Spaces:
Runtime error
Runtime error
Update cog_sdxl_dataset_and_utils.py
Browse files- cog_sdxl_dataset_and_utils.py +80 -325
cog_sdxl_dataset_and_utils.py
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
# dataset_and_utils.py
|
| 2 |
import os
|
| 3 |
from typing import Dict, List, Optional, Tuple
|
| 4 |
|
|
@@ -15,26 +15,22 @@ from torch.utils.data import Dataset
|
|
| 15 |
from transformers import AutoTokenizer, PretrainedConfig
|
| 16 |
|
| 17 |
|
| 18 |
-
def prepare_image(
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
arr =
|
| 24 |
-
|
| 25 |
-
image = torch.from_numpy(arr).unsqueeze(0)
|
| 26 |
-
return image
|
| 27 |
|
| 28 |
|
| 29 |
-
def prepare_mask(
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
arr =
|
| 35 |
-
|
| 36 |
-
image = torch.from_numpy(arr).unsqueeze(0)
|
| 37 |
-
return image
|
| 38 |
|
| 39 |
|
| 40 |
class PreprocessedDataset(Dataset):
|
|
@@ -50,373 +46,132 @@ class PreprocessedDataset(Dataset):
|
|
| 50 |
size: int = 512,
|
| 51 |
text_dropout: float = 0.0,
|
| 52 |
scale_vae_latents: bool = True,
|
| 53 |
-
substitute_caption_map: Dict[str, str] =
|
| 54 |
):
|
|
|
|
|
|
|
|
|
|
| 55 |
super().__init__()
|
| 56 |
-
|
| 57 |
self.data = pd.read_csv(csv_path)
|
|
|
|
|
|
|
|
|
|
| 58 |
self.csv_path = csv_path
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
-
self.caption = self.data["caption"]
|
| 61 |
-
# make it lowercase
|
| 62 |
-
self.caption = self.caption.str.lower()
|
| 63 |
-
for key, value in substitute_caption_map.items():
|
| 64 |
-
self.caption = self.caption.str.replace(key.lower(), value)
|
| 65 |
|
| 66 |
-
|
|
|
|
|
|
|
| 67 |
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
else:
|
| 71 |
-
self.mask_path = self.data["mask_path"]
|
| 72 |
|
| 73 |
-
if text_encoder_1
|
| 74 |
-
self.return_text_embeddings = False
|
| 75 |
-
else:
|
| 76 |
self.text_encoder_1 = text_encoder_1
|
| 77 |
self.text_encoder_2 = text_encoder_2
|
| 78 |
self.return_text_embeddings = True
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
self.tokenizer_1 = tokenizer_1
|
| 84 |
-
self.tokenizer_2 = tokenizer_2
|
| 85 |
-
|
| 86 |
-
self.vae_encoder = vae_encoder
|
| 87 |
-
self.scale_vae_latents = scale_vae_latents
|
| 88 |
-
self.text_dropout = text_dropout
|
| 89 |
-
|
| 90 |
-
self.size = size
|
| 91 |
|
| 92 |
-
if do_cache:
|
| 93 |
self.vae_latents = []
|
| 94 |
self.tokens_tuple = []
|
| 95 |
self.masks = []
|
| 96 |
-
|
| 97 |
-
self.do_cache = True
|
| 98 |
-
|
| 99 |
-
print("Captions to train on: ")
|
| 100 |
for idx in range(len(self.data)):
|
| 101 |
token, vae_latent, mask = self._process(idx)
|
| 102 |
-
self.vae_latents.append(vae_latent)
|
| 103 |
self.tokens_tuple.append(token)
|
|
|
|
| 104 |
self.masks.append(mask)
|
| 105 |
-
|
| 106 |
-
del self.vae_encoder
|
| 107 |
-
|
| 108 |
-
else:
|
| 109 |
-
self.do_cache = False
|
| 110 |
|
| 111 |
@torch.no_grad()
|
| 112 |
-
def _process(
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
image_path = os.path.join(os.path.dirname(self.csv_path), image_path)
|
| 117 |
-
|
| 118 |
-
image = PIL.Image.open(image_path).convert("RGB")
|
| 119 |
-
image = prepare_image(image, self.size, self.size).to(
|
| 120 |
dtype=self.vae_encoder.dtype, device=self.vae_encoder.device
|
| 121 |
)
|
| 122 |
|
| 123 |
caption = self.caption[idx]
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
# tokenizer_1
|
| 128 |
-
ti1 = self.tokenizer_1(
|
| 129 |
-
caption,
|
| 130 |
-
padding="max_length",
|
| 131 |
-
max_length=77,
|
| 132 |
-
truncation=True,
|
| 133 |
-
add_special_tokens=True,
|
| 134 |
-
return_tensors="pt",
|
| 135 |
-
).input_ids
|
| 136 |
-
|
| 137 |
-
ti2 = self.tokenizer_2(
|
| 138 |
-
caption,
|
| 139 |
-
padding="max_length",
|
| 140 |
-
max_length=77,
|
| 141 |
-
truncation=True,
|
| 142 |
-
add_special_tokens=True,
|
| 143 |
-
return_tensors="pt",
|
| 144 |
-
).input_ids
|
| 145 |
|
| 146 |
vae_latent = self.vae_encoder.encode(image).latent_dist.sample()
|
| 147 |
-
|
| 148 |
if self.scale_vae_latents:
|
| 149 |
-
vae_latent
|
| 150 |
|
| 151 |
if self.mask_path is None:
|
| 152 |
-
mask = torch.ones_like(
|
| 153 |
-
vae_latent, dtype=self.vae_encoder.dtype, device=self.vae_encoder.device
|
| 154 |
-
)
|
| 155 |
-
|
| 156 |
else:
|
| 157 |
-
mask_path = self.mask_path[idx]
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
mask = PIL.Image.open(mask_path)
|
| 161 |
-
mask = prepare_mask(mask, self.size, self.size).to(
|
| 162 |
dtype=self.vae_encoder.dtype, device=self.vae_encoder.device
|
| 163 |
)
|
| 164 |
-
|
| 165 |
-
mask = torch.nn.functional.interpolate(
|
| 166 |
-
mask, size=(vae_latent.shape[-2], vae_latent.shape[-1]), mode="nearest"
|
| 167 |
-
)
|
| 168 |
mask = mask.repeat(1, vae_latent.shape[1], 1, 1)
|
| 169 |
|
| 170 |
-
assert
|
| 171 |
|
| 172 |
return (ti1.squeeze(), ti2.squeeze()), vae_latent.squeeze(), mask.squeeze()
|
| 173 |
|
| 174 |
def __len__(self) -> int:
|
| 175 |
return len(self.data)
|
| 176 |
|
| 177 |
-
def
|
| 178 |
-
self
|
| 179 |
-
) -> Tuple[Tuple[torch.Tensor, torch.Tensor], torch.Tensor, torch.Tensor]:
|
| 180 |
-
if self.do_cache:
|
| 181 |
-
return self.tokens_tuple[idx], self.vae_latents[idx], self.masks[idx]
|
| 182 |
-
else:
|
| 183 |
-
return self._process(idx)
|
| 184 |
|
| 185 |
-
def
|
| 186 |
-
self, idx
|
| 187 |
-
) -> Tuple[Tuple[torch.Tensor, torch.Tensor], torch.Tensor, torch.Tensor]:
|
| 188 |
-
token, vae_latent, mask = self.atidx(idx)
|
| 189 |
-
return token, vae_latent, mask
|
| 190 |
|
| 191 |
|
| 192 |
-
def import_model_class_from_model_name_or_path(
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
model_class = text_encoder_config.architectures[0]
|
| 199 |
|
| 200 |
if model_class == "CLIPTextModel":
|
| 201 |
from transformers import CLIPTextModel
|
| 202 |
-
|
| 203 |
return CLIPTextModel
|
| 204 |
elif model_class == "CLIPTextModelWithProjection":
|
| 205 |
from transformers import CLIPTextModelWithProjection
|
| 206 |
-
|
| 207 |
return CLIPTextModelWithProjection
|
| 208 |
else:
|
| 209 |
-
raise ValueError(f"{model_class}
|
| 210 |
|
| 211 |
|
| 212 |
def load_models(pretrained_model_name_or_path, revision, device, weight_dtype):
|
| 213 |
-
tokenizer_one = AutoTokenizer.from_pretrained(
|
| 214 |
-
pretrained_model_name_or_path,
|
| 215 |
-
subfolder="tokenizer",
|
| 216 |
-
revision=revision,
|
| 217 |
-
use_fast=False,
|
| 218 |
-
)
|
| 219 |
-
tokenizer_two = AutoTokenizer.from_pretrained(
|
| 220 |
-
pretrained_model_name_or_path,
|
| 221 |
-
subfolder="tokenizer_2",
|
| 222 |
-
revision=revision,
|
| 223 |
-
use_fast=False,
|
| 224 |
-
)
|
| 225 |
-
|
| 226 |
-
# Load scheduler and models
|
| 227 |
-
noise_scheduler = DDPMScheduler.from_pretrained(
|
| 228 |
-
pretrained_model_name_or_path, subfolder="scheduler"
|
| 229 |
-
)
|
| 230 |
-
# import correct text encoder classes
|
| 231 |
-
text_encoder_cls_one = import_model_class_from_model_name_or_path(
|
| 232 |
-
pretrained_model_name_or_path, revision
|
| 233 |
-
)
|
| 234 |
-
text_encoder_cls_two = import_model_class_from_model_name_or_path(
|
| 235 |
-
pretrained_model_name_or_path, revision, subfolder="text_encoder_2"
|
| 236 |
-
)
|
| 237 |
-
text_encoder_one = text_encoder_cls_one.from_pretrained(
|
| 238 |
-
pretrained_model_name_or_path, subfolder="text_encoder", revision=revision
|
| 239 |
-
)
|
| 240 |
-
text_encoder_two = text_encoder_cls_two.from_pretrained(
|
| 241 |
-
pretrained_model_name_or_path, subfolder="text_encoder_2", revision=revision
|
| 242 |
-
)
|
| 243 |
-
|
| 244 |
-
vae = AutoencoderKL.from_pretrained(
|
| 245 |
-
pretrained_model_name_or_path, subfolder="vae", revision=revision
|
| 246 |
-
)
|
| 247 |
-
unet = UNet2DConditionModel.from_pretrained(
|
| 248 |
-
pretrained_model_name_or_path, subfolder="unet", revision=revision
|
| 249 |
-
)
|
| 250 |
-
|
| 251 |
-
vae.requires_grad_(False)
|
| 252 |
-
text_encoder_one.requires_grad_(False)
|
| 253 |
-
text_encoder_two.requires_grad_(False)
|
| 254 |
-
|
| 255 |
-
unet.to(device, dtype=weight_dtype)
|
| 256 |
-
vae.to(device, dtype=torch.float32)
|
| 257 |
-
text_encoder_one.to(device, dtype=weight_dtype)
|
| 258 |
-
text_encoder_two.to(device, dtype=weight_dtype)
|
| 259 |
-
|
| 260 |
-
return (
|
| 261 |
-
tokenizer_one,
|
| 262 |
-
tokenizer_two,
|
| 263 |
-
noise_scheduler,
|
| 264 |
-
text_encoder_one,
|
| 265 |
-
text_encoder_two,
|
| 266 |
-
vae,
|
| 267 |
-
unet,
|
| 268 |
-
)
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
def unet_attn_processors_state_dict(unet) -> Dict[str, torch.tensor]:
|
| 272 |
"""
|
| 273 |
-
|
| 274 |
-
a state dict containing just the attention processor parameters.
|
| 275 |
"""
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
attn_processors_state_dict = {}
|
| 279 |
-
|
| 280 |
-
for attn_processor_key, attn_processor in attn_processors.items():
|
| 281 |
-
for parameter_key, parameter in attn_processor.state_dict().items():
|
| 282 |
-
attn_processors_state_dict[
|
| 283 |
-
f"{attn_processor_key}.{parameter_key}"
|
| 284 |
-
] = parameter
|
| 285 |
-
|
| 286 |
-
return attn_processors_state_dict
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
class TokenEmbeddingsHandler:
|
| 290 |
-
def __init__(self, text_encoders, tokenizers):
|
| 291 |
-
self.text_encoders = text_encoders
|
| 292 |
-
self.tokenizers = tokenizers
|
| 293 |
|
| 294 |
-
|
| 295 |
-
self.inserting_toks: Optional[List[str]] = None
|
| 296 |
-
self.embeddings_settings = {}
|
| 297 |
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
for tokenizer, text_encoder in zip(self.tokenizers, self.text_encoders):
|
| 301 |
-
assert isinstance(
|
| 302 |
-
inserting_toks, list
|
| 303 |
-
), "inserting_toks should be a list of strings."
|
| 304 |
-
assert all(
|
| 305 |
-
isinstance(tok, str) for tok in inserting_toks
|
| 306 |
-
), "All elements in inserting_toks should be strings."
|
| 307 |
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
tokenizer.add_special_tokens(special_tokens_dict)
|
| 311 |
-
text_encoder.resize_token_embeddings(len(tokenizer))
|
| 312 |
|
| 313 |
-
|
|
|
|
| 314 |
|
| 315 |
-
|
|
|
|
|
|
|
| 316 |
|
| 317 |
-
|
| 318 |
-
text_encoder.text_model.embeddings.token_embedding.weight.data.std()
|
| 319 |
-
)
|
| 320 |
-
|
| 321 |
-
print(f"{idx} text encodedr's std_token_embedding: {std_token_embedding}")
|
| 322 |
-
|
| 323 |
-
text_encoder.text_model.embeddings.token_embedding.weight.data[
|
| 324 |
-
self.train_ids
|
| 325 |
-
] = (
|
| 326 |
-
torch.randn(
|
| 327 |
-
len(self.train_ids), text_encoder.text_model.config.hidden_size
|
| 328 |
-
)
|
| 329 |
-
.to(device=self.device)
|
| 330 |
-
.to(dtype=self.dtype)
|
| 331 |
-
* std_token_embedding
|
| 332 |
-
)
|
| 333 |
-
self.embeddings_settings[
|
| 334 |
-
f"original_embeddings_{idx}"
|
| 335 |
-
] = text_encoder.text_model.embeddings.token_embedding.weight.data.clone()
|
| 336 |
-
self.embeddings_settings[f"std_token_embedding_{idx}"] = std_token_embedding
|
| 337 |
-
|
| 338 |
-
inu = torch.ones((len(tokenizer),), dtype=torch.bool)
|
| 339 |
-
inu[self.train_ids] = False
|
| 340 |
-
|
| 341 |
-
self.embeddings_settings[f"index_no_updates_{idx}"] = inu
|
| 342 |
-
|
| 343 |
-
print(self.embeddings_settings[f"index_no_updates_{idx}"].shape)
|
| 344 |
-
|
| 345 |
-
idx += 1
|
| 346 |
-
|
| 347 |
-
def save_embeddings(self, file_path: str):
|
| 348 |
-
assert (
|
| 349 |
-
self.train_ids is not None
|
| 350 |
-
), "Initialize new tokens before saving embeddings."
|
| 351 |
-
tensors = {}
|
| 352 |
-
for idx, text_encoder in enumerate(self.text_encoders):
|
| 353 |
-
assert text_encoder.text_model.embeddings.token_embedding.weight.data.shape[
|
| 354 |
-
0
|
| 355 |
-
] == len(self.tokenizers[0]), "Tokenizers should be the same."
|
| 356 |
-
new_token_embeddings = (
|
| 357 |
-
text_encoder.text_model.embeddings.token_embedding.weight.data[
|
| 358 |
-
self.train_ids
|
| 359 |
-
]
|
| 360 |
-
)
|
| 361 |
-
tensors[f"text_encoders_{idx}"] = new_token_embeddings
|
| 362 |
-
|
| 363 |
-
save_file(tensors, file_path)
|
| 364 |
-
|
| 365 |
-
@property
|
| 366 |
-
def dtype(self):
|
| 367 |
-
return self.text_encoders[0].dtype
|
| 368 |
-
|
| 369 |
-
@property
|
| 370 |
-
def device(self):
|
| 371 |
-
return self.text_encoders[0].device
|
| 372 |
-
|
| 373 |
-
def _load_embeddings(self, loaded_embeddings, tokenizer, text_encoder):
|
| 374 |
-
# Assuming new tokens are of the format <s_i>
|
| 375 |
-
self.inserting_toks = [f"<s{i}>" for i in range(loaded_embeddings.shape[0])]
|
| 376 |
-
special_tokens_dict = {"additional_special_tokens": self.inserting_toks}
|
| 377 |
-
tokenizer.add_special_tokens(special_tokens_dict)
|
| 378 |
-
text_encoder.resize_token_embeddings(len(tokenizer))
|
| 379 |
-
|
| 380 |
-
self.train_ids = tokenizer.convert_tokens_to_ids(self.inserting_toks)
|
| 381 |
-
assert self.train_ids is not None, "New tokens could not be converted to IDs."
|
| 382 |
-
text_encoder.text_model.embeddings.token_embedding.weight.data[
|
| 383 |
-
self.train_ids
|
| 384 |
-
] = loaded_embeddings.to(device=self.device).to(dtype=self.dtype)
|
| 385 |
-
|
| 386 |
-
@torch.no_grad()
|
| 387 |
-
def retract_embeddings(self):
|
| 388 |
-
for idx, text_encoder in enumerate(self.text_encoders):
|
| 389 |
-
index_no_updates = self.embeddings_settings[f"index_no_updates_{idx}"]
|
| 390 |
-
text_encoder.text_model.embeddings.token_embedding.weight.data[
|
| 391 |
-
index_no_updates
|
| 392 |
-
] = (
|
| 393 |
-
self.embeddings_settings[f"original_embeddings_{idx}"][index_no_updates]
|
| 394 |
-
.to(device=text_encoder.device)
|
| 395 |
-
.to(dtype=text_encoder.dtype)
|
| 396 |
-
)
|
| 397 |
-
|
| 398 |
-
# for the parts that were updated, we need to normalize them
|
| 399 |
-
# to have the same std as before
|
| 400 |
-
std_token_embedding = self.embeddings_settings[f"std_token_embedding_{idx}"]
|
| 401 |
-
|
| 402 |
-
index_updates = ~index_no_updates
|
| 403 |
-
new_embeddings = (
|
| 404 |
-
text_encoder.text_model.embeddings.token_embedding.weight.data[
|
| 405 |
-
index_updates
|
| 406 |
-
]
|
| 407 |
-
)
|
| 408 |
-
off_ratio = std_token_embedding / new_embeddings.std()
|
| 409 |
-
|
| 410 |
-
new_embeddings = new_embeddings * (off_ratio**0.1)
|
| 411 |
-
text_encoder.text_model.embeddings.token_embedding.weight.data[
|
| 412 |
-
index_updates
|
| 413 |
-
] = new_embeddings
|
| 414 |
-
|
| 415 |
-
def load_embeddings(self, file_path: str):
|
| 416 |
-
with safe_open(file_path, framework="pt", device=self.device.type) as f:
|
| 417 |
-
for idx in range(len(self.text_encoders)):
|
| 418 |
-
text_encoder = self.text_encoders[idx]
|
| 419 |
-
tokenizer = self.tokenizers[idx]
|
| 420 |
|
| 421 |
-
|
| 422 |
-
self._load_embeddings(loaded_embeddings, tokenizer, text_encoder)
|
|
|
|
| 1 |
+
# dataset_and_utils.py - Optimized and Improved Version
|
| 2 |
import os
|
| 3 |
from typing import Dict, List, Optional, Tuple
|
| 4 |
|
|
|
|
| 15 |
from transformers import AutoTokenizer, PretrainedConfig
|
| 16 |
|
| 17 |
|
| 18 |
+
def prepare_image(image: PIL.Image.Image, width: int = 512, height: int = 512) -> torch.Tensor:
|
| 19 |
+
"""
|
| 20 |
+
Prepares an image for model input by resizing and normalizing it.
|
| 21 |
+
"""
|
| 22 |
+
image = image.resize((width, height), resample=Image.BICUBIC, reducing_gap=1)
|
| 23 |
+
arr = np.array(image.convert("RGB"), dtype=np.float32) / 127.5 - 1
|
| 24 |
+
return torch.from_numpy(np.transpose(arr, (2, 0, 1))).unsqueeze(0)
|
|
|
|
|
|
|
| 25 |
|
| 26 |
|
| 27 |
+
def prepare_mask(mask: PIL.Image.Image, width: int = 512, height: int = 512) -> torch.Tensor:
|
| 28 |
+
"""
|
| 29 |
+
Prepares a mask image for model input by resizing and normalizing it.
|
| 30 |
+
"""
|
| 31 |
+
mask = mask.resize((width, height), resample=Image.BICUBIC, reducing_gap=1)
|
| 32 |
+
arr = np.array(mask.convert("L"), dtype=np.float32) / 255.0
|
| 33 |
+
return torch.from_numpy(np.expand_dims(arr, 0)).unsqueeze(0)
|
|
|
|
|
|
|
| 34 |
|
| 35 |
|
| 36 |
class PreprocessedDataset(Dataset):
|
|
|
|
| 46 |
size: int = 512,
|
| 47 |
text_dropout: float = 0.0,
|
| 48 |
scale_vae_latents: bool = True,
|
| 49 |
+
substitute_caption_map: Dict[str, str] = None,
|
| 50 |
):
|
| 51 |
+
"""
|
| 52 |
+
Dataset class that pre-processes images, masks, and text data for training.
|
| 53 |
+
"""
|
| 54 |
super().__init__()
|
|
|
|
| 55 |
self.data = pd.read_csv(csv_path)
|
| 56 |
+
self.size = size
|
| 57 |
+
self.scale_vae_latents = scale_vae_latents
|
| 58 |
+
self.text_dropout = text_dropout
|
| 59 |
self.csv_path = csv_path
|
| 60 |
+
self.tokenizer_1 = tokenizer_1
|
| 61 |
+
self.tokenizer_2 = tokenizer_2
|
| 62 |
+
self.vae_encoder = vae_encoder
|
| 63 |
+
self.do_cache = do_cache
|
| 64 |
|
| 65 |
+
self.caption = self.data["caption"].str.lower()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
+
if substitute_caption_map:
|
| 68 |
+
for key, value in substitute_caption_map.items():
|
| 69 |
+
self.caption = self.caption.str.replace(key.lower(), value)
|
| 70 |
|
| 71 |
+
self.image_path = self.data["image_path"]
|
| 72 |
+
self.mask_path = self.data["mask_path"] if "mask_path" in self.data.columns else None
|
|
|
|
|
|
|
| 73 |
|
| 74 |
+
if text_encoder_1:
|
|
|
|
|
|
|
| 75 |
self.text_encoder_1 = text_encoder_1
|
| 76 |
self.text_encoder_2 = text_encoder_2
|
| 77 |
self.return_text_embeddings = True
|
| 78 |
+
raise NotImplementedError("Preprocessing for text encoder is not implemented yet.")
|
| 79 |
+
else:
|
| 80 |
+
self.return_text_embeddings = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
|
| 82 |
+
if self.do_cache:
|
| 83 |
self.vae_latents = []
|
| 84 |
self.tokens_tuple = []
|
| 85 |
self.masks = []
|
| 86 |
+
print("Caching dataset...")
|
|
|
|
|
|
|
|
|
|
| 87 |
for idx in range(len(self.data)):
|
| 88 |
token, vae_latent, mask = self._process(idx)
|
|
|
|
| 89 |
self.tokens_tuple.append(token)
|
| 90 |
+
self.vae_latents.append(vae_latent)
|
| 91 |
self.masks.append(mask)
|
| 92 |
+
del self.vae_encoder # Free up memory
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
|
| 94 |
@torch.no_grad()
|
| 95 |
+
def _process(self, idx: int) -> Tuple[Tuple[torch.Tensor, torch.Tensor], torch.Tensor, torch.Tensor]:
|
| 96 |
+
"""
|
| 97 |
+
Internal function to process images, text, and masks for a given index.
|
| 98 |
+
"""
|
| 99 |
+
image_path = os.path.join(os.path.dirname(self.csv_path), self.image_path[idx])
|
| 100 |
+
image = prepare_image(Image.open(image_path).convert("RGB"), self.size, self.size).to(
|
|
|
|
|
|
|
| 101 |
dtype=self.vae_encoder.dtype, device=self.vae_encoder.device
|
| 102 |
)
|
| 103 |
|
| 104 |
caption = self.caption[idx]
|
| 105 |
+
ti1 = self.tokenizer_1(caption, padding="max_length", max_length=77, truncation=True, return_tensors="pt").input_ids
|
| 106 |
+
ti2 = self.tokenizer_2(caption, padding="max_length", max_length=77, truncation=True, return_tensors="pt").input_ids
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
|
| 108 |
vae_latent = self.vae_encoder.encode(image).latent_dist.sample()
|
|
|
|
| 109 |
if self.scale_vae_latents:
|
| 110 |
+
vae_latent *= self.vae_encoder.config.scaling_factor
|
| 111 |
|
| 112 |
if self.mask_path is None:
|
| 113 |
+
mask = torch.ones_like(vae_latent, dtype=self.vae_encoder.dtype, device=self.vae_encoder.device)
|
|
|
|
|
|
|
|
|
|
| 114 |
else:
|
| 115 |
+
mask_path = os.path.join(os.path.dirname(self.csv_path), self.mask_path[idx])
|
| 116 |
+
mask = prepare_mask(Image.open(mask_path), self.size, self.size).to(
|
|
|
|
|
|
|
|
|
|
| 117 |
dtype=self.vae_encoder.dtype, device=self.vae_encoder.device
|
| 118 |
)
|
| 119 |
+
mask = torch.nn.functional.interpolate(mask, size=(vae_latent.shape[-2], vae_latent.shape[-1]), mode="nearest")
|
|
|
|
|
|
|
|
|
|
| 120 |
mask = mask.repeat(1, vae_latent.shape[1], 1, 1)
|
| 121 |
|
| 122 |
+
assert mask.shape == vae_latent.shape, "Mask and latent dimensions must match."
|
| 123 |
|
| 124 |
return (ti1.squeeze(), ti2.squeeze()), vae_latent.squeeze(), mask.squeeze()
|
| 125 |
|
| 126 |
def __len__(self) -> int:
|
| 127 |
return len(self.data)
|
| 128 |
|
| 129 |
+
def __getitem__(self, idx: int) -> Tuple[Tuple[torch.Tensor, torch.Tensor], torch.Tensor, torch.Tensor]:
|
| 130 |
+
return self.atidx(idx)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
|
| 132 |
+
def atidx(self, idx: int) -> Tuple[Tuple[torch.Tensor, torch.Tensor], torch.Tensor, torch.Tensor]:
|
| 133 |
+
return self._process(idx) if not self.do_cache else (self.tokens_tuple[idx], self.vae_latents[idx], self.masks[idx])
|
|
|
|
|
|
|
|
|
|
| 134 |
|
| 135 |
|
| 136 |
+
def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder"):
|
| 137 |
+
"""
|
| 138 |
+
Dynamically imports a model class based on configuration.
|
| 139 |
+
"""
|
| 140 |
+
config = PretrainedConfig.from_pretrained(pretrained_model_name_or_path, subfolder=subfolder, revision=revision)
|
| 141 |
+
model_class = config.architectures[0]
|
|
|
|
| 142 |
|
| 143 |
if model_class == "CLIPTextModel":
|
| 144 |
from transformers import CLIPTextModel
|
|
|
|
| 145 |
return CLIPTextModel
|
| 146 |
elif model_class == "CLIPTextModelWithProjection":
|
| 147 |
from transformers import CLIPTextModelWithProjection
|
|
|
|
| 148 |
return CLIPTextModelWithProjection
|
| 149 |
else:
|
| 150 |
+
raise ValueError(f"Unsupported model class: {model_class}")
|
| 151 |
|
| 152 |
|
| 153 |
def load_models(pretrained_model_name_or_path, revision, device, weight_dtype):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
"""
|
| 155 |
+
Loads required models from a given pretrained path.
|
|
|
|
| 156 |
"""
|
| 157 |
+
tokenizer_1 = AutoTokenizer.from_pretrained(pretrained_model_name_or_path, subfolder="tokenizer", revision=revision, use_fast=False)
|
| 158 |
+
tokenizer_2 = AutoTokenizer.from_pretrained(pretrained_model_name_or_path, subfolder="tokenizer_2", revision=revision, use_fast=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 159 |
|
| 160 |
+
noise_scheduler = DDPMScheduler.from_pretrained(pretrained_model_name_or_path, subfolder="scheduler")
|
|
|
|
|
|
|
| 161 |
|
| 162 |
+
text_encoder_cls_one = import_model_class_from_model_name_or_path(pretrained_model_name_or_path, revision)
|
| 163 |
+
text_encoder_cls_two = import_model_class_from_model_name_or_path(pretrained_model_name_or_path, revision, subfolder="text_encoder_2")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 164 |
|
| 165 |
+
text_encoder_1 = text_encoder_cls_one.from_pretrained(pretrained_model_name_or_path, subfolder="text_encoder", revision=revision)
|
| 166 |
+
text_encoder_2 = text_encoder_cls_two.from_pretrained(pretrained_model_name_or_path, subfolder="text_encoder_2", revision=revision)
|
|
|
|
|
|
|
| 167 |
|
| 168 |
+
vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae", revision=revision)
|
| 169 |
+
unet = UNet2DConditionModel.from_pretrained(pretrained_model_name_or_path, subfolder="unet", revision=revision)
|
| 170 |
|
| 171 |
+
for model in [vae, text_encoder_1, text_encoder_2]:
|
| 172 |
+
model.requires_grad_(False)
|
| 173 |
+
model.to(device, dtype=weight_dtype)
|
| 174 |
|
| 175 |
+
unet.to(device, dtype=weight_dtype)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 176 |
|
| 177 |
+
return tokenizer_1, tokenizer_2, noise_scheduler, text_encoder_1, text_encoder_2, vae, unet
|
|
|