Spaces:
Runtime error
Runtime error
Add custom
Browse files
app.py
CHANGED
|
@@ -3,7 +3,7 @@ import torch
|
|
| 3 |
torch.jit.script = lambda f: f
|
| 4 |
import timm
|
| 5 |
import time
|
| 6 |
-
from huggingface_hub import hf_hub_download
|
| 7 |
from safetensors.torch import load_file
|
| 8 |
from share_btn import community_icon_html, loading_icon_html, share_js
|
| 9 |
from cog_sdxl_dataset_and_utils import TokenEmbeddingsHandler
|
|
@@ -16,6 +16,8 @@ import random
|
|
| 16 |
from urllib.parse import quote
|
| 17 |
import gdown
|
| 18 |
import os
|
|
|
|
|
|
|
| 19 |
|
| 20 |
import diffusers
|
| 21 |
from diffusers.utils import load_image
|
|
@@ -155,6 +157,8 @@ button.addEventListener('click', function() {
|
|
| 155 |
element.classList.add('selected');
|
| 156 |
});
|
| 157 |
'''
|
|
|
|
|
|
|
| 158 |
def update_selection(selected_state: gr.SelectData, sdxl_loras, face_strength, image_strength, weight, depth_control_scale, negative, is_new=False):
|
| 159 |
lora_repo = sdxl_loras[selected_state.index]["repo"]
|
| 160 |
new_placeholder = "Type a prompt to use your selected LoRA"
|
|
@@ -197,8 +201,8 @@ def center_crop_image_as_square(img):
|
|
| 197 |
img_cropped = img.crop((left, top, right, bottom))
|
| 198 |
return img_cropped
|
| 199 |
|
| 200 |
-
def check_selected(selected_state):
|
| 201 |
-
if not selected_state:
|
| 202 |
raise gr.Error("You must select a style")
|
| 203 |
|
| 204 |
def merge_incompatible_lora(full_path_lora, lora_scale):
|
|
@@ -224,6 +228,7 @@ def merge_incompatible_lora(full_path_lora, lora_scale):
|
|
| 224 |
del lora_model
|
| 225 |
@spaces.GPU
|
| 226 |
def generate_image(prompt, negative, face_emb, face_image, face_kps, image_strength, guidance_scale, face_strength, depth_control_scale, repo_name, loaded_state_dict, lora_scale, sdxl_loras, selected_state_index, st):
|
|
|
|
| 227 |
et = time.time()
|
| 228 |
elapsed_time = et - st
|
| 229 |
print('Getting into the decorated function took: ', elapsed_time, 'seconds')
|
|
@@ -303,8 +308,10 @@ def generate_image(prompt, negative, face_emb, face_image, face_kps, image_stren
|
|
| 303 |
last_lora = repo_name
|
| 304 |
return image
|
| 305 |
|
| 306 |
-
def run_lora(face_image, prompt, negative, lora_scale, selected_state, face_strength, image_strength, guidance_scale, depth_control_scale, sdxl_loras, progress=gr.Progress(track_tqdm=True)):
|
| 307 |
-
|
|
|
|
|
|
|
| 308 |
st = time.time()
|
| 309 |
face_image = center_crop_image_as_square(face_image)
|
| 310 |
try:
|
|
@@ -319,28 +326,35 @@ def run_lora(face_image, prompt, negative, lora_scale, selected_state, face_stre
|
|
| 319 |
print('Cropping and calculating face embeds took: ', elapsed_time, 'seconds')
|
| 320 |
|
| 321 |
st = time.time()
|
| 322 |
-
for lora_list in lora_defaults:
|
| 323 |
-
if lora_list["model"] == sdxl_loras[selected_state_index]["repo"]:
|
| 324 |
-
prompt_full = lora_list.get("prompt", None)
|
| 325 |
-
if(prompt_full):
|
| 326 |
-
prompt = prompt_full.replace("<subject>", prompt)
|
| 327 |
|
| 328 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 329 |
print("Prompt:", prompt)
|
| 330 |
if(prompt == ""):
|
| 331 |
prompt = "a person"
|
| 332 |
|
| 333 |
-
print("Selected State: ", selected_state_index)
|
| 334 |
-
print(sdxl_loras[selected_state_index]["repo"])
|
| 335 |
if negative == "":
|
| 336 |
negative = None
|
| 337 |
-
|
| 338 |
-
if not selected_state:
|
| 339 |
-
raise gr.Error("You must select a
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 344 |
#loaded_state_dict = copy.deepcopy(state_dicts[repo_name]["state_dict"])
|
| 345 |
cross_attention_kwargs = None
|
| 346 |
et = time.time()
|
|
@@ -368,6 +382,117 @@ def swap_gallery(order, sdxl_loras):
|
|
| 368 |
def deselect():
|
| 369 |
return gr.Gallery(selected_index=None)
|
| 370 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 371 |
with gr.Blocks(css="custom.css") as demo:
|
| 372 |
gr_sdxl_loras = gr.State(value=sdxl_loras_raw)
|
| 373 |
title = gr.HTML(
|
|
@@ -381,8 +506,9 @@ with gr.Blocks(css="custom.css") as demo:
|
|
| 381 |
elem_id="title",
|
| 382 |
)
|
| 383 |
selected_state = gr.State()
|
|
|
|
| 384 |
with gr.Row(elem_id="main_app"):
|
| 385 |
-
with gr.Column(scale=4):
|
| 386 |
with gr.Group(elem_id="gallery_box"):
|
| 387 |
photo = gr.Image(label="Upload a picture of yourself", interactive=True, type="pil", height=300)
|
| 388 |
selected_loras = gr.Gallery(label="Selected LoRAs", height=80, show_share_button=False, visible=False, elem_id="gallery_selected", )
|
|
@@ -394,14 +520,16 @@ with gr.Blocks(css="custom.css") as demo:
|
|
| 394 |
# value=[(item["image"], item["title"]) for item in sdxl_loras_raw_new], allow_preview=False, show_share_button=False)
|
| 395 |
gallery = gr.Gallery(
|
| 396 |
#value=[(item["image"], item["title"]) for item in sdxl_loras],
|
| 397 |
-
label="
|
| 398 |
allow_preview=False,
|
| 399 |
columns=4,
|
| 400 |
elem_id="gallery",
|
| 401 |
show_share_button=False,
|
| 402 |
height=550
|
| 403 |
)
|
| 404 |
-
custom_model = gr.Textbox(label="
|
|
|
|
|
|
|
| 405 |
with gr.Column(scale=5):
|
| 406 |
with gr.Row():
|
| 407 |
prompt = gr.Textbox(label="Prompt", show_label=False, lines=1, max_lines=1, info="Describe your subject (optional)", value="a person", elem_id="prompt")
|
|
@@ -431,6 +559,16 @@ with gr.Blocks(css="custom.css") as demo:
|
|
| 431 |
# outputs=[gallery, gr_sdxl_loras],
|
| 432 |
# queue=False
|
| 433 |
#)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 434 |
gallery.select(
|
| 435 |
fn=update_selection,
|
| 436 |
inputs=[gr_sdxl_loras, face_strength, image_strength, weight, depth_control_scale, negative],
|
|
@@ -447,22 +585,22 @@ with gr.Blocks(css="custom.css") as demo:
|
|
| 447 |
#)
|
| 448 |
prompt.submit(
|
| 449 |
fn=check_selected,
|
| 450 |
-
inputs=[selected_state],
|
| 451 |
queue=False,
|
| 452 |
show_progress=False
|
| 453 |
).success(
|
| 454 |
fn=run_lora,
|
| 455 |
-
inputs=[photo, prompt, negative, weight, selected_state, face_strength, image_strength, guidance_scale, depth_control_scale, gr_sdxl_loras],
|
| 456 |
outputs=[result, share_group],
|
| 457 |
)
|
| 458 |
button.click(
|
| 459 |
fn=check_selected,
|
| 460 |
-
inputs=[selected_state],
|
| 461 |
queue=False,
|
| 462 |
show_progress=False
|
| 463 |
).success(
|
| 464 |
fn=run_lora,
|
| 465 |
-
inputs=[photo, prompt, negative, weight, selected_state, face_strength, image_strength, guidance_scale, depth_control_scale, gr_sdxl_loras],
|
| 466 |
outputs=[result, share_group],
|
| 467 |
)
|
| 468 |
share_button.click(None, [], [], js=share_js)
|
|
|
|
| 3 |
torch.jit.script = lambda f: f
|
| 4 |
import timm
|
| 5 |
import time
|
| 6 |
+
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard
|
| 7 |
from safetensors.torch import load_file
|
| 8 |
from share_btn import community_icon_html, loading_icon_html, share_js
|
| 9 |
from cog_sdxl_dataset_and_utils import TokenEmbeddingsHandler
|
|
|
|
| 16 |
from urllib.parse import quote
|
| 17 |
import gdown
|
| 18 |
import os
|
| 19 |
+
import re
|
| 20 |
+
import requests
|
| 21 |
|
| 22 |
import diffusers
|
| 23 |
from diffusers.utils import load_image
|
|
|
|
| 157 |
element.classList.add('selected');
|
| 158 |
});
|
| 159 |
'''
|
| 160 |
+
lora_archive = "/data"
|
| 161 |
+
|
| 162 |
def update_selection(selected_state: gr.SelectData, sdxl_loras, face_strength, image_strength, weight, depth_control_scale, negative, is_new=False):
|
| 163 |
lora_repo = sdxl_loras[selected_state.index]["repo"]
|
| 164 |
new_placeholder = "Type a prompt to use your selected LoRA"
|
|
|
|
| 201 |
img_cropped = img.crop((left, top, right, bottom))
|
| 202 |
return img_cropped
|
| 203 |
|
| 204 |
+
def check_selected(selected_state, custom_lora):
|
| 205 |
+
if not selected_state and not custom_lora:
|
| 206 |
raise gr.Error("You must select a style")
|
| 207 |
|
| 208 |
def merge_incompatible_lora(full_path_lora, lora_scale):
|
|
|
|
| 228 |
del lora_model
|
| 229 |
@spaces.GPU
|
| 230 |
def generate_image(prompt, negative, face_emb, face_image, face_kps, image_strength, guidance_scale, face_strength, depth_control_scale, repo_name, loaded_state_dict, lora_scale, sdxl_loras, selected_state_index, st):
|
| 231 |
+
print(loaded_state_dict)
|
| 232 |
et = time.time()
|
| 233 |
elapsed_time = et - st
|
| 234 |
print('Getting into the decorated function took: ', elapsed_time, 'seconds')
|
|
|
|
| 308 |
last_lora = repo_name
|
| 309 |
return image
|
| 310 |
|
| 311 |
+
def run_lora(face_image, prompt, negative, lora_scale, selected_state, face_strength, image_strength, guidance_scale, depth_control_scale, sdxl_loras, custom_lora, progress=gr.Progress(track_tqdm=True)):
|
| 312 |
+
print("Custom LoRA: ", custom_lora)
|
| 313 |
+
custom_lora_path = custom_lora[0] if custom_lora else None
|
| 314 |
+
selected_state_index = selected_state.index if selected_state else -1
|
| 315 |
st = time.time()
|
| 316 |
face_image = center_crop_image_as_square(face_image)
|
| 317 |
try:
|
|
|
|
| 326 |
print('Cropping and calculating face embeds took: ', elapsed_time, 'seconds')
|
| 327 |
|
| 328 |
st = time.time()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 329 |
|
| 330 |
+
if(custom_lora_path):
|
| 331 |
+
prompt = f"{prompt} {custom_lora[1]}"
|
| 332 |
+
else:
|
| 333 |
+
for lora_list in lora_defaults:
|
| 334 |
+
if lora_list["model"] == sdxl_loras[selected_state_index]["repo"]:
|
| 335 |
+
prompt_full = lora_list.get("prompt", None)
|
| 336 |
+
if(prompt_full):
|
| 337 |
+
prompt = prompt_full.replace("<subject>", prompt)
|
| 338 |
+
|
| 339 |
print("Prompt:", prompt)
|
| 340 |
if(prompt == ""):
|
| 341 |
prompt = "a person"
|
| 342 |
|
| 343 |
+
#print("Selected State: ", selected_state_index)
|
| 344 |
+
#print(sdxl_loras[selected_state_index]["repo"])
|
| 345 |
if negative == "":
|
| 346 |
negative = None
|
| 347 |
+
print("Custom Loaded LoRA: ", custom_lora_path)
|
| 348 |
+
if not selected_state and not custom_lora_path:
|
| 349 |
+
raise gr.Error("You must select a style")
|
| 350 |
+
elif custom_lora_path:
|
| 351 |
+
repo_name = custom_lora_path
|
| 352 |
+
full_path_lora = custom_lora_path
|
| 353 |
+
else:
|
| 354 |
+
repo_name = sdxl_loras[selected_state_index]["repo"]
|
| 355 |
+
weight_name = sdxl_loras[selected_state_index]["weights"]
|
| 356 |
+
full_path_lora = state_dicts[repo_name]["saved_name"]
|
| 357 |
+
print("Full path LoRA ", full_path_lora)
|
| 358 |
#loaded_state_dict = copy.deepcopy(state_dicts[repo_name]["state_dict"])
|
| 359 |
cross_attention_kwargs = None
|
| 360 |
et = time.time()
|
|
|
|
| 382 |
def deselect():
|
| 383 |
return gr.Gallery(selected_index=None)
|
| 384 |
|
| 385 |
+
def get_huggingface_safetensors(link):
|
| 386 |
+
split_link = link.split("/")
|
| 387 |
+
if(len(split_link) == 2):
|
| 388 |
+
model_card = ModelCard.load(link)
|
| 389 |
+
image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
|
| 390 |
+
trigger_word = model_card.data.get("instance_prompt", "")
|
| 391 |
+
image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None
|
| 392 |
+
fs = HfFileSystem()
|
| 393 |
+
try:
|
| 394 |
+
list_of_files = fs.ls(link, detail=False)
|
| 395 |
+
for file in list_of_files:
|
| 396 |
+
if(file.endswith(".safetensors")):
|
| 397 |
+
safetensors_name = file.replace("/", "_")
|
| 398 |
+
if(not os.path.exists(f"{lora_archive}/{safetensors_name}")):
|
| 399 |
+
fs.get_file(file, lpath=f"{lora_archive}/{safetensors_name}")
|
| 400 |
+
if (not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp"))):
|
| 401 |
+
image_elements = file.split("/")
|
| 402 |
+
image_url = f"https://huggingface.co/{link}/resolve/main/{image_elements[-1]}"
|
| 403 |
+
except:
|
| 404 |
+
gr.Warning("You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA")
|
| 405 |
+
raise Exception("You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA")
|
| 406 |
+
return split_link[1], f"{lora_archive}/{safetensors_name}", trigger_word, image_url
|
| 407 |
+
|
| 408 |
+
def get_civitai_safetensors(link):
|
| 409 |
+
link_split = link.split("civitai.com/")
|
| 410 |
+
pattern = re.compile(r'models\/(\d+)')
|
| 411 |
+
regex_match = pattern.search(link_split[1])
|
| 412 |
+
if(regex_match):
|
| 413 |
+
civitai_model_id = regex_match.group(1)
|
| 414 |
+
else:
|
| 415 |
+
gr.Warning("No CivitAI model id found in your URL")
|
| 416 |
+
raise Exception("No CivitAI model id found in your URL")
|
| 417 |
+
model_request_url = f"https://civitai.com/api/v1/models/{civitai_model_id}?token={os.getenv('CIVITAI_TOKEN')}"
|
| 418 |
+
x = requests.get(model_request_url)
|
| 419 |
+
if(x.status_code != 200):
|
| 420 |
+
raise Exception("Invalid CivitAI URL")
|
| 421 |
+
model_data = x.json()
|
| 422 |
+
if(model_data["nsfw"] == True or model_data["nsfwLevel"] > 2):
|
| 423 |
+
gr.Warning("The model is tagged by CivitAI as adult content and cannot be used in this shared environment.")
|
| 424 |
+
raise Exception("The model is tagged by CivitAI as adult content and cannot be used in this shared environment.")
|
| 425 |
+
elif(model_data["type"] != "LORA"):
|
| 426 |
+
gr.Warning("The model isn't tagged at CivitAI as a LoRA")
|
| 427 |
+
raise Exception("The model isn't tagged at CivitAI as a LoRA")
|
| 428 |
+
model_link_download = None
|
| 429 |
+
image_url = None
|
| 430 |
+
trigger_word = ""
|
| 431 |
+
for model in model_data["modelVersions"]:
|
| 432 |
+
if(model["baseModel"] == "SDXL 1.0"):
|
| 433 |
+
model_link_download = f"{model['downloadUrl']}/?token={os.getenv('CIVITAI_TOKEN')}"
|
| 434 |
+
safetensors_name = model["files"][0]["name"]
|
| 435 |
+
if(not os.path.exists(f"{lora_archive}/{safetensors_name}")):
|
| 436 |
+
safetensors_file_request = requests.get(model_link_download)
|
| 437 |
+
if(safetensors_file_request.status_code != 200):
|
| 438 |
+
raise Exception("Invalid CivitAI download link")
|
| 439 |
+
with open(f"{lora_archive}/{safetensors_name}", 'wb') as file:
|
| 440 |
+
file.write(safetensors_file_request.content)
|
| 441 |
+
trigger_word = model.get("trainedWords", [""])[0]
|
| 442 |
+
for image in model["images"]:
|
| 443 |
+
if(image["nsfwLevel"] == 1):
|
| 444 |
+
image_url = image["url"]
|
| 445 |
+
break
|
| 446 |
+
break
|
| 447 |
+
if(not model_link_download):
|
| 448 |
+
gr.Warning("We couldn't find a SDXL LoRA on the model you've sent")
|
| 449 |
+
raise Exception("We couldn't find a SDXL LoRA on the model you've sent")
|
| 450 |
+
return model_data["name"], f"{lora_archive}/{safetensors_name}", trigger_word, image_url
|
| 451 |
+
|
| 452 |
+
def check_custom_model(link):
|
| 453 |
+
try:
|
| 454 |
+
if(link.startswith("https://")):
|
| 455 |
+
if(link.startswith("https://huggingface.co") or link.startswith("https://www.huggingface.co")):
|
| 456 |
+
link_split = link.split("huggingface.co/")
|
| 457 |
+
return get_huggingface_safetensors(link_split[1])
|
| 458 |
+
elif(link.startswith("https://civitai.com") or link.startswith("https://www.civitai.com")):
|
| 459 |
+
return get_civitai_safetensors(link)
|
| 460 |
+
else:
|
| 461 |
+
return get_huggingface_safetensors(link)
|
| 462 |
+
except Exception as e:
|
| 463 |
+
print("Error: ", e)
|
| 464 |
+
return None, None, None, None
|
| 465 |
+
|
| 466 |
+
def show_loading_widget():
|
| 467 |
+
return gr.update(visible=True)
|
| 468 |
+
|
| 469 |
+
def load_custom_lora(link):
|
| 470 |
+
title, path, trigger_word, image = check_custom_model(link)
|
| 471 |
+
if(title):
|
| 472 |
+
card = f'''
|
| 473 |
+
<div class="custom_lora_card">
|
| 474 |
+
<span>Loaded custom LoRA:</span>
|
| 475 |
+
<div class="card_internal">
|
| 476 |
+
<img src="{image}" />
|
| 477 |
+
<div>
|
| 478 |
+
<h3>{title}</h3>
|
| 479 |
+
<small>{"Using: <code><b>"+trigger_word+"</code></b> as the trigger word" if trigger_word else "No trigger word found. If there's a trigger word, include it in your prompt"}<br>
|
| 480 |
+
If the style isn't applied properly, modify advanced settings, specially <code>Face strength</code> and <code>Image strength</code>
|
| 481 |
+
</small>
|
| 482 |
+
</div>
|
| 483 |
+
</div>
|
| 484 |
+
</div>
|
| 485 |
+
'''
|
| 486 |
+
return gr.update(visible=True), card, gr.update(visible=True), [path, trigger_word], gr.Gallery(selected_index=None), f"Custom: {path}"
|
| 487 |
+
else:
|
| 488 |
+
gr.Warning("Invalid LoRA: either you entered an invalid link, a non-SDXL LoRA or a LoRA with mature content")
|
| 489 |
+
return gr.update(visible=True), "Invalid LoRA: either you entered an invalid link, a non-SDXL LoRA or a LoRA with mature content", gr.update(visible=False), None, gr.update(visible=True), gr.update(visible=True)
|
| 490 |
+
#except Exception as e:
|
| 491 |
+
# gr.Info("Invalid custom LoRA")
|
| 492 |
+
# return gr.update(visible=True), "Invalid LoRA: either you entered an invalid link, a non-SDXL LoRA or a LoRA with mature content", gr.update(visible=False), None, gr.update(visible=True), gr.update(visible=True)
|
| 493 |
+
|
| 494 |
+
def remove_custom_lora():
|
| 495 |
+
return "", gr.update(visible=False), gr.update(visible=False), None
|
| 496 |
with gr.Blocks(css="custom.css") as demo:
|
| 497 |
gr_sdxl_loras = gr.State(value=sdxl_loras_raw)
|
| 498 |
title = gr.HTML(
|
|
|
|
| 506 |
elem_id="title",
|
| 507 |
)
|
| 508 |
selected_state = gr.State()
|
| 509 |
+
custom_loaded_lora = gr.State()
|
| 510 |
with gr.Row(elem_id="main_app"):
|
| 511 |
+
with gr.Column(scale=4, elem_id="box_column"):
|
| 512 |
with gr.Group(elem_id="gallery_box"):
|
| 513 |
photo = gr.Image(label="Upload a picture of yourself", interactive=True, type="pil", height=300)
|
| 514 |
selected_loras = gr.Gallery(label="Selected LoRAs", height=80, show_share_button=False, visible=False, elem_id="gallery_selected", )
|
|
|
|
| 520 |
# value=[(item["image"], item["title"]) for item in sdxl_loras_raw_new], allow_preview=False, show_share_button=False)
|
| 521 |
gallery = gr.Gallery(
|
| 522 |
#value=[(item["image"], item["title"]) for item in sdxl_loras],
|
| 523 |
+
label="Pick a style from the gallery",
|
| 524 |
allow_preview=False,
|
| 525 |
columns=4,
|
| 526 |
elem_id="gallery",
|
| 527 |
show_share_button=False,
|
| 528 |
height=550
|
| 529 |
)
|
| 530 |
+
custom_model = gr.Textbox(label="or enter a custom Hugging Face or CivitAI SDXL LoRA", placeholder="Paste Hugging Face or CivitAI model path...")
|
| 531 |
+
custom_model_card = gr.HTML(visible=False)
|
| 532 |
+
custom_model_button = gr.Button("Remove custom LoRA", visible=False)
|
| 533 |
with gr.Column(scale=5):
|
| 534 |
with gr.Row():
|
| 535 |
prompt = gr.Textbox(label="Prompt", show_label=False, lines=1, max_lines=1, info="Describe your subject (optional)", value="a person", elem_id="prompt")
|
|
|
|
| 559 |
# outputs=[gallery, gr_sdxl_loras],
|
| 560 |
# queue=False
|
| 561 |
#)
|
| 562 |
+
custom_model.input(
|
| 563 |
+
fn=load_custom_lora,
|
| 564 |
+
inputs=[custom_model],
|
| 565 |
+
outputs=[custom_model_card, custom_model_card, custom_model_button, custom_loaded_lora, gallery, prompt_title],
|
| 566 |
+
queue=False
|
| 567 |
+
)
|
| 568 |
+
custom_model_button.click(
|
| 569 |
+
fn=remove_custom_lora,
|
| 570 |
+
outputs=[custom_model, custom_model_button, custom_model_card, custom_loaded_lora]
|
| 571 |
+
)
|
| 572 |
gallery.select(
|
| 573 |
fn=update_selection,
|
| 574 |
inputs=[gr_sdxl_loras, face_strength, image_strength, weight, depth_control_scale, negative],
|
|
|
|
| 585 |
#)
|
| 586 |
prompt.submit(
|
| 587 |
fn=check_selected,
|
| 588 |
+
inputs=[selected_state, custom_loaded_lora],
|
| 589 |
queue=False,
|
| 590 |
show_progress=False
|
| 591 |
).success(
|
| 592 |
fn=run_lora,
|
| 593 |
+
inputs=[photo, prompt, negative, weight, selected_state, face_strength, image_strength, guidance_scale, depth_control_scale, gr_sdxl_loras, custom_loaded_lora],
|
| 594 |
outputs=[result, share_group],
|
| 595 |
)
|
| 596 |
button.click(
|
| 597 |
fn=check_selected,
|
| 598 |
+
inputs=[selected_state, custom_loaded_lora],
|
| 599 |
queue=False,
|
| 600 |
show_progress=False
|
| 601 |
).success(
|
| 602 |
fn=run_lora,
|
| 603 |
+
inputs=[photo, prompt, negative, weight, selected_state, face_strength, image_strength, guidance_scale, depth_control_scale, gr_sdxl_loras, custom_loaded_lora],
|
| 604 |
outputs=[result, share_group],
|
| 605 |
)
|
| 606 |
share_button.click(None, [], [], js=share_js)
|