Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	Update pipeline_stable_diffusion_xl_instantid_img2img.py
Browse files
    	
        pipeline_stable_diffusion_xl_instantid_img2img.py
    CHANGED
    
    | @@ -1,3 +1,18 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 1 | 
             
            import math
         | 
| 2 | 
             
            from typing import Any, Callable, Dict, List, Optional, Tuple, Union
         | 
| 3 |  | 
| @@ -6,69 +21,55 @@ import numpy as np | |
| 6 | 
             
            import PIL.Image
         | 
| 7 | 
             
            import torch
         | 
| 8 | 
             
            import torch.nn as nn
         | 
|  | |
| 9 | 
             
            from diffusers import StableDiffusionXLControlNetImg2ImgPipeline
         | 
| 10 | 
             
            from diffusers.image_processor import PipelineImageInput
         | 
| 11 | 
             
            from diffusers.models import ControlNetModel
         | 
| 12 | 
             
            from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
         | 
| 13 | 
             
            from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput
         | 
| 14 | 
            -
            from diffusers.utils import  | 
|  | |
|  | |
|  | |
|  | |
| 15 | 
             
            from diffusers.utils.import_utils import is_xformers_available
         | 
| 16 | 
             
            from diffusers.utils.torch_utils import is_compiled_module, is_torch_version
         | 
| 17 |  | 
| 18 | 
            -
            logger = logging.get_logger(__name__)  # Initialize logger
         | 
| 19 |  | 
| 20 | 
            -
            # Check for xformers availability
         | 
| 21 | 
             
            try:
         | 
| 22 | 
             
                import xformers
         | 
| 23 | 
             
                import xformers.ops
         | 
| 24 |  | 
| 25 | 
             
                xformers_available = True
         | 
| 26 | 
            -
            except  | 
| 27 | 
             
                xformers_available = False
         | 
| 28 |  | 
|  | |
| 29 |  | 
| 30 | 
            -
            def reshape_tensor(x: torch.Tensor, heads: int) -> torch.Tensor:
         | 
| 31 | 
            -
                """Reshapes tensor for multi-head attention processing."""
         | 
| 32 | 
            -
                bs, length, width = x.shape
         | 
| 33 | 
            -
                return x.view(bs, length, heads, -1).transpose(1, 2)
         | 
| 34 | 
            -
             | 
| 35 | 
            -
            def draw_kps(image_pil, kps, color_list=[(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0), (255, 0, 255)]):
         | 
| 36 | 
            -
                import numpy as np
         | 
| 37 | 
            -
                import cv2
         | 
| 38 | 
            -
                from PIL import Image
         | 
| 39 | 
            -
             | 
| 40 | 
            -
                stickwidth = 4
         | 
| 41 | 
            -
                limbSeq = np.array([[0, 2], [1, 2], [3, 2], [4, 2]])
         | 
| 42 | 
            -
                kps = np.array(kps)
         | 
| 43 | 
            -
             | 
| 44 | 
            -
                w, h = image_pil.size
         | 
| 45 | 
            -
                out_img = np.zeros([h, w, 3])
         | 
| 46 | 
            -
             | 
| 47 | 
            -
                for i in range(len(limbSeq)):
         | 
| 48 | 
            -
                    index = limbSeq[i]
         | 
| 49 | 
            -
                    color = color_list[index[0]]
         | 
| 50 |  | 
| 51 | 
            -
             | 
| 52 | 
            -
             | 
| 53 | 
            -
             | 
| 54 | 
            -
                     | 
| 55 | 
            -
                     | 
| 56 | 
            -
             | 
| 57 | 
            -
                    )
         | 
| 58 | 
            -
             | 
| 59 | 
            -
                out_img = (out_img * 0.6).astype(np.uint8)
         | 
| 60 |  | 
| 61 | 
            -
                for idx_kp, kp in enumerate(kps):
         | 
| 62 | 
            -
                    color = color_list[idx_kp]
         | 
| 63 | 
            -
                    x, y = kp
         | 
| 64 | 
            -
                    out_img = cv2.circle(out_img.copy(), (int(x), int(y)), 10, color, -1)
         | 
| 65 |  | 
| 66 | 
            -
             | 
| 67 | 
            -
                 | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 68 |  | 
| 69 |  | 
| 70 | 
             
            class PerceiverAttention(nn.Module):
         | 
| 71 | 
            -
                def __init__(self, dim | 
| 72 | 
             
                    super().__init__()
         | 
| 73 | 
             
                    self.scale = dim_head**-0.5
         | 
| 74 | 
             
                    self.dim_head = dim_head
         | 
| @@ -77,96 +78,995 @@ class PerceiverAttention(nn.Module): | |
| 77 |  | 
| 78 | 
             
                    self.norm1 = nn.LayerNorm(dim)
         | 
| 79 | 
             
                    self.norm2 = nn.LayerNorm(dim)
         | 
|  | |
| 80 | 
             
                    self.to_q = nn.Linear(dim, inner_dim, bias=False)
         | 
| 81 | 
             
                    self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
         | 
| 82 | 
             
                    self.to_out = nn.Linear(inner_dim, dim, bias=False)
         | 
| 83 |  | 
| 84 | 
            -
                def forward(self, x | 
| 85 | 
            -
                     | 
| 86 | 
            -
                     | 
| 87 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 88 |  | 
| 89 | 
            -
                    q | 
|  | |
|  | |
| 90 |  | 
| 91 | 
            -
                     | 
|  | |
|  | |
|  | |
|  | |
| 92 | 
             
                    scale = 1 / math.sqrt(math.sqrt(self.dim_head))
         | 
| 93 | 
            -
                    weight = (q * scale) @ (k * scale).transpose(-2, -1)
         | 
| 94 | 
            -
                    weight = torch.softmax(weight.float(), dim=-1). | 
| 95 | 
             
                    out = weight @ v
         | 
| 96 |  | 
| 97 | 
            -
                     | 
|  | |
|  | |
| 98 |  | 
| 99 |  | 
| 100 | 
             
            class Resampler(nn.Module):
         | 
| 101 | 
             
                def __init__(
         | 
| 102 | 
             
                    self,
         | 
| 103 | 
            -
                    dim | 
| 104 | 
            -
                    depth | 
| 105 | 
            -
                    dim_head | 
| 106 | 
            -
                    heads | 
| 107 | 
            -
                    num_queries | 
| 108 | 
            -
                    embedding_dim | 
| 109 | 
            -
                    output_dim | 
| 110 | 
            -
                    ff_mult | 
| 111 | 
             
                ):
         | 
| 112 | 
             
                    super().__init__()
         | 
| 113 | 
            -
             | 
|  | |
|  | |
| 114 | 
             
                    self.proj_in = nn.Linear(embedding_dim, dim)
         | 
|  | |
| 115 | 
             
                    self.proj_out = nn.Linear(dim, output_dim)
         | 
| 116 | 
             
                    self.norm_out = nn.LayerNorm(output_dim)
         | 
| 117 | 
            -
                    self.layers = nn.ModuleList([nn.ModuleList([PerceiverAttention(dim, dim_head, heads), nn.LayerNorm(dim)]) for _ in range(depth)])
         | 
| 118 |  | 
| 119 | 
            -
             | 
| 120 | 
            -
                     | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 121 | 
             
                    x = self.proj_in(x)
         | 
| 122 |  | 
| 123 | 
            -
                    for attn,  | 
| 124 | 
            -
                        latents =  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 125 |  | 
| 126 | 
            -
                     | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 127 |  | 
| 128 |  | 
| 129 | 
             
            class StableDiffusionXLInstantIDImg2ImgPipeline(StableDiffusionXLControlNetImg2ImgPipeline):
         | 
| 130 | 
            -
                def cuda(self, dtype | 
| 131 | 
             
                    self.to("cuda", dtype)
         | 
|  | |
| 132 | 
             
                    if hasattr(self, "image_proj_model"):
         | 
| 133 | 
             
                        self.image_proj_model.to(self.unet.device).to(self.unet.dtype)
         | 
| 134 |  | 
| 135 | 
             
                    if use_xformers:
         | 
| 136 | 
             
                        if is_xformers_available():
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 137 | 
             
                            self.enable_xformers_memory_efficient_attention()
         | 
| 138 | 
             
                        else:
         | 
| 139 | 
            -
                            raise ValueError(" | 
| 140 |  | 
| 141 | 
            -
                def load_ip_adapter_instantid(self, model_ckpt | 
| 142 | 
             
                    self.set_image_proj_model(model_ckpt, image_emb_dim, num_tokens)
         | 
| 143 | 
             
                    self.set_ip_adapter(model_ckpt, num_tokens, scale)
         | 
| 144 |  | 
| 145 | 
            -
                def set_image_proj_model(self, model_ckpt | 
| 146 | 
            -
                     | 
| 147 | 
            -
                        dim=1280, | 
| 148 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 149 |  | 
| 150 | 
            -
                     | 
|  | |
|  | |
|  | |
| 151 | 
             
                    self.image_proj_model.load_state_dict(state_dict)
         | 
|  | |
| 152 | 
             
                    self.image_proj_model_in_features = image_emb_dim
         | 
| 153 |  | 
| 154 | 
            -
                def set_ip_adapter(self, model_ckpt | 
|  | |
| 155 | 
             
                    attn_procs = {}
         | 
| 156 | 
            -
                    for name | 
| 157 | 
            -
                        cross_attention_dim = None if name.endswith("attn1.processor") else  | 
| 158 | 
            -
                         | 
| 159 | 
            -
             | 
| 160 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 161 |  | 
| 162 | 
            -
             | 
| 163 | 
            -
                     | 
|  | |
|  | |
|  | |
| 164 |  | 
| 165 | 
             
                def _encode_prompt_image_emb(self, prompt_image_emb, device, dtype, do_classifier_free_guidance):
         | 
| 166 | 
            -
                     | 
| 167 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 168 |  | 
| 169 | 
             
                    if do_classifier_free_guidance:
         | 
| 170 | 
             
                        prompt_image_emb = torch.cat([torch.zeros_like(prompt_image_emb), prompt_image_emb], dim=0)
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 171 |  | 
| 172 | 
            -
                    return  | 
|  | |
| 1 | 
            +
            # Copyright 2024 The InstantX Team. All rights reserved.
         | 
| 2 | 
            +
            #
         | 
| 3 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 4 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 5 | 
            +
            # You may obtain a copy of the License at
         | 
| 6 | 
            +
            #
         | 
| 7 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 10 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 11 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 12 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 13 | 
            +
            # limitations under the License.
         | 
| 14 | 
            +
             | 
| 15 | 
            +
             | 
| 16 | 
             
            import math
         | 
| 17 | 
             
            from typing import Any, Callable, Dict, List, Optional, Tuple, Union
         | 
| 18 |  | 
|  | |
| 21 | 
             
            import PIL.Image
         | 
| 22 | 
             
            import torch
         | 
| 23 | 
             
            import torch.nn as nn
         | 
| 24 | 
            +
             | 
| 25 | 
             
            from diffusers import StableDiffusionXLControlNetImg2ImgPipeline
         | 
| 26 | 
             
            from diffusers.image_processor import PipelineImageInput
         | 
| 27 | 
             
            from diffusers.models import ControlNetModel
         | 
| 28 | 
             
            from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
         | 
| 29 | 
             
            from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput
         | 
| 30 | 
            +
            from diffusers.utils import (
         | 
| 31 | 
            +
                deprecate,
         | 
| 32 | 
            +
                logging,
         | 
| 33 | 
            +
                replace_example_docstring,
         | 
| 34 | 
            +
            )
         | 
| 35 | 
             
            from diffusers.utils.import_utils import is_xformers_available
         | 
| 36 | 
             
            from diffusers.utils.torch_utils import is_compiled_module, is_torch_version
         | 
| 37 |  | 
|  | |
| 38 |  | 
|  | |
| 39 | 
             
            try:
         | 
| 40 | 
             
                import xformers
         | 
| 41 | 
             
                import xformers.ops
         | 
| 42 |  | 
| 43 | 
             
                xformers_available = True
         | 
| 44 | 
            +
            except Exception:
         | 
| 45 | 
             
                xformers_available = False
         | 
| 46 |  | 
| 47 | 
            +
            logger = logging.get_logger(__name__)  # pylint: disable=invalid-name
         | 
| 48 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 49 |  | 
| 50 | 
            +
            def FeedForward(dim, mult=4):
         | 
| 51 | 
            +
                inner_dim = int(dim * mult)
         | 
| 52 | 
            +
                return nn.Sequential(
         | 
| 53 | 
            +
                    nn.LayerNorm(dim),
         | 
| 54 | 
            +
                    nn.Linear(dim, inner_dim, bias=False),
         | 
| 55 | 
            +
                    nn.GELU(),
         | 
| 56 | 
            +
                    nn.Linear(inner_dim, dim, bias=False),
         | 
| 57 | 
            +
                )
         | 
|  | |
| 58 |  | 
|  | |
|  | |
|  | |
|  | |
| 59 |  | 
| 60 | 
            +
            def reshape_tensor(x, heads):
         | 
| 61 | 
            +
                bs, length, width = x.shape
         | 
| 62 | 
            +
                # (bs, length, width) --> (bs, length, n_heads, dim_per_head)
         | 
| 63 | 
            +
                x = x.view(bs, length, heads, -1)
         | 
| 64 | 
            +
                # (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
         | 
| 65 | 
            +
                x = x.transpose(1, 2)
         | 
| 66 | 
            +
                # (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head)
         | 
| 67 | 
            +
                x = x.reshape(bs, heads, length, -1)
         | 
| 68 | 
            +
                return x
         | 
| 69 |  | 
| 70 |  | 
| 71 | 
             
            class PerceiverAttention(nn.Module):
         | 
| 72 | 
            +
                def __init__(self, *, dim, dim_head=64, heads=8):
         | 
| 73 | 
             
                    super().__init__()
         | 
| 74 | 
             
                    self.scale = dim_head**-0.5
         | 
| 75 | 
             
                    self.dim_head = dim_head
         | 
|  | |
| 78 |  | 
| 79 | 
             
                    self.norm1 = nn.LayerNorm(dim)
         | 
| 80 | 
             
                    self.norm2 = nn.LayerNorm(dim)
         | 
| 81 | 
            +
             | 
| 82 | 
             
                    self.to_q = nn.Linear(dim, inner_dim, bias=False)
         | 
| 83 | 
             
                    self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
         | 
| 84 | 
             
                    self.to_out = nn.Linear(inner_dim, dim, bias=False)
         | 
| 85 |  | 
| 86 | 
            +
                def forward(self, x, latents):
         | 
| 87 | 
            +
                    """
         | 
| 88 | 
            +
                    Args:
         | 
| 89 | 
            +
                        x (torch.Tensor): image features
         | 
| 90 | 
            +
                            shape (b, n1, D)
         | 
| 91 | 
            +
                        latent (torch.Tensor): latent features
         | 
| 92 | 
            +
                            shape (b, n2, D)
         | 
| 93 | 
            +
                    """
         | 
| 94 | 
            +
                    x = self.norm1(x)
         | 
| 95 | 
            +
                    latents = self.norm2(latents)
         | 
| 96 | 
            +
             | 
| 97 | 
            +
                    b, l, _ = latents.shape
         | 
| 98 |  | 
| 99 | 
            +
                    q = self.to_q(latents)
         | 
| 100 | 
            +
                    kv_input = torch.cat((x, latents), dim=-2)
         | 
| 101 | 
            +
                    k, v = self.to_kv(kv_input).chunk(2, dim=-1)
         | 
| 102 |  | 
| 103 | 
            +
                    q = reshape_tensor(q, self.heads)
         | 
| 104 | 
            +
                    k = reshape_tensor(k, self.heads)
         | 
| 105 | 
            +
                    v = reshape_tensor(v, self.heads)
         | 
| 106 | 
            +
             | 
| 107 | 
            +
                    # attention
         | 
| 108 | 
             
                    scale = 1 / math.sqrt(math.sqrt(self.dim_head))
         | 
| 109 | 
            +
                    weight = (q * scale) @ (k * scale).transpose(-2, -1)  # More stable with f16 than dividing afterwards
         | 
| 110 | 
            +
                    weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
         | 
| 111 | 
             
                    out = weight @ v
         | 
| 112 |  | 
| 113 | 
            +
                    out = out.permute(0, 2, 1, 3).reshape(b, l, -1)
         | 
| 114 | 
            +
             | 
| 115 | 
            +
                    return self.to_out(out)
         | 
| 116 |  | 
| 117 |  | 
| 118 | 
             
            class Resampler(nn.Module):
         | 
| 119 | 
             
                def __init__(
         | 
| 120 | 
             
                    self,
         | 
| 121 | 
            +
                    dim=1024,
         | 
| 122 | 
            +
                    depth=8,
         | 
| 123 | 
            +
                    dim_head=64,
         | 
| 124 | 
            +
                    heads=16,
         | 
| 125 | 
            +
                    num_queries=8,
         | 
| 126 | 
            +
                    embedding_dim=768,
         | 
| 127 | 
            +
                    output_dim=1024,
         | 
| 128 | 
            +
                    ff_mult=4,
         | 
| 129 | 
             
                ):
         | 
| 130 | 
             
                    super().__init__()
         | 
| 131 | 
            +
             | 
| 132 | 
            +
                    self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5)
         | 
| 133 | 
            +
             | 
| 134 | 
             
                    self.proj_in = nn.Linear(embedding_dim, dim)
         | 
| 135 | 
            +
             | 
| 136 | 
             
                    self.proj_out = nn.Linear(dim, output_dim)
         | 
| 137 | 
             
                    self.norm_out = nn.LayerNorm(output_dim)
         | 
|  | |
| 138 |  | 
| 139 | 
            +
                    self.layers = nn.ModuleList([])
         | 
| 140 | 
            +
                    for _ in range(depth):
         | 
| 141 | 
            +
                        self.layers.append(
         | 
| 142 | 
            +
                            nn.ModuleList(
         | 
| 143 | 
            +
                                [
         | 
| 144 | 
            +
                                    PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
         | 
| 145 | 
            +
                                    FeedForward(dim=dim, mult=ff_mult),
         | 
| 146 | 
            +
                                ]
         | 
| 147 | 
            +
                            )
         | 
| 148 | 
            +
                        )
         | 
| 149 | 
            +
             | 
| 150 | 
            +
                def forward(self, x):
         | 
| 151 | 
            +
                    latents = self.latents.repeat(x.size(0), 1, 1)
         | 
| 152 | 
             
                    x = self.proj_in(x)
         | 
| 153 |  | 
| 154 | 
            +
                    for attn, ff in self.layers:
         | 
| 155 | 
            +
                        latents = attn(x, latents) + latents
         | 
| 156 | 
            +
                        latents = ff(latents) + latents
         | 
| 157 | 
            +
             | 
| 158 | 
            +
                    latents = self.proj_out(latents)
         | 
| 159 | 
            +
                    return self.norm_out(latents)
         | 
| 160 | 
            +
             | 
| 161 | 
            +
             | 
| 162 | 
            +
            class AttnProcessor(nn.Module):
         | 
| 163 | 
            +
                r"""
         | 
| 164 | 
            +
                Default processor for performing attention-related computations.
         | 
| 165 | 
            +
                """
         | 
| 166 | 
            +
             | 
| 167 | 
            +
                def __init__(
         | 
| 168 | 
            +
                    self,
         | 
| 169 | 
            +
                    hidden_size=None,
         | 
| 170 | 
            +
                    cross_attention_dim=None,
         | 
| 171 | 
            +
                ):
         | 
| 172 | 
            +
                    super().__init__()
         | 
| 173 | 
            +
             | 
| 174 | 
            +
                def __call__(
         | 
| 175 | 
            +
                    self,
         | 
| 176 | 
            +
                    attn,
         | 
| 177 | 
            +
                    hidden_states,
         | 
| 178 | 
            +
                    encoder_hidden_states=None,
         | 
| 179 | 
            +
                    attention_mask=None,
         | 
| 180 | 
            +
                    temb=None,
         | 
| 181 | 
            +
                ):
         | 
| 182 | 
            +
                    residual = hidden_states
         | 
| 183 | 
            +
             | 
| 184 | 
            +
                    if attn.spatial_norm is not None:
         | 
| 185 | 
            +
                        hidden_states = attn.spatial_norm(hidden_states, temb)
         | 
| 186 | 
            +
             | 
| 187 | 
            +
                    input_ndim = hidden_states.ndim
         | 
| 188 | 
            +
             | 
| 189 | 
            +
                    if input_ndim == 4:
         | 
| 190 | 
            +
                        batch_size, channel, height, width = hidden_states.shape
         | 
| 191 | 
            +
                        hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
         | 
| 192 | 
            +
             | 
| 193 | 
            +
                    batch_size, sequence_length, _ = (
         | 
| 194 | 
            +
                        hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
         | 
| 195 | 
            +
                    )
         | 
| 196 | 
            +
                    attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
         | 
| 197 | 
            +
             | 
| 198 | 
            +
                    if attn.group_norm is not None:
         | 
| 199 | 
            +
                        hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
         | 
| 200 | 
            +
             | 
| 201 | 
            +
                    query = attn.to_q(hidden_states)
         | 
| 202 | 
            +
             | 
| 203 | 
            +
                    if encoder_hidden_states is None:
         | 
| 204 | 
            +
                        encoder_hidden_states = hidden_states
         | 
| 205 | 
            +
                    elif attn.norm_cross:
         | 
| 206 | 
            +
                        encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
         | 
| 207 | 
            +
             | 
| 208 | 
            +
                    key = attn.to_k(encoder_hidden_states)
         | 
| 209 | 
            +
                    value = attn.to_v(encoder_hidden_states)
         | 
| 210 | 
            +
             | 
| 211 | 
            +
                    query = attn.head_to_batch_dim(query)
         | 
| 212 | 
            +
                    key = attn.head_to_batch_dim(key)
         | 
| 213 | 
            +
                    value = attn.head_to_batch_dim(value)
         | 
| 214 | 
            +
             | 
| 215 | 
            +
                    attention_probs = attn.get_attention_scores(query, key, attention_mask)
         | 
| 216 | 
            +
                    hidden_states = torch.bmm(attention_probs, value)
         | 
| 217 | 
            +
                    hidden_states = attn.batch_to_head_dim(hidden_states)
         | 
| 218 | 
            +
             | 
| 219 | 
            +
                    # linear proj
         | 
| 220 | 
            +
                    hidden_states = attn.to_out[0](hidden_states)
         | 
| 221 | 
            +
                    # dropout
         | 
| 222 | 
            +
                    hidden_states = attn.to_out[1](hidden_states)
         | 
| 223 | 
            +
             | 
| 224 | 
            +
                    if input_ndim == 4:
         | 
| 225 | 
            +
                        hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
         | 
| 226 | 
            +
             | 
| 227 | 
            +
                    if attn.residual_connection:
         | 
| 228 | 
            +
                        hidden_states = hidden_states + residual
         | 
| 229 | 
            +
             | 
| 230 | 
            +
                    hidden_states = hidden_states / attn.rescale_output_factor
         | 
| 231 | 
            +
             | 
| 232 | 
            +
                    return hidden_states
         | 
| 233 | 
            +
             | 
| 234 | 
            +
             | 
| 235 | 
            +
            class IPAttnProcessor(nn.Module):
         | 
| 236 | 
            +
                r"""
         | 
| 237 | 
            +
                Attention processor for IP-Adapater.
         | 
| 238 | 
            +
                Args:
         | 
| 239 | 
            +
                    hidden_size (`int`):
         | 
| 240 | 
            +
                        The hidden size of the attention layer.
         | 
| 241 | 
            +
                    cross_attention_dim (`int`):
         | 
| 242 | 
            +
                        The number of channels in the `encoder_hidden_states`.
         | 
| 243 | 
            +
                    scale (`float`, defaults to 1.0):
         | 
| 244 | 
            +
                        the weight scale of image prompt.
         | 
| 245 | 
            +
                    num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16):
         | 
| 246 | 
            +
                        The context length of the image features.
         | 
| 247 | 
            +
                """
         | 
| 248 | 
            +
             | 
| 249 | 
            +
                def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4):
         | 
| 250 | 
            +
                    super().__init__()
         | 
| 251 | 
            +
             | 
| 252 | 
            +
                    self.hidden_size = hidden_size
         | 
| 253 | 
            +
                    self.cross_attention_dim = cross_attention_dim
         | 
| 254 | 
            +
                    self.scale = scale
         | 
| 255 | 
            +
                    self.num_tokens = num_tokens
         | 
| 256 | 
            +
             | 
| 257 | 
            +
                    self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
         | 
| 258 | 
            +
                    self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
         | 
| 259 | 
            +
             | 
| 260 | 
            +
                def __call__(
         | 
| 261 | 
            +
                    self,
         | 
| 262 | 
            +
                    attn,
         | 
| 263 | 
            +
                    hidden_states,
         | 
| 264 | 
            +
                    encoder_hidden_states=None,
         | 
| 265 | 
            +
                    attention_mask=None,
         | 
| 266 | 
            +
                    temb=None,
         | 
| 267 | 
            +
                ):
         | 
| 268 | 
            +
                    residual = hidden_states
         | 
| 269 | 
            +
             | 
| 270 | 
            +
                    if attn.spatial_norm is not None:
         | 
| 271 | 
            +
                        hidden_states = attn.spatial_norm(hidden_states, temb)
         | 
| 272 | 
            +
             | 
| 273 | 
            +
                    input_ndim = hidden_states.ndim
         | 
| 274 | 
            +
             | 
| 275 | 
            +
                    if input_ndim == 4:
         | 
| 276 | 
            +
                        batch_size, channel, height, width = hidden_states.shape
         | 
| 277 | 
            +
                        hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
         | 
| 278 | 
            +
             | 
| 279 | 
            +
                    batch_size, sequence_length, _ = (
         | 
| 280 | 
            +
                        hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
         | 
| 281 | 
            +
                    )
         | 
| 282 | 
            +
                    attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
         | 
| 283 | 
            +
             | 
| 284 | 
            +
                    if attn.group_norm is not None:
         | 
| 285 | 
            +
                        hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
         | 
| 286 | 
            +
             | 
| 287 | 
            +
                    query = attn.to_q(hidden_states)
         | 
| 288 | 
            +
             | 
| 289 | 
            +
                    if encoder_hidden_states is None:
         | 
| 290 | 
            +
                        encoder_hidden_states = hidden_states
         | 
| 291 | 
            +
                    else:
         | 
| 292 | 
            +
                        # get encoder_hidden_states, ip_hidden_states
         | 
| 293 | 
            +
                        end_pos = encoder_hidden_states.shape[1] - self.num_tokens
         | 
| 294 | 
            +
                        encoder_hidden_states, ip_hidden_states = (
         | 
| 295 | 
            +
                            encoder_hidden_states[:, :end_pos, :],
         | 
| 296 | 
            +
                            encoder_hidden_states[:, end_pos:, :],
         | 
| 297 | 
            +
                        )
         | 
| 298 | 
            +
                        if attn.norm_cross:
         | 
| 299 | 
            +
                            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
         | 
| 300 | 
            +
             | 
| 301 | 
            +
                    key = attn.to_k(encoder_hidden_states)
         | 
| 302 | 
            +
                    value = attn.to_v(encoder_hidden_states)
         | 
| 303 | 
            +
             | 
| 304 | 
            +
                    query = attn.head_to_batch_dim(query)
         | 
| 305 | 
            +
                    key = attn.head_to_batch_dim(key)
         | 
| 306 | 
            +
                    value = attn.head_to_batch_dim(value)
         | 
| 307 | 
            +
             | 
| 308 | 
            +
                    if xformers_available:
         | 
| 309 | 
            +
                        hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask)
         | 
| 310 | 
            +
                    else:
         | 
| 311 | 
            +
                        attention_probs = attn.get_attention_scores(query, key, attention_mask)
         | 
| 312 | 
            +
                        hidden_states = torch.bmm(attention_probs, value)
         | 
| 313 | 
            +
                    hidden_states = attn.batch_to_head_dim(hidden_states)
         | 
| 314 | 
            +
             | 
| 315 | 
            +
                    # for ip-adapter
         | 
| 316 | 
            +
                    ip_key = self.to_k_ip(ip_hidden_states)
         | 
| 317 | 
            +
                    ip_value = self.to_v_ip(ip_hidden_states)
         | 
| 318 | 
            +
             | 
| 319 | 
            +
                    ip_key = attn.head_to_batch_dim(ip_key)
         | 
| 320 | 
            +
                    ip_value = attn.head_to_batch_dim(ip_value)
         | 
| 321 | 
            +
             | 
| 322 | 
            +
                    if xformers_available:
         | 
| 323 | 
            +
                        ip_hidden_states = self._memory_efficient_attention_xformers(query, ip_key, ip_value, None)
         | 
| 324 | 
            +
                    else:
         | 
| 325 | 
            +
                        ip_attention_probs = attn.get_attention_scores(query, ip_key, None)
         | 
| 326 | 
            +
                        ip_hidden_states = torch.bmm(ip_attention_probs, ip_value)
         | 
| 327 | 
            +
                    ip_hidden_states = attn.batch_to_head_dim(ip_hidden_states)
         | 
| 328 | 
            +
             | 
| 329 | 
            +
                    hidden_states = hidden_states + self.scale * ip_hidden_states
         | 
| 330 | 
            +
             | 
| 331 | 
            +
                    # linear proj
         | 
| 332 | 
            +
                    hidden_states = attn.to_out[0](hidden_states)
         | 
| 333 | 
            +
                    # dropout
         | 
| 334 | 
            +
                    hidden_states = attn.to_out[1](hidden_states)
         | 
| 335 | 
            +
             | 
| 336 | 
            +
                    if input_ndim == 4:
         | 
| 337 | 
            +
                        hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
         | 
| 338 | 
            +
             | 
| 339 | 
            +
                    if attn.residual_connection:
         | 
| 340 | 
            +
                        hidden_states = hidden_states + residual
         | 
| 341 | 
            +
             | 
| 342 | 
            +
                    hidden_states = hidden_states / attn.rescale_output_factor
         | 
| 343 | 
            +
             | 
| 344 | 
            +
                    return hidden_states
         | 
| 345 | 
            +
             | 
| 346 | 
            +
                def _memory_efficient_attention_xformers(self, query, key, value, attention_mask):
         | 
| 347 | 
            +
                    # TODO attention_mask
         | 
| 348 | 
            +
                    query = query.contiguous()
         | 
| 349 | 
            +
                    key = key.contiguous()
         | 
| 350 | 
            +
                    value = value.contiguous()
         | 
| 351 | 
            +
                    hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=attention_mask)
         | 
| 352 | 
            +
                    return hidden_states
         | 
| 353 | 
            +
             | 
| 354 | 
            +
             | 
| 355 | 
            +
            EXAMPLE_DOC_STRING = """
         | 
| 356 | 
            +
                Examples:
         | 
| 357 | 
            +
                    ```py
         | 
| 358 | 
            +
                    >>> # !pip install opencv-python transformers accelerate insightface
         | 
| 359 | 
            +
                    >>> import diffusers
         | 
| 360 | 
            +
                    >>> from diffusers.utils import load_image
         | 
| 361 | 
            +
                    >>> from diffusers.models import ControlNetModel
         | 
| 362 | 
            +
             | 
| 363 | 
            +
                    >>> import cv2
         | 
| 364 | 
            +
                    >>> import torch
         | 
| 365 | 
            +
                    >>> import numpy as np
         | 
| 366 | 
            +
                    >>> from PIL import Image
         | 
| 367 | 
            +
             | 
| 368 | 
            +
                    >>> from insightface.app import FaceAnalysis
         | 
| 369 | 
            +
                    >>> from pipeline_stable_diffusion_xl_instantid import StableDiffusionXLInstantIDPipeline, draw_kps
         | 
| 370 | 
            +
             | 
| 371 | 
            +
                    >>> # download 'antelopev2' under ./models
         | 
| 372 | 
            +
                    >>> app = FaceAnalysis(name='antelopev2', root='./', providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
         | 
| 373 | 
            +
                    >>> app.prepare(ctx_id=0, det_size=(640, 640))
         | 
| 374 | 
            +
             | 
| 375 | 
            +
                    >>> # download models under ./checkpoints
         | 
| 376 | 
            +
                    >>> face_adapter = f'./checkpoints/ip-adapter.bin'
         | 
| 377 | 
            +
                    >>> controlnet_path = f'./checkpoints/ControlNetModel'
         | 
| 378 | 
            +
             | 
| 379 | 
            +
                    >>> # load IdentityNet
         | 
| 380 | 
            +
                    >>> controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16)
         | 
| 381 | 
            +
             | 
| 382 | 
            +
                    >>> pipe = StableDiffusionXLInstantIDPipeline.from_pretrained(
         | 
| 383 | 
            +
                    ...     "stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet, torch_dtype=torch.float16
         | 
| 384 | 
            +
                    ... )
         | 
| 385 | 
            +
                    >>> pipe.cuda()
         | 
| 386 |  | 
| 387 | 
            +
                    >>> # load adapter
         | 
| 388 | 
            +
                    >>> pipe.load_ip_adapter_instantid(face_adapter)
         | 
| 389 | 
            +
             | 
| 390 | 
            +
                    >>> prompt = "analog film photo of a man. faded film, desaturated, 35mm photo, grainy, vignette, vintage, Kodachrome, Lomography, stained, highly detailed, found footage, masterpiece, best quality"
         | 
| 391 | 
            +
                    >>> negative_prompt = "(lowres, low quality, worst quality:1.2), (text:1.2), watermark, painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured (lowres, low quality, worst quality:1.2), (text:1.2), watermark, painting, drawing, illustration, glitch,deformed, mutated, cross-eyed, ugly, disfigured"
         | 
| 392 | 
            +
             | 
| 393 | 
            +
                    >>> # load an image
         | 
| 394 | 
            +
                    >>> image = load_image("your-example.jpg")
         | 
| 395 | 
            +
             | 
| 396 | 
            +
                    >>> face_info = app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR))[-1]
         | 
| 397 | 
            +
                    >>> face_emb = face_info['embedding']
         | 
| 398 | 
            +
                    >>> face_kps = draw_kps(face_image, face_info['kps'])
         | 
| 399 | 
            +
             | 
| 400 | 
            +
                    >>> pipe.set_ip_adapter_scale(0.8)
         | 
| 401 | 
            +
             | 
| 402 | 
            +
                    >>> # generate image
         | 
| 403 | 
            +
                    >>> image = pipe(
         | 
| 404 | 
            +
                    ...     prompt, image_embeds=face_emb, image=face_kps, controlnet_conditioning_scale=0.8
         | 
| 405 | 
            +
                    ... ).images[0]
         | 
| 406 | 
            +
                    ```
         | 
| 407 | 
            +
            """
         | 
| 408 | 
            +
             | 
| 409 | 
            +
             | 
| 410 | 
            +
            def draw_kps(image_pil, kps, color_list=[(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0), (255, 0, 255)]):
         | 
| 411 | 
            +
                stickwidth = 4
         | 
| 412 | 
            +
                limbSeq = np.array([[0, 2], [1, 2], [3, 2], [4, 2]])
         | 
| 413 | 
            +
                kps = np.array(kps)
         | 
| 414 | 
            +
             | 
| 415 | 
            +
                w, h = image_pil.size
         | 
| 416 | 
            +
                out_img = np.zeros([h, w, 3])
         | 
| 417 | 
            +
             | 
| 418 | 
            +
                for i in range(len(limbSeq)):
         | 
| 419 | 
            +
                    index = limbSeq[i]
         | 
| 420 | 
            +
                    color = color_list[index[0]]
         | 
| 421 | 
            +
             | 
| 422 | 
            +
                    x = kps[index][:, 0]
         | 
| 423 | 
            +
                    y = kps[index][:, 1]
         | 
| 424 | 
            +
                    length = ((x[0] - x[1]) ** 2 + (y[0] - y[1]) ** 2) ** 0.5
         | 
| 425 | 
            +
                    angle = math.degrees(math.atan2(y[0] - y[1], x[0] - x[1]))
         | 
| 426 | 
            +
                    polygon = cv2.ellipse2Poly(
         | 
| 427 | 
            +
                        (int(np.mean(x)), int(np.mean(y))), (int(length / 2), stickwidth), int(angle), 0, 360, 1
         | 
| 428 | 
            +
                    )
         | 
| 429 | 
            +
                    out_img = cv2.fillConvexPoly(out_img.copy(), polygon, color)
         | 
| 430 | 
            +
                out_img = (out_img * 0.6).astype(np.uint8)
         | 
| 431 | 
            +
             | 
| 432 | 
            +
                for idx_kp, kp in enumerate(kps):
         | 
| 433 | 
            +
                    color = color_list[idx_kp]
         | 
| 434 | 
            +
                    x, y = kp
         | 
| 435 | 
            +
                    out_img = cv2.circle(out_img.copy(), (int(x), int(y)), 10, color, -1)
         | 
| 436 | 
            +
             | 
| 437 | 
            +
                out_img_pil = PIL.Image.fromarray(out_img.astype(np.uint8))
         | 
| 438 | 
            +
                return out_img_pil
         | 
| 439 |  | 
| 440 |  | 
| 441 | 
             
            class StableDiffusionXLInstantIDImg2ImgPipeline(StableDiffusionXLControlNetImg2ImgPipeline):
         | 
| 442 | 
            +
                def cuda(self, dtype=torch.float16, use_xformers=False):
         | 
| 443 | 
             
                    self.to("cuda", dtype)
         | 
| 444 | 
            +
             | 
| 445 | 
             
                    if hasattr(self, "image_proj_model"):
         | 
| 446 | 
             
                        self.image_proj_model.to(self.unet.device).to(self.unet.dtype)
         | 
| 447 |  | 
| 448 | 
             
                    if use_xformers:
         | 
| 449 | 
             
                        if is_xformers_available():
         | 
| 450 | 
            +
                            import xformers
         | 
| 451 | 
            +
                            from packaging import version
         | 
| 452 | 
            +
             | 
| 453 | 
            +
                            xformers_version = version.parse(xformers.__version__)
         | 
| 454 | 
            +
                            if xformers_version == version.parse("0.0.16"):
         | 
| 455 | 
            +
                                logger.warning(
         | 
| 456 | 
            +
                                    "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
         | 
| 457 | 
            +
                                )
         | 
| 458 | 
             
                            self.enable_xformers_memory_efficient_attention()
         | 
| 459 | 
             
                        else:
         | 
| 460 | 
            +
                            raise ValueError("xformers is not available. Make sure it is installed correctly")
         | 
| 461 |  | 
| 462 | 
            +
                def load_ip_adapter_instantid(self, model_ckpt, image_emb_dim=512, num_tokens=16, scale=0.5):
         | 
| 463 | 
             
                    self.set_image_proj_model(model_ckpt, image_emb_dim, num_tokens)
         | 
| 464 | 
             
                    self.set_ip_adapter(model_ckpt, num_tokens, scale)
         | 
| 465 |  | 
| 466 | 
            +
                def set_image_proj_model(self, model_ckpt, image_emb_dim=512, num_tokens=16):
         | 
| 467 | 
            +
                    image_proj_model = Resampler(
         | 
| 468 | 
            +
                        dim=1280,
         | 
| 469 | 
            +
                        depth=4,
         | 
| 470 | 
            +
                        dim_head=64,
         | 
| 471 | 
            +
                        heads=20,
         | 
| 472 | 
            +
                        num_queries=num_tokens,
         | 
| 473 | 
            +
                        embedding_dim=image_emb_dim,
         | 
| 474 | 
            +
                        output_dim=self.unet.config.cross_attention_dim,
         | 
| 475 | 
            +
                        ff_mult=4,
         | 
| 476 | 
            +
                    )
         | 
| 477 | 
            +
             | 
| 478 | 
            +
                    image_proj_model.eval()
         | 
| 479 |  | 
| 480 | 
            +
                    self.image_proj_model = image_proj_model.to(self.device, dtype=self.dtype)
         | 
| 481 | 
            +
                    state_dict = torch.load(model_ckpt, map_location="cpu")
         | 
| 482 | 
            +
                    if "image_proj" in state_dict:
         | 
| 483 | 
            +
                        state_dict = state_dict["image_proj"]
         | 
| 484 | 
             
                    self.image_proj_model.load_state_dict(state_dict)
         | 
| 485 | 
            +
             | 
| 486 | 
             
                    self.image_proj_model_in_features = image_emb_dim
         | 
| 487 |  | 
| 488 | 
            +
                def set_ip_adapter(self, model_ckpt, num_tokens, scale):
         | 
| 489 | 
            +
                    unet = self.unet
         | 
| 490 | 
             
                    attn_procs = {}
         | 
| 491 | 
            +
                    for name in unet.attn_processors.keys():
         | 
| 492 | 
            +
                        cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
         | 
| 493 | 
            +
                        if name.startswith("mid_block"):
         | 
| 494 | 
            +
                            hidden_size = unet.config.block_out_channels[-1]
         | 
| 495 | 
            +
                        elif name.startswith("up_blocks"):
         | 
| 496 | 
            +
                            block_id = int(name[len("up_blocks.")])
         | 
| 497 | 
            +
                            hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
         | 
| 498 | 
            +
                        elif name.startswith("down_blocks"):
         | 
| 499 | 
            +
                            block_id = int(name[len("down_blocks.")])
         | 
| 500 | 
            +
                            hidden_size = unet.config.block_out_channels[block_id]
         | 
| 501 | 
            +
                        if cross_attention_dim is None:
         | 
| 502 | 
            +
                            attn_procs[name] = AttnProcessor().to(unet.device, dtype=unet.dtype)
         | 
| 503 | 
            +
                        else:
         | 
| 504 | 
            +
                            attn_procs[name] = IPAttnProcessor(
         | 
| 505 | 
            +
                                hidden_size=hidden_size,
         | 
| 506 | 
            +
                                cross_attention_dim=cross_attention_dim,
         | 
| 507 | 
            +
                                scale=scale,
         | 
| 508 | 
            +
                                num_tokens=num_tokens,
         | 
| 509 | 
            +
                            ).to(unet.device, dtype=unet.dtype)
         | 
| 510 | 
            +
                    unet.set_attn_processor(attn_procs)
         | 
| 511 | 
            +
             | 
| 512 | 
            +
                    state_dict = torch.load(model_ckpt, map_location="cpu")
         | 
| 513 | 
            +
                    ip_layers = torch.nn.ModuleList(self.unet.attn_processors.values())
         | 
| 514 | 
            +
                    if "ip_adapter" in state_dict:
         | 
| 515 | 
            +
                        state_dict = state_dict["ip_adapter"]
         | 
| 516 | 
            +
                    ip_layers.load_state_dict(state_dict)
         | 
| 517 |  | 
| 518 | 
            +
                def set_ip_adapter_scale(self, scale):
         | 
| 519 | 
            +
                    unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet
         | 
| 520 | 
            +
                    for attn_processor in unet.attn_processors.values():
         | 
| 521 | 
            +
                        if isinstance(attn_processor, IPAttnProcessor):
         | 
| 522 | 
            +
                            attn_processor.scale = scale
         | 
| 523 |  | 
| 524 | 
             
                def _encode_prompt_image_emb(self, prompt_image_emb, device, dtype, do_classifier_free_guidance):
         | 
| 525 | 
            +
                    if isinstance(prompt_image_emb, torch.Tensor):
         | 
| 526 | 
            +
                        prompt_image_emb = prompt_image_emb.clone().detach()
         | 
| 527 | 
            +
                    else:
         | 
| 528 | 
            +
                        prompt_image_emb = torch.tensor(prompt_image_emb)
         | 
| 529 | 
            +
             | 
| 530 | 
            +
                    prompt_image_emb = prompt_image_emb.to(device=device, dtype=dtype)
         | 
| 531 | 
            +
                    prompt_image_emb = prompt_image_emb.reshape([1, -1, self.image_proj_model_in_features])
         | 
| 532 |  | 
| 533 | 
             
                    if do_classifier_free_guidance:
         | 
| 534 | 
             
                        prompt_image_emb = torch.cat([torch.zeros_like(prompt_image_emb), prompt_image_emb], dim=0)
         | 
| 535 | 
            +
                    else:
         | 
| 536 | 
            +
                        prompt_image_emb = torch.cat([prompt_image_emb], dim=0)
         | 
| 537 | 
            +
                    image_proj_model_device = self.image_proj_model.to(device)
         | 
| 538 | 
            +
                    prompt_image_emb = image_proj_model_device(prompt_image_emb)
         | 
| 539 | 
            +
                    return prompt_image_emb
         | 
| 540 | 
            +
             | 
| 541 | 
            +
                @torch.no_grad()
         | 
| 542 | 
            +
                @replace_example_docstring(EXAMPLE_DOC_STRING)
         | 
| 543 | 
            +
                def __call__(
         | 
| 544 | 
            +
                    self,
         | 
| 545 | 
            +
                    prompt: Union[str, List[str]] = None,
         | 
| 546 | 
            +
                    prompt_2: Optional[Union[str, List[str]]] = None,
         | 
| 547 | 
            +
                    image: PipelineImageInput = None,
         | 
| 548 | 
            +
                    control_image: PipelineImageInput = None,
         | 
| 549 | 
            +
                    strength: float = 0.8,
         | 
| 550 | 
            +
                    height: Optional[int] = None,
         | 
| 551 | 
            +
                    width: Optional[int] = None,
         | 
| 552 | 
            +
                    num_inference_steps: int = 50,
         | 
| 553 | 
            +
                    guidance_scale: float = 5.0,
         | 
| 554 | 
            +
                    negative_prompt: Optional[Union[str, List[str]]] = None,
         | 
| 555 | 
            +
                    negative_prompt_2: Optional[Union[str, List[str]]] = None,
         | 
| 556 | 
            +
                    num_images_per_prompt: Optional[int] = 1,
         | 
| 557 | 
            +
                    eta: float = 0.0,
         | 
| 558 | 
            +
                    generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
         | 
| 559 | 
            +
                    latents: Optional[torch.FloatTensor] = None,
         | 
| 560 | 
            +
                    prompt_embeds: Optional[torch.FloatTensor] = None,
         | 
| 561 | 
            +
                    negative_prompt_embeds: Optional[torch.FloatTensor] = None,
         | 
| 562 | 
            +
                    pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
         | 
| 563 | 
            +
                    negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
         | 
| 564 | 
            +
                    image_embeds: Optional[torch.FloatTensor] = None,
         | 
| 565 | 
            +
                    output_type: Optional[str] = "pil",
         | 
| 566 | 
            +
                    return_dict: bool = True,
         | 
| 567 | 
            +
                    cross_attention_kwargs: Optional[Dict[str, Any]] = None,
         | 
| 568 | 
            +
                    controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
         | 
| 569 | 
            +
                    guess_mode: bool = False,
         | 
| 570 | 
            +
                    control_guidance_start: Union[float, List[float]] = 0.0,
         | 
| 571 | 
            +
                    control_guidance_end: Union[float, List[float]] = 1.0,
         | 
| 572 | 
            +
                    original_size: Tuple[int, int] = None,
         | 
| 573 | 
            +
                    crops_coords_top_left: Tuple[int, int] = (0, 0),
         | 
| 574 | 
            +
                    target_size: Tuple[int, int] = None,
         | 
| 575 | 
            +
                    negative_original_size: Optional[Tuple[int, int]] = None,
         | 
| 576 | 
            +
                    negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
         | 
| 577 | 
            +
                    negative_target_size: Optional[Tuple[int, int]] = None,
         | 
| 578 | 
            +
                    aesthetic_score: float = 6.0,
         | 
| 579 | 
            +
                    negative_aesthetic_score: float = 2.5,
         | 
| 580 | 
            +
                    clip_skip: Optional[int] = None,
         | 
| 581 | 
            +
                    callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
         | 
| 582 | 
            +
                    callback_on_step_end_tensor_inputs: List[str] = ["latents"],
         | 
| 583 | 
            +
                    **kwargs,
         | 
| 584 | 
            +
                ):
         | 
| 585 | 
            +
                    r"""
         | 
| 586 | 
            +
                    The call function to the pipeline for generation.
         | 
| 587 | 
            +
             | 
| 588 | 
            +
                    Args:
         | 
| 589 | 
            +
                        prompt (`str` or `List[str]`, *optional*):
         | 
| 590 | 
            +
                            The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
         | 
| 591 | 
            +
                        prompt_2 (`str` or `List[str]`, *optional*):
         | 
| 592 | 
            +
                            The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
         | 
| 593 | 
            +
                            used in both text-encoders.
         | 
| 594 | 
            +
                        image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
         | 
| 595 | 
            +
                                `List[List[torch.FloatTensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
         | 
| 596 | 
            +
                            The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
         | 
| 597 | 
            +
                            specified as `torch.FloatTensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be
         | 
| 598 | 
            +
                            accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If height
         | 
| 599 | 
            +
                            and/or width are passed, `image` is resized accordingly. If multiple ControlNets are specified in
         | 
| 600 | 
            +
                            `init`, images must be passed as a list such that each element of the list can be correctly batched for
         | 
| 601 | 
            +
                            input to a single ControlNet.
         | 
| 602 | 
            +
                        height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
         | 
| 603 | 
            +
                            The height in pixels of the generated image. Anything below 512 pixels won't work well for
         | 
| 604 | 
            +
                            [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
         | 
| 605 | 
            +
                            and checkpoints that are not specifically fine-tuned on low resolutions.
         | 
| 606 | 
            +
                        width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
         | 
| 607 | 
            +
                            The width in pixels of the generated image. Anything below 512 pixels won't work well for
         | 
| 608 | 
            +
                            [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
         | 
| 609 | 
            +
                            and checkpoints that are not specifically fine-tuned on low resolutions.
         | 
| 610 | 
            +
                        num_inference_steps (`int`, *optional*, defaults to 50):
         | 
| 611 | 
            +
                            The number of denoising steps. More denoising steps usually lead to a higher quality image at the
         | 
| 612 | 
            +
                            expense of slower inference.
         | 
| 613 | 
            +
                        guidance_scale (`float`, *optional*, defaults to 5.0):
         | 
| 614 | 
            +
                            A higher guidance scale value encourages the model to generate images closely linked to the text
         | 
| 615 | 
            +
                            `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
         | 
| 616 | 
            +
                        negative_prompt (`str` or `List[str]`, *optional*):
         | 
| 617 | 
            +
                            The prompt or prompts to guide what to not include in image generation. If not defined, you need to
         | 
| 618 | 
            +
                            pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
         | 
| 619 | 
            +
                        negative_prompt_2 (`str` or `List[str]`, *optional*):
         | 
| 620 | 
            +
                            The prompt or prompts to guide what to not include in image generation. This is sent to `tokenizer_2`
         | 
| 621 | 
            +
                            and `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders.
         | 
| 622 | 
            +
                        num_images_per_prompt (`int`, *optional*, defaults to 1):
         | 
| 623 | 
            +
                            The number of images to generate per prompt.
         | 
| 624 | 
            +
                        eta (`float`, *optional*, defaults to 0.0):
         | 
| 625 | 
            +
                            Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
         | 
| 626 | 
            +
                            to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
         | 
| 627 | 
            +
                        generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
         | 
| 628 | 
            +
                            A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
         | 
| 629 | 
            +
                            generation deterministic.
         | 
| 630 | 
            +
                        latents (`torch.FloatTensor`, *optional*):
         | 
| 631 | 
            +
                            Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
         | 
| 632 | 
            +
                            generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
         | 
| 633 | 
            +
                            tensor is generated by sampling using the supplied random `generator`.
         | 
| 634 | 
            +
                        prompt_embeds (`torch.FloatTensor`, *optional*):
         | 
| 635 | 
            +
                            Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
         | 
| 636 | 
            +
                            provided, text embeddings are generated from the `prompt` input argument.
         | 
| 637 | 
            +
                        negative_prompt_embeds (`torch.FloatTensor`, *optional*):
         | 
| 638 | 
            +
                            Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
         | 
| 639 | 
            +
                            not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
         | 
| 640 | 
            +
                        pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
         | 
| 641 | 
            +
                            Pre-generated pooled text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
         | 
| 642 | 
            +
                            not provided, pooled text embeddings are generated from `prompt` input argument.
         | 
| 643 | 
            +
                        negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
         | 
| 644 | 
            +
                            Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs (prompt
         | 
| 645 | 
            +
                            weighting). If not provided, pooled `negative_prompt_embeds` are generated from `negative_prompt` input
         | 
| 646 | 
            +
                            argument.
         | 
| 647 | 
            +
                        image_embeds (`torch.FloatTensor`, *optional*):
         | 
| 648 | 
            +
                            Pre-generated image embeddings.
         | 
| 649 | 
            +
                        output_type (`str`, *optional*, defaults to `"pil"`):
         | 
| 650 | 
            +
                            The output format of the generated image. Choose between `PIL.Image` or `np.array`.
         | 
| 651 | 
            +
                        return_dict (`bool`, *optional*, defaults to `True`):
         | 
| 652 | 
            +
                            Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
         | 
| 653 | 
            +
                            plain tuple.
         | 
| 654 | 
            +
                        cross_attention_kwargs (`dict`, *optional*):
         | 
| 655 | 
            +
                            A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
         | 
| 656 | 
            +
                            [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
         | 
| 657 | 
            +
                        controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
         | 
| 658 | 
            +
                            The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
         | 
| 659 | 
            +
                            to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
         | 
| 660 | 
            +
                            the corresponding scale as a list.
         | 
| 661 | 
            +
                        guess_mode (`bool`, *optional*, defaults to `False`):
         | 
| 662 | 
            +
                            The ControlNet encoder tries to recognize the content of the input image even if you remove all
         | 
| 663 | 
            +
                            prompts. A `guidance_scale` value between 3.0 and 5.0 is recommended.
         | 
| 664 | 
            +
                        control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
         | 
| 665 | 
            +
                            The percentage of total steps at which the ControlNet starts applying.
         | 
| 666 | 
            +
                        control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
         | 
| 667 | 
            +
                            The percentage of total steps at which the ControlNet stops applying.
         | 
| 668 | 
            +
                        original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
         | 
| 669 | 
            +
                            If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
         | 
| 670 | 
            +
                            `original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
         | 
| 671 | 
            +
                            explained in section 2.2 of
         | 
| 672 | 
            +
                            [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
         | 
| 673 | 
            +
                        crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
         | 
| 674 | 
            +
                            `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
         | 
| 675 | 
            +
                            `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
         | 
| 676 | 
            +
                            `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
         | 
| 677 | 
            +
                            [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
         | 
| 678 | 
            +
                        target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
         | 
| 679 | 
            +
                            For most cases, `target_size` should be set to the desired height and width of the generated image. If
         | 
| 680 | 
            +
                            not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
         | 
| 681 | 
            +
                            section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
         | 
| 682 | 
            +
                        negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
         | 
| 683 | 
            +
                            To negatively condition the generation process based on a specific image resolution. Part of SDXL's
         | 
| 684 | 
            +
                            micro-conditioning as explained in section 2.2 of
         | 
| 685 | 
            +
                            [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
         | 
| 686 | 
            +
                            information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
         | 
| 687 | 
            +
                        negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
         | 
| 688 | 
            +
                            To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
         | 
| 689 | 
            +
                            micro-conditioning as explained in section 2.2 of
         | 
| 690 | 
            +
                            [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
         | 
| 691 | 
            +
                            information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
         | 
| 692 | 
            +
                        negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
         | 
| 693 | 
            +
                            To negatively condition the generation process based on a target image resolution. It should be as same
         | 
| 694 | 
            +
                            as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
         | 
| 695 | 
            +
                            [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
         | 
| 696 | 
            +
                            information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
         | 
| 697 | 
            +
                        clip_skip (`int`, *optional*):
         | 
| 698 | 
            +
                            Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
         | 
| 699 | 
            +
                            the output of the pre-final layer will be used for computing the prompt embeddings.
         | 
| 700 | 
            +
                        callback_on_step_end (`Callable`, *optional*):
         | 
| 701 | 
            +
                            A function that calls at the end of each denoising steps during the inference. The function is called
         | 
| 702 | 
            +
                            with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
         | 
| 703 | 
            +
                            callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
         | 
| 704 | 
            +
                            `callback_on_step_end_tensor_inputs`.
         | 
| 705 | 
            +
                        callback_on_step_end_tensor_inputs (`List`, *optional*):
         | 
| 706 | 
            +
                            The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
         | 
| 707 | 
            +
                            will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
         | 
| 708 | 
            +
                            `._callback_tensor_inputs` attribute of your pipeline class.
         | 
| 709 | 
            +
             | 
| 710 | 
            +
                    Examples:
         | 
| 711 | 
            +
             | 
| 712 | 
            +
                    Returns:
         | 
| 713 | 
            +
                        [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
         | 
| 714 | 
            +
                            If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
         | 
| 715 | 
            +
                            otherwise a `tuple` is returned containing the output images.
         | 
| 716 | 
            +
                    """
         | 
| 717 | 
            +
             | 
| 718 | 
            +
                    callback = kwargs.pop("callback", None)
         | 
| 719 | 
            +
                    callback_steps = kwargs.pop("callback_steps", None)
         | 
| 720 | 
            +
             | 
| 721 | 
            +
                    if callback is not None:
         | 
| 722 | 
            +
                        deprecate(
         | 
| 723 | 
            +
                            "callback",
         | 
| 724 | 
            +
                            "1.0.0",
         | 
| 725 | 
            +
                            "Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
         | 
| 726 | 
            +
                        )
         | 
| 727 | 
            +
                    if callback_steps is not None:
         | 
| 728 | 
            +
                        deprecate(
         | 
| 729 | 
            +
                            "callback_steps",
         | 
| 730 | 
            +
                            "1.0.0",
         | 
| 731 | 
            +
                            "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
         | 
| 732 | 
            +
                        )
         | 
| 733 | 
            +
             | 
| 734 | 
            +
                    controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
         | 
| 735 | 
            +
             | 
| 736 | 
            +
                    # align format for control guidance
         | 
| 737 | 
            +
                    if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
         | 
| 738 | 
            +
                        control_guidance_start = len(control_guidance_end) * [control_guidance_start]
         | 
| 739 | 
            +
                    elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
         | 
| 740 | 
            +
                        control_guidance_end = len(control_guidance_start) * [control_guidance_end]
         | 
| 741 | 
            +
                    elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
         | 
| 742 | 
            +
                        mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
         | 
| 743 | 
            +
                        control_guidance_start, control_guidance_end = (
         | 
| 744 | 
            +
                            mult * [control_guidance_start],
         | 
| 745 | 
            +
                            mult * [control_guidance_end],
         | 
| 746 | 
            +
                        )
         | 
| 747 | 
            +
             | 
| 748 | 
            +
                    # 1. Check inputs. Raise error if not correct
         | 
| 749 | 
            +
                    self.check_inputs(
         | 
| 750 | 
            +
                        prompt,
         | 
| 751 | 
            +
                        prompt_2,
         | 
| 752 | 
            +
                        control_image,
         | 
| 753 | 
            +
                        strength,
         | 
| 754 | 
            +
                        num_inference_steps,
         | 
| 755 | 
            +
                        callback_steps,
         | 
| 756 | 
            +
                        negative_prompt,
         | 
| 757 | 
            +
                        negative_prompt_2,
         | 
| 758 | 
            +
                        prompt_embeds,
         | 
| 759 | 
            +
                        negative_prompt_embeds,
         | 
| 760 | 
            +
                        pooled_prompt_embeds,
         | 
| 761 | 
            +
                        negative_pooled_prompt_embeds,
         | 
| 762 | 
            +
                        None,
         | 
| 763 | 
            +
                        None,
         | 
| 764 | 
            +
                        controlnet_conditioning_scale,
         | 
| 765 | 
            +
                        control_guidance_start,
         | 
| 766 | 
            +
                        control_guidance_end,
         | 
| 767 | 
            +
                        callback_on_step_end_tensor_inputs,
         | 
| 768 | 
            +
                    )
         | 
| 769 | 
            +
             | 
| 770 | 
            +
                    self._guidance_scale = guidance_scale
         | 
| 771 | 
            +
                    self._clip_skip = clip_skip
         | 
| 772 | 
            +
                    self._cross_attention_kwargs = cross_attention_kwargs
         | 
| 773 | 
            +
             | 
| 774 | 
            +
                    # 2. Define call parameters
         | 
| 775 | 
            +
                    if prompt is not None and isinstance(prompt, str):
         | 
| 776 | 
            +
                        batch_size = 1
         | 
| 777 | 
            +
                    elif prompt is not None and isinstance(prompt, list):
         | 
| 778 | 
            +
                        batch_size = len(prompt)
         | 
| 779 | 
            +
                    else:
         | 
| 780 | 
            +
                        batch_size = prompt_embeds.shape[0]
         | 
| 781 | 
            +
             | 
| 782 | 
            +
                    device = self._execution_device
         | 
| 783 | 
            +
             | 
| 784 | 
            +
                    if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
         | 
| 785 | 
            +
                        controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)
         | 
| 786 | 
            +
             | 
| 787 | 
            +
                    global_pool_conditions = (
         | 
| 788 | 
            +
                        controlnet.config.global_pool_conditions
         | 
| 789 | 
            +
                        if isinstance(controlnet, ControlNetModel)
         | 
| 790 | 
            +
                        else controlnet.nets[0].config.global_pool_conditions
         | 
| 791 | 
            +
                    )
         | 
| 792 | 
            +
                    guess_mode = guess_mode or global_pool_conditions
         | 
| 793 | 
            +
             | 
| 794 | 
            +
                    # 3.1 Encode input prompt
         | 
| 795 | 
            +
                    text_encoder_lora_scale = (
         | 
| 796 | 
            +
                        self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
         | 
| 797 | 
            +
                    )
         | 
| 798 | 
            +
                    (
         | 
| 799 | 
            +
                        prompt_embeds,
         | 
| 800 | 
            +
                        negative_prompt_embeds,
         | 
| 801 | 
            +
                        pooled_prompt_embeds,
         | 
| 802 | 
            +
                        negative_pooled_prompt_embeds,
         | 
| 803 | 
            +
                    ) = self.encode_prompt(
         | 
| 804 | 
            +
                        prompt,
         | 
| 805 | 
            +
                        prompt_2,
         | 
| 806 | 
            +
                        device,
         | 
| 807 | 
            +
                        num_images_per_prompt,
         | 
| 808 | 
            +
                        self.do_classifier_free_guidance,
         | 
| 809 | 
            +
                        negative_prompt,
         | 
| 810 | 
            +
                        negative_prompt_2,
         | 
| 811 | 
            +
                        prompt_embeds=prompt_embeds,
         | 
| 812 | 
            +
                        negative_prompt_embeds=negative_prompt_embeds,
         | 
| 813 | 
            +
                        pooled_prompt_embeds=pooled_prompt_embeds,
         | 
| 814 | 
            +
                        negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
         | 
| 815 | 
            +
                        lora_scale=text_encoder_lora_scale,
         | 
| 816 | 
            +
                        clip_skip=self.clip_skip,
         | 
| 817 | 
            +
                    )
         | 
| 818 | 
            +
             | 
| 819 | 
            +
                    # 3.2 Encode image prompt
         | 
| 820 | 
            +
                    prompt_image_emb = self._encode_prompt_image_emb(
         | 
| 821 | 
            +
                        image_embeds, device, self.unet.dtype, self.do_classifier_free_guidance
         | 
| 822 | 
            +
                    )
         | 
| 823 | 
            +
                    bs_embed, seq_len, _ = prompt_image_emb.shape
         | 
| 824 | 
            +
                    prompt_image_emb = prompt_image_emb.repeat(1, num_images_per_prompt, 1)
         | 
| 825 | 
            +
                    prompt_image_emb = prompt_image_emb.view(bs_embed * num_images_per_prompt, seq_len, -1)
         | 
| 826 | 
            +
             | 
| 827 | 
            +
                    # 4. Prepare image and controlnet_conditioning_image
         | 
| 828 | 
            +
                    image = self.image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)
         | 
| 829 | 
            +
             | 
| 830 | 
            +
                    if isinstance(controlnet, ControlNetModel):
         | 
| 831 | 
            +
                        control_image = self.prepare_control_image(
         | 
| 832 | 
            +
                            image=control_image,
         | 
| 833 | 
            +
                            width=width,
         | 
| 834 | 
            +
                            height=height,
         | 
| 835 | 
            +
                            batch_size=batch_size * num_images_per_prompt,
         | 
| 836 | 
            +
                            num_images_per_prompt=num_images_per_prompt,
         | 
| 837 | 
            +
                            device=device,
         | 
| 838 | 
            +
                            dtype=controlnet.dtype,
         | 
| 839 | 
            +
                            do_classifier_free_guidance=self.do_classifier_free_guidance,
         | 
| 840 | 
            +
                            guess_mode=guess_mode,
         | 
| 841 | 
            +
                        )
         | 
| 842 | 
            +
                        height, width = control_image.shape[-2:]
         | 
| 843 | 
            +
                    elif isinstance(controlnet, MultiControlNetModel):
         | 
| 844 | 
            +
                        control_images = []
         | 
| 845 | 
            +
             | 
| 846 | 
            +
                        for control_image_ in control_image:
         | 
| 847 | 
            +
                            control_image_ = self.prepare_control_image(
         | 
| 848 | 
            +
                                image=control_image_,
         | 
| 849 | 
            +
                                width=width,
         | 
| 850 | 
            +
                                height=height,
         | 
| 851 | 
            +
                                batch_size=batch_size * num_images_per_prompt,
         | 
| 852 | 
            +
                                num_images_per_prompt=num_images_per_prompt,
         | 
| 853 | 
            +
                                device=device,
         | 
| 854 | 
            +
                                dtype=controlnet.dtype,
         | 
| 855 | 
            +
                                do_classifier_free_guidance=self.do_classifier_free_guidance,
         | 
| 856 | 
            +
                                guess_mode=guess_mode,
         | 
| 857 | 
            +
                            )
         | 
| 858 | 
            +
             | 
| 859 | 
            +
                            control_images.append(control_image_)
         | 
| 860 | 
            +
             | 
| 861 | 
            +
                        control_image = control_images
         | 
| 862 | 
            +
                        height, width = control_image[0].shape[-2:]
         | 
| 863 | 
            +
                    else:
         | 
| 864 | 
            +
                        assert False
         | 
| 865 | 
            +
             | 
| 866 | 
            +
                    # 5. Prepare timesteps
         | 
| 867 | 
            +
                    self.scheduler.set_timesteps(num_inference_steps, device=device)
         | 
| 868 | 
            +
                    timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
         | 
| 869 | 
            +
                    latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
         | 
| 870 | 
            +
                    self._num_timesteps = len(timesteps)
         | 
| 871 | 
            +
             | 
| 872 | 
            +
                    # 6. Prepare latent variables
         | 
| 873 | 
            +
                    latents = self.prepare_latents(
         | 
| 874 | 
            +
                        image,
         | 
| 875 | 
            +
                        latent_timestep,
         | 
| 876 | 
            +
                        batch_size,
         | 
| 877 | 
            +
                        num_images_per_prompt,
         | 
| 878 | 
            +
                        prompt_embeds.dtype,
         | 
| 879 | 
            +
                        device,
         | 
| 880 | 
            +
                        generator,
         | 
| 881 | 
            +
                        True,
         | 
| 882 | 
            +
                    )
         | 
| 883 | 
            +
             | 
| 884 | 
            +
                    # # 6.5 Optionally get Guidance Scale Embedding
         | 
| 885 | 
            +
                    timestep_cond = None
         | 
| 886 | 
            +
                    if self.unet.config.time_cond_proj_dim is not None:
         | 
| 887 | 
            +
                        guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
         | 
| 888 | 
            +
                        timestep_cond = self.get_guidance_scale_embedding(
         | 
| 889 | 
            +
                            guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
         | 
| 890 | 
            +
                        ).to(device=device, dtype=latents.dtype)
         | 
| 891 | 
            +
             | 
| 892 | 
            +
                    # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
         | 
| 893 | 
            +
                    extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
         | 
| 894 | 
            +
             | 
| 895 | 
            +
                    # 7.1 Create tensor stating which controlnets to keep
         | 
| 896 | 
            +
                    controlnet_keep = []
         | 
| 897 | 
            +
                    for i in range(len(timesteps)):
         | 
| 898 | 
            +
                        keeps = [
         | 
| 899 | 
            +
                            1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
         | 
| 900 | 
            +
                            for s, e in zip(control_guidance_start, control_guidance_end)
         | 
| 901 | 
            +
                        ]
         | 
| 902 | 
            +
                        controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps)
         | 
| 903 | 
            +
             | 
| 904 | 
            +
                    # 7.2 Prepare added time ids & embeddings
         | 
| 905 | 
            +
                    if isinstance(control_image, list):
         | 
| 906 | 
            +
                        original_size = original_size or control_image[0].shape[-2:]
         | 
| 907 | 
            +
                    else:
         | 
| 908 | 
            +
                        original_size = original_size or control_image.shape[-2:]
         | 
| 909 | 
            +
                    target_size = target_size or (height, width)
         | 
| 910 | 
            +
             | 
| 911 | 
            +
                    if negative_original_size is None:
         | 
| 912 | 
            +
                        negative_original_size = original_size
         | 
| 913 | 
            +
                    if negative_target_size is None:
         | 
| 914 | 
            +
                        negative_target_size = target_size
         | 
| 915 | 
            +
                    add_text_embeds = pooled_prompt_embeds
         | 
| 916 | 
            +
             | 
| 917 | 
            +
                    if self.text_encoder_2 is None:
         | 
| 918 | 
            +
                        text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
         | 
| 919 | 
            +
                    else:
         | 
| 920 | 
            +
                        text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
         | 
| 921 | 
            +
             | 
| 922 | 
            +
                    add_time_ids, add_neg_time_ids = self._get_add_time_ids(
         | 
| 923 | 
            +
                        original_size,
         | 
| 924 | 
            +
                        crops_coords_top_left,
         | 
| 925 | 
            +
                        target_size,
         | 
| 926 | 
            +
                        aesthetic_score,
         | 
| 927 | 
            +
                        negative_aesthetic_score,
         | 
| 928 | 
            +
                        negative_original_size,
         | 
| 929 | 
            +
                        negative_crops_coords_top_left,
         | 
| 930 | 
            +
                        negative_target_size,
         | 
| 931 | 
            +
                        dtype=prompt_embeds.dtype,
         | 
| 932 | 
            +
                        text_encoder_projection_dim=text_encoder_projection_dim,
         | 
| 933 | 
            +
                    )
         | 
| 934 | 
            +
                    add_time_ids = add_time_ids.repeat(batch_size * num_images_per_prompt, 1)
         | 
| 935 | 
            +
             | 
| 936 | 
            +
                    if self.do_classifier_free_guidance:
         | 
| 937 | 
            +
                        prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
         | 
| 938 | 
            +
                        add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
         | 
| 939 | 
            +
                        add_neg_time_ids = add_neg_time_ids.repeat(batch_size * num_images_per_prompt, 1)
         | 
| 940 | 
            +
                        add_time_ids = torch.cat([add_neg_time_ids, add_time_ids], dim=0)
         | 
| 941 | 
            +
             | 
| 942 | 
            +
                    prompt_embeds = prompt_embeds.to(device)
         | 
| 943 | 
            +
                    add_text_embeds = add_text_embeds.to(device)
         | 
| 944 | 
            +
                    add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
         | 
| 945 | 
            +
                    encoder_hidden_states = torch.cat([prompt_embeds, prompt_image_emb], dim=1)
         | 
| 946 | 
            +
             | 
| 947 | 
            +
                    # 8. Denoising loop
         | 
| 948 | 
            +
                    num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
         | 
| 949 | 
            +
                    is_unet_compiled = is_compiled_module(self.unet)
         | 
| 950 | 
            +
                    is_controlnet_compiled = is_compiled_module(self.controlnet)
         | 
| 951 | 
            +
                    is_torch_higher_equal_2_1 = is_torch_version(">=", "2.1")
         | 
| 952 | 
            +
             | 
| 953 | 
            +
                    with self.progress_bar(total=num_inference_steps) as progress_bar:
         | 
| 954 | 
            +
                        for i, t in enumerate(timesteps):
         | 
| 955 | 
            +
                            # Relevant thread:
         | 
| 956 | 
            +
                            # https://dev-discuss.pytorch.org/t/cudagraphs-in-pytorch-2-0/1428
         | 
| 957 | 
            +
                            if (is_unet_compiled and is_controlnet_compiled) and is_torch_higher_equal_2_1:
         | 
| 958 | 
            +
                                torch._inductor.cudagraph_mark_step_begin()
         | 
| 959 | 
            +
                            # expand the latents if we are doing classifier free guidance
         | 
| 960 | 
            +
                            latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
         | 
| 961 | 
            +
                            latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
         | 
| 962 | 
            +
             | 
| 963 | 
            +
                            added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
         | 
| 964 | 
            +
             | 
| 965 | 
            +
                            # controlnet(s) inference
         | 
| 966 | 
            +
                            if guess_mode and self.do_classifier_free_guidance:
         | 
| 967 | 
            +
                                # Infer ControlNet only for the conditional batch.
         | 
| 968 | 
            +
                                control_model_input = latents
         | 
| 969 | 
            +
                                control_model_input = self.scheduler.scale_model_input(control_model_input, t)
         | 
| 970 | 
            +
                                controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
         | 
| 971 | 
            +
                                controlnet_added_cond_kwargs = {
         | 
| 972 | 
            +
                                    "text_embeds": add_text_embeds.chunk(2)[1],
         | 
| 973 | 
            +
                                    "time_ids": add_time_ids.chunk(2)[1],
         | 
| 974 | 
            +
                                }
         | 
| 975 | 
            +
                            else:
         | 
| 976 | 
            +
                                control_model_input = latent_model_input
         | 
| 977 | 
            +
                                controlnet_prompt_embeds = prompt_embeds
         | 
| 978 | 
            +
                                controlnet_added_cond_kwargs = added_cond_kwargs
         | 
| 979 | 
            +
             | 
| 980 | 
            +
                            if isinstance(controlnet_keep[i], list):
         | 
| 981 | 
            +
                                cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
         | 
| 982 | 
            +
                            else:
         | 
| 983 | 
            +
                                controlnet_cond_scale = controlnet_conditioning_scale
         | 
| 984 | 
            +
                                if isinstance(controlnet_cond_scale, list):
         | 
| 985 | 
            +
                                    controlnet_cond_scale = controlnet_cond_scale[0]
         | 
| 986 | 
            +
                                cond_scale = controlnet_cond_scale * controlnet_keep[i]
         | 
| 987 | 
            +
             | 
| 988 | 
            +
                            down_block_res_samples, mid_block_res_sample = self.controlnet(
         | 
| 989 | 
            +
                                control_model_input,
         | 
| 990 | 
            +
                                t,
         | 
| 991 | 
            +
                                encoder_hidden_states=prompt_image_emb,
         | 
| 992 | 
            +
                                controlnet_cond=control_image,
         | 
| 993 | 
            +
                                conditioning_scale=cond_scale,
         | 
| 994 | 
            +
                                guess_mode=guess_mode,
         | 
| 995 | 
            +
                                added_cond_kwargs=controlnet_added_cond_kwargs,
         | 
| 996 | 
            +
                                return_dict=False,
         | 
| 997 | 
            +
                            )
         | 
| 998 | 
            +
             | 
| 999 | 
            +
                            if guess_mode and self.do_classifier_free_guidance:
         | 
| 1000 | 
            +
                                # Infered ControlNet only for the conditional batch.
         | 
| 1001 | 
            +
                                # To apply the output of ControlNet to both the unconditional and conditional batches,
         | 
| 1002 | 
            +
                                # add 0 to the unconditional batch to keep it unchanged.
         | 
| 1003 | 
            +
                                down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
         | 
| 1004 | 
            +
                                mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])
         | 
| 1005 | 
            +
             | 
| 1006 | 
            +
                            # predict the noise residual
         | 
| 1007 | 
            +
                            noise_pred = self.unet(
         | 
| 1008 | 
            +
                                latent_model_input,
         | 
| 1009 | 
            +
                                t,
         | 
| 1010 | 
            +
                                encoder_hidden_states=encoder_hidden_states,
         | 
| 1011 | 
            +
                                timestep_cond=timestep_cond,
         | 
| 1012 | 
            +
                                cross_attention_kwargs=self.cross_attention_kwargs,
         | 
| 1013 | 
            +
                                down_block_additional_residuals=down_block_res_samples,
         | 
| 1014 | 
            +
                                mid_block_additional_residual=mid_block_res_sample,
         | 
| 1015 | 
            +
                                added_cond_kwargs=added_cond_kwargs,
         | 
| 1016 | 
            +
                                return_dict=False,
         | 
| 1017 | 
            +
                            )[0]
         | 
| 1018 | 
            +
             | 
| 1019 | 
            +
                            # perform guidance
         | 
| 1020 | 
            +
                            if self.do_classifier_free_guidance:
         | 
| 1021 | 
            +
                                noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
         | 
| 1022 | 
            +
                                noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
         | 
| 1023 | 
            +
             | 
| 1024 | 
            +
                            # compute the previous noisy sample x_t -> x_t-1
         | 
| 1025 | 
            +
                            latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
         | 
| 1026 | 
            +
             | 
| 1027 | 
            +
                            if callback_on_step_end is not None:
         | 
| 1028 | 
            +
                                callback_kwargs = {}
         | 
| 1029 | 
            +
                                for k in callback_on_step_end_tensor_inputs:
         | 
| 1030 | 
            +
                                    callback_kwargs[k] = locals()[k]
         | 
| 1031 | 
            +
                                callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
         | 
| 1032 | 
            +
             | 
| 1033 | 
            +
                                latents = callback_outputs.pop("latents", latents)
         | 
| 1034 | 
            +
                                prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
         | 
| 1035 | 
            +
                                negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
         | 
| 1036 | 
            +
             | 
| 1037 | 
            +
                            # call the callback, if provided
         | 
| 1038 | 
            +
                            if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
         | 
| 1039 | 
            +
                                progress_bar.update()
         | 
| 1040 | 
            +
                                if callback is not None and i % callback_steps == 0:
         | 
| 1041 | 
            +
                                    step_idx = i // getattr(self.scheduler, "order", 1)
         | 
| 1042 | 
            +
                                    callback(step_idx, t, latents)
         | 
| 1043 | 
            +
             | 
| 1044 | 
            +
                    if not output_type == "latent":
         | 
| 1045 | 
            +
                        # make sure the VAE is in float32 mode, as it overflows in float16
         | 
| 1046 | 
            +
                        needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
         | 
| 1047 | 
            +
                        if needs_upcasting:
         | 
| 1048 | 
            +
                            self.upcast_vae()
         | 
| 1049 | 
            +
                            latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
         | 
| 1050 | 
            +
             | 
| 1051 | 
            +
                        image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
         | 
| 1052 | 
            +
             | 
| 1053 | 
            +
                        # cast back to fp16 if needed
         | 
| 1054 | 
            +
                        if needs_upcasting:
         | 
| 1055 | 
            +
                            self.vae.to(dtype=torch.float16)
         | 
| 1056 | 
            +
                    else:
         | 
| 1057 | 
            +
                        image = latents
         | 
| 1058 | 
            +
             | 
| 1059 | 
            +
                    if not output_type == "latent":
         | 
| 1060 | 
            +
                        # apply watermark if available
         | 
| 1061 | 
            +
                        if self.watermark is not None:
         | 
| 1062 | 
            +
                            image = self.watermark.apply_watermark(image)
         | 
| 1063 | 
            +
             | 
| 1064 | 
            +
                        image = self.image_processor.postprocess(image, output_type=output_type)
         | 
| 1065 | 
            +
             | 
| 1066 | 
            +
                    # Offload all models
         | 
| 1067 | 
            +
                    self.maybe_free_model_hooks()
         | 
| 1068 | 
            +
             | 
| 1069 | 
            +
                    if not return_dict:
         | 
| 1070 | 
            +
                        return (image,)
         | 
| 1071 |  | 
| 1072 | 
            +
                    return StableDiffusionXLPipelineOutput(images=image)
         | 
 
			
