Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -27,6 +27,8 @@ from insightface.app import FaceAnalysis
|
|
| 27 |
from pipeline_stable_diffusion_xl_instantid_img2img import StableDiffusionXLInstantIDImg2ImgPipeline, draw_kps
|
| 28 |
from controlnet_aux import ZoeDetector
|
| 29 |
|
|
|
|
|
|
|
| 30 |
with open("sdxl_loras.json", "r") as file:
|
| 31 |
data = json.load(file)
|
| 32 |
sdxl_loras_raw = [
|
|
@@ -107,6 +109,9 @@ pipe = StableDiffusionXLInstantIDImg2ImgPipeline.from_pretrained("rubbrband/albe
|
|
| 107 |
vae=vae,
|
| 108 |
controlnet=[identitynet, zoedepthnet],
|
| 109 |
torch_dtype=torch.float16)
|
|
|
|
|
|
|
|
|
|
| 110 |
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, use_karras_sigmas=True)
|
| 111 |
pipe.load_ip_adapter_instantid(face_adapter)
|
| 112 |
pipe.set_ip_adapter_scale(0.8)
|
|
@@ -268,10 +273,14 @@ def run_lora(face_image, prompt, negative, lora_scale, selected_state, face_stre
|
|
| 268 |
pipe.unload_textual_inversion()
|
| 269 |
pipe.load_textual_inversion(state_dict_embedding["text_encoders_0"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer)
|
| 270 |
pipe.load_textual_inversion(state_dict_embedding["text_encoders_1"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder_2, tokenizer=pipe.tokenizer_2)
|
| 271 |
-
|
|
|
|
|
|
|
| 272 |
image = pipe(
|
| 273 |
-
|
| 274 |
-
|
|
|
|
|
|
|
| 275 |
width=1024,
|
| 276 |
height=1024,
|
| 277 |
image_embeds=face_emb,
|
|
|
|
| 27 |
from pipeline_stable_diffusion_xl_instantid_img2img import StableDiffusionXLInstantIDImg2ImgPipeline, draw_kps
|
| 28 |
from controlnet_aux import ZoeDetector
|
| 29 |
|
| 30 |
+
from compel import Compel, ReturnedEmbeddingsType
|
| 31 |
+
|
| 32 |
with open("sdxl_loras.json", "r") as file:
|
| 33 |
data = json.load(file)
|
| 34 |
sdxl_loras_raw = [
|
|
|
|
| 109 |
vae=vae,
|
| 110 |
controlnet=[identitynet, zoedepthnet],
|
| 111 |
torch_dtype=torch.float16)
|
| 112 |
+
|
| 113 |
+
compel = Compel(tokenizer=[pipe.tokenizer, pipeline.tokenizer_2] , text_encoder=[pipe.text_encoder, pipe.text_encoder_2], returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, requires_pooled=[False, True])
|
| 114 |
+
|
| 115 |
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, use_karras_sigmas=True)
|
| 116 |
pipe.load_ip_adapter_instantid(face_adapter)
|
| 117 |
pipe.set_ip_adapter_scale(0.8)
|
|
|
|
| 273 |
pipe.unload_textual_inversion()
|
| 274 |
pipe.load_textual_inversion(state_dict_embedding["text_encoders_0"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer)
|
| 275 |
pipe.load_textual_inversion(state_dict_embedding["text_encoders_1"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder_2, tokenizer=pipe.tokenizer_2)
|
| 276 |
+
|
| 277 |
+
conditioning, pooled = compel(prompt)
|
| 278 |
+
negative_conditioning, negative_pooled = compel(negative)
|
| 279 |
image = pipe(
|
| 280 |
+
prompt_embeds=conditioning,
|
| 281 |
+
pooled_prompt_embeds=pooled,
|
| 282 |
+
negative_prompt_embeds=negative_conditioning,
|
| 283 |
+
negative_pooled_prompt_embeds=negative_pooled,
|
| 284 |
width=1024,
|
| 285 |
height=1024,
|
| 286 |
image_embeds=face_emb,
|