Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -123,6 +123,8 @@ pipe.load_ip_adapter_instantid(face_adapter)
|
|
| 123 |
pipe.set_ip_adapter_scale(0.8)
|
| 124 |
zoe = ZoeDetector.from_pretrained("lllyasviel/Annotators")
|
| 125 |
zoe.to(device)
|
|
|
|
|
|
|
| 126 |
pipe.to(device)
|
| 127 |
|
| 128 |
last_lora = ""
|
|
@@ -202,10 +204,58 @@ def merge_incompatible_lora(full_path_lora, lora_scale):
|
|
| 202 |
)
|
| 203 |
del weights_sd
|
| 204 |
del lora_model
|
| 205 |
-
@spaces.GPU
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 206 |
def run_lora(face_image, prompt, negative, lora_scale, selected_state, face_strength, image_strength, guidance_scale, depth_control_scale, sdxl_loras, progress=gr.Progress(track_tqdm=True)):
|
| 207 |
global last_lora, last_merged, last_fused, pipe
|
| 208 |
-
|
| 209 |
face_image = center_crop_image_as_square(face_image)
|
| 210 |
try:
|
| 211 |
face_info = app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR))
|
|
@@ -216,7 +266,7 @@ def run_lora(face_image, prompt, negative, lora_scale, selected_state, face_stre
|
|
| 216 |
raise gr.Error("No face found in your image. Only face images work here. Try again")
|
| 217 |
|
| 218 |
for lora_list in lora_defaults:
|
| 219 |
-
if lora_list["model"] == sdxl_loras[
|
| 220 |
prompt_full = lora_list.get("prompt", None)
|
| 221 |
if(prompt_full):
|
| 222 |
prompt = prompt_full.replace("<subject>", prompt)
|
|
@@ -224,7 +274,7 @@ def run_lora(face_image, prompt, negative, lora_scale, selected_state, face_stre
|
|
| 224 |
|
| 225 |
print("Prompt:", prompt)
|
| 226 |
if(prompt == ""):
|
| 227 |
-
prompt = "
|
| 228 |
#prepare face zoe
|
| 229 |
with torch.no_grad():
|
| 230 |
image_zoe = zoe(face_image)
|
|
@@ -239,15 +289,15 @@ def run_lora(face_image, prompt, negative, lora_scale, selected_state, face_stre
|
|
| 239 |
# else:
|
| 240 |
# selected_state.index *= -1
|
| 241 |
#sdxl_loras = sdxl_loras_new
|
| 242 |
-
print("Selected State: ",
|
| 243 |
-
print(sdxl_loras[
|
| 244 |
if negative == "":
|
| 245 |
negative = None
|
| 246 |
|
| 247 |
if not selected_state:
|
| 248 |
raise gr.Error("You must select a LoRA")
|
| 249 |
-
repo_name = sdxl_loras[
|
| 250 |
-
weight_name = sdxl_loras[
|
| 251 |
|
| 252 |
full_path_lora = state_dicts[repo_name]["saved_name"]
|
| 253 |
loaded_state_dict = copy.deepcopy(state_dicts[repo_name]["state_dict"])
|
|
@@ -255,53 +305,8 @@ def run_lora(face_image, prompt, negative, lora_scale, selected_state, face_stre
|
|
| 255 |
print("Last LoRA: ", last_lora)
|
| 256 |
print("Current LoRA: ", repo_name)
|
| 257 |
print("Last fused: ", last_fused)
|
| 258 |
-
if last_lora != repo_name:
|
| 259 |
-
if(last_fused):
|
| 260 |
-
pipe.unfuse_lora()
|
| 261 |
-
pipe.unload_lora_weights()
|
| 262 |
-
pipe.load_lora_weights(loaded_state_dict)
|
| 263 |
-
pipe.fuse_lora(lora_scale)
|
| 264 |
-
last_fused = True
|
| 265 |
-
is_pivotal = sdxl_loras[selected_state.index]["is_pivotal"]
|
| 266 |
-
if(is_pivotal):
|
| 267 |
-
#Add the textual inversion embeddings from pivotal tuning models
|
| 268 |
-
text_embedding_name = sdxl_loras[selected_state.index]["text_embedding_weights"]
|
| 269 |
-
embedding_path = hf_hub_download(repo_id=repo_name, filename=text_embedding_name, repo_type="model")
|
| 270 |
-
state_dict_embedding = load_file(embedding_path)
|
| 271 |
-
print(state_dict_embedding)
|
| 272 |
-
try:
|
| 273 |
-
pipe.unload_textual_inversion()
|
| 274 |
-
pipe.load_textual_inversion(state_dict_embedding["clip_l"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer)
|
| 275 |
-
pipe.load_textual_inversion(state_dict_embedding["clip_g"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder_2, tokenizer=pipe.tokenizer_2)
|
| 276 |
-
except:
|
| 277 |
-
pipe.unload_textual_inversion()
|
| 278 |
-
pipe.load_textual_inversion(state_dict_embedding["text_encoders_0"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer)
|
| 279 |
-
pipe.load_textual_inversion(state_dict_embedding["text_encoders_1"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder_2, tokenizer=pipe.tokenizer_2)
|
| 280 |
-
|
| 281 |
-
print("Processing prompt...")
|
| 282 |
-
conditioning, pooled = compel(prompt)
|
| 283 |
-
if(negative):
|
| 284 |
-
negative_conditioning, negative_pooled = compel(negative)
|
| 285 |
-
else:
|
| 286 |
-
negative_conditioning, negative_pooled = None, None
|
| 287 |
-
print("Processing image...")
|
| 288 |
-
|
| 289 |
-
image = pipe(
|
| 290 |
-
prompt_embeds=conditioning,
|
| 291 |
-
pooled_prompt_embeds=pooled,
|
| 292 |
-
negative_prompt_embeds=negative_conditioning,
|
| 293 |
-
negative_pooled_prompt_embeds=negative_pooled,
|
| 294 |
-
width=1024,
|
| 295 |
-
height=1024,
|
| 296 |
-
image_embeds=face_emb,
|
| 297 |
-
image=face_image,
|
| 298 |
-
strength=1-image_strength,
|
| 299 |
-
control_image=images,
|
| 300 |
-
num_inference_steps=20,
|
| 301 |
-
guidance_scale = guidance_scale,
|
| 302 |
-
controlnet_conditioning_scale=[face_strength, depth_control_scale],
|
| 303 |
-
).images[0]
|
| 304 |
|
|
|
|
| 305 |
last_lora = repo_name
|
| 306 |
return image, gr.update(visible=True)
|
| 307 |
|
|
|
|
| 123 |
pipe.set_ip_adapter_scale(0.8)
|
| 124 |
zoe = ZoeDetector.from_pretrained("lllyasviel/Annotators")
|
| 125 |
zoe.to(device)
|
| 126 |
+
|
| 127 |
+
original_pipe = copy.deepcopy(pipe)
|
| 128 |
pipe.to(device)
|
| 129 |
|
| 130 |
last_lora = ""
|
|
|
|
| 204 |
)
|
| 205 |
del weights_sd
|
| 206 |
del lora_model
|
| 207 |
+
@spaces.GPU
|
| 208 |
+
def generate_image(prompt, negative, face_emb, face_image, image_strength, images, guidance_scale, face_strength, depth_control_scale, last_lora, repo_name, loaded_state_dict, lora_scale, sdxl_loras, selected_state_index):
|
| 209 |
+
if last_lora != repo_name:
|
| 210 |
+
if(last_fused):
|
| 211 |
+
pipe.unfuse_lora()
|
| 212 |
+
pipe.unload_lora_weights()
|
| 213 |
+
pipe.load_lora_weights(loaded_state_dict)
|
| 214 |
+
pipe.fuse_lora(lora_scale)
|
| 215 |
+
last_fused = True
|
| 216 |
+
is_pivotal = sdxl_loras[selected_state_index]["is_pivotal"]
|
| 217 |
+
if(is_pivotal):
|
| 218 |
+
#Add the textual inversion embeddings from pivotal tuning models
|
| 219 |
+
text_embedding_name = sdxl_loras[selected_state_index]["text_embedding_weights"]
|
| 220 |
+
embedding_path = hf_hub_download(repo_id=repo_name, filename=text_embedding_name, repo_type="model")
|
| 221 |
+
state_dict_embedding = load_file(embedding_path)
|
| 222 |
+
print(state_dict_embedding)
|
| 223 |
+
try:
|
| 224 |
+
pipe.unload_textual_inversion()
|
| 225 |
+
pipe.load_textual_inversion(state_dict_embedding["clip_l"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer)
|
| 226 |
+
pipe.load_textual_inversion(state_dict_embedding["clip_g"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder_2, tokenizer=pipe.tokenizer_2)
|
| 227 |
+
except:
|
| 228 |
+
pipe.unload_textual_inversion()
|
| 229 |
+
pipe.load_textual_inversion(state_dict_embedding["text_encoders_0"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer)
|
| 230 |
+
pipe.load_textual_inversion(state_dict_embedding["text_encoders_1"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder_2, tokenizer=pipe.tokenizer_2)
|
| 231 |
+
|
| 232 |
+
print("Processing prompt...")
|
| 233 |
+
conditioning, pooled = compel(prompt)
|
| 234 |
+
if(negative):
|
| 235 |
+
negative_conditioning, negative_pooled = compel(negative)
|
| 236 |
+
else:
|
| 237 |
+
negative_conditioning, negative_pooled = None, None
|
| 238 |
+
print("Processing image...")
|
| 239 |
+
image = pipe(
|
| 240 |
+
prompt_embeds=conditioning,
|
| 241 |
+
pooled_prompt_embeds=pooled,
|
| 242 |
+
negative_prompt_embeds=negative_conditioning,
|
| 243 |
+
negative_pooled_prompt_embeds=negative_pooled,
|
| 244 |
+
width=1024,
|
| 245 |
+
height=1024,
|
| 246 |
+
image_embeds=face_emb,
|
| 247 |
+
image=face_image,
|
| 248 |
+
strength=1-image_strength,
|
| 249 |
+
control_image=images,
|
| 250 |
+
num_inference_steps=20,
|
| 251 |
+
guidance_scale = guidance_scale,
|
| 252 |
+
controlnet_conditioning_scale=[face_strength, depth_control_scale],
|
| 253 |
+
).images[0]
|
| 254 |
+
return image
|
| 255 |
+
|
| 256 |
def run_lora(face_image, prompt, negative, lora_scale, selected_state, face_strength, image_strength, guidance_scale, depth_control_scale, sdxl_loras, progress=gr.Progress(track_tqdm=True)):
|
| 257 |
global last_lora, last_merged, last_fused, pipe
|
| 258 |
+
selected_state_index = selected_state.index
|
| 259 |
face_image = center_crop_image_as_square(face_image)
|
| 260 |
try:
|
| 261 |
face_info = app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR))
|
|
|
|
| 266 |
raise gr.Error("No face found in your image. Only face images work here. Try again")
|
| 267 |
|
| 268 |
for lora_list in lora_defaults:
|
| 269 |
+
if lora_list["model"] == sdxl_loras[selected_state_index]["repo"]:
|
| 270 |
prompt_full = lora_list.get("prompt", None)
|
| 271 |
if(prompt_full):
|
| 272 |
prompt = prompt_full.replace("<subject>", prompt)
|
|
|
|
| 274 |
|
| 275 |
print("Prompt:", prompt)
|
| 276 |
if(prompt == ""):
|
| 277 |
+
prompt = "a person"
|
| 278 |
#prepare face zoe
|
| 279 |
with torch.no_grad():
|
| 280 |
image_zoe = zoe(face_image)
|
|
|
|
| 289 |
# else:
|
| 290 |
# selected_state.index *= -1
|
| 291 |
#sdxl_loras = sdxl_loras_new
|
| 292 |
+
print("Selected State: ", selected_state_index)
|
| 293 |
+
print(sdxl_loras[selected_state_index]["repo"])
|
| 294 |
if negative == "":
|
| 295 |
negative = None
|
| 296 |
|
| 297 |
if not selected_state:
|
| 298 |
raise gr.Error("You must select a LoRA")
|
| 299 |
+
repo_name = sdxl_loras[selected_state_index]["repo"]
|
| 300 |
+
weight_name = sdxl_loras[selected_state_index]["weights"]
|
| 301 |
|
| 302 |
full_path_lora = state_dicts[repo_name]["saved_name"]
|
| 303 |
loaded_state_dict = copy.deepcopy(state_dicts[repo_name]["state_dict"])
|
|
|
|
| 305 |
print("Last LoRA: ", last_lora)
|
| 306 |
print("Current LoRA: ", repo_name)
|
| 307 |
print("Last fused: ", last_fused)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 308 |
|
| 309 |
+
image = generate_image(prompt, negative, face_emb, face_image, image_strength, images, guidance_scale, face_strength, depth_control_scale, last_lora, repo_name, loaded_state_dict, lora_scale, sdxl_loras, selected_state_index)
|
| 310 |
last_lora = repo_name
|
| 311 |
return image, gr.update(visible=True)
|
| 312 |
|