...") self.hive_lite_instance = Hive(lite=True) print("[Bootstrap] Lite Hive core is ready.") # Launch UI immediately, it will wait for the hive_ready event ui_thread = threading.Thread(target=self.launch, daemon=True) ui_thread.start() print("[Bootstrap] Initializing Hive core in background...") # Now initialize the full instance. This is the slow part. self.hive_instance = Hive(lite=False) self.hive_ready.set() # Signal that the Hive instance is ready print("[Bootstrap] Hive core is ready.") self.setup_memory() ui_thread.join() # Keep main thread alive def setup_memory(self): """Handles memory restoration and staged ingestion.""" def _memory_task(): print("[Bootstrap] Starting background memory setup...") try: ok_restored, restore_msg = restore_curves_if_missing(str(self.config["CURVE_DIR"])) with open(os.path.join(self.config["STATE_DIR"], "restore_status.log"), "a", encoding="utf-8") as f: f.write(json.dumps({"ok":bool(ok_restored),"msg":restore_msg,"ts":time.time()})+"\n") if ok_restored: print(f"[Bootstrap] Memory restore status: {restore_msg}") else: print("[Bootstrap] No memory restored, proceeding to staged ingestion in background...") staged_ingest_chain_if_enabled(str(self.config["CURVE_DIR"])) except Exception as e: with open(os.path.join(self.config["STATE_DIR"], "restore_error.log"), "a", encoding="utf-8") as f: f.write(f"restore/ingest: {e}\n") # Run the memory setup in a background thread to not block the UI threading.Thread(target=_memory_task, daemon=True).start() def launch(self): """Launches the appropriate interface (UI or CLI).""" if self.config["LAUNCH_UI"]: print("[Bootstrap] Launching Web UI...") launch_ui(self) else: print("[Bootstrap] Launching CLI...") self.run_cli_loop() def run_cli_loop(self): """Runs a command-line interface loop for Hive. Waits for full init.""" self.hive_ready.wait() print("Hive is ready. Type a message and press Enter (Ctrl+C to exit).") try: while True: s = input("> ").strip() if not s: continue reply = self.hive_instance.chat(s, effective_role="user", caller_id="cli") # type: ignore print(reply) except (KeyboardInterrupt, EOFError): print("\nExiting Hive CLI.") pass # ----------- entry ----------- if __name__=="__main__": bootstrap = Bootstrap(CFG) bootstrap.run()