Spaces:
Runtime error
Runtime error
| # Copyright 2023 (authors: Feiteng Li) | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import random | |
| from typing import Dict, Iterator, List, Tuple, Union | |
| import numpy as np | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| # from icefall.utils import make_pad_mask | |
| # from torchmetrics.classification import MulticlassAccuracy | |
| from modules.embedding import SinePositionalEmbedding, TokenEmbedding | |
| from modules.transformer import ( | |
| AdaptiveLayerNorm, | |
| LayerNorm, | |
| TransformerDecoderLayer, | |
| TransformerEncoder, | |
| TransformerEncoderLayer, | |
| ) | |
| from .macros import NUM_AUDIO_TOKENS, NUM_TEXT_TOKENS | |
| class Transpose(nn.Identity): | |
| """(N, T, D) -> (N, D, T)""" | |
| def forward(self, input: torch.Tensor) -> torch.Tensor: | |
| return input.transpose(1, 2) | |
| # NOTE: There are two ways to implement the model | |
| # 1) [VALL-F] standard TransformerDecoder, use x as memory | |
| # 2) [VALL-E] modified TransformerDecoder like GPT-x(e.g. causal TransformerEncoder), | |
| # use x as the prefix of decoder inputs | |
| class VALLF(nn.Module): | |
| """It implements https://arxiv.org/abs/2301.02111 | |
| "Neural Codec Language Models are Zero-Shot Text to Speech Synthesizers" | |
| """ | |
| def __init__( | |
| self, | |
| d_model: int, | |
| nhead: int, | |
| num_layers: int, | |
| norm_first: bool = True, | |
| add_prenet: bool = False, | |
| decoder_cls: Union[ | |
| nn.TransformerDecoder, nn.TransformerEncoder | |
| ] = nn.TransformerDecoder, | |
| decoder_layer_cls: Union[ | |
| TransformerDecoderLayer, TransformerEncoderLayer | |
| ] = TransformerDecoderLayer, | |
| prefix_mode: int = 0, | |
| share_embedding: bool = True, | |
| nar_scale_factor: float = 1.0, | |
| prepend_bos: bool = True, | |
| num_quantizers: int = 8, | |
| ): | |
| """ | |
| Args: | |
| d_model: | |
| The number of expected features in the input (required). | |
| nhead: | |
| The number of heads in the multiheadattention models (required). | |
| num_layers: | |
| The number of sub-decoder-layers in the decoder (required). | |
| """ | |
| super().__init__() | |
| nar_d_model = int(d_model * nar_scale_factor) | |
| self.ar_text_embedding = TokenEmbedding(d_model, NUM_TEXT_TOKENS) # W_x | |
| self.nar_text_embedding = TokenEmbedding(nar_d_model, NUM_TEXT_TOKENS) | |
| # ID NUM_AUDIO_TOKENS -> PAD | |
| # ID NUM_AUDIO_TOKENS + 1 -> BOS | |
| self.ar_audio_prepend_bos = prepend_bos | |
| self.ar_audio_embedding = TokenEmbedding( | |
| d_model, NUM_AUDIO_TOKENS + 1 + int(prepend_bos) | |
| ) | |
| # PreNet | |
| if add_prenet: | |
| self.ar_text_prenet = nn.Sequential( | |
| Transpose(), | |
| nn.Conv1d(d_model, d_model, kernel_size=5, padding="same"), | |
| nn.BatchNorm1d(d_model), | |
| nn.ReLU(), | |
| nn.Dropout(0.5), | |
| nn.Conv1d(d_model, d_model, kernel_size=5, padding="same"), | |
| nn.BatchNorm1d(d_model), | |
| nn.ReLU(), | |
| nn.Dropout(0.5), | |
| nn.Conv1d(d_model, d_model, kernel_size=5, padding="same"), | |
| nn.BatchNorm1d(d_model), | |
| nn.ReLU(), | |
| nn.Dropout(0.5), | |
| Transpose(), | |
| nn.Linear(d_model, d_model), | |
| ) | |
| self.ar_audio_prenet = nn.Sequential( | |
| nn.Linear(d_model, 256), | |
| nn.ReLU(), | |
| nn.Dropout(0.25), | |
| nn.Linear(256, 256), | |
| nn.ReLU(), | |
| nn.Dropout(0.25), | |
| nn.Linear(256, d_model), | |
| ) | |
| else: | |
| self.ar_text_prenet = nn.Identity() | |
| self.ar_audio_prenet = nn.Identity() | |
| self.ar_text_position = SinePositionalEmbedding( | |
| d_model, | |
| dropout=0.1, | |
| scale=False, | |
| alpha=True, | |
| ) | |
| self.ar_audio_position = SinePositionalEmbedding( | |
| d_model, | |
| dropout=0.1, | |
| scale=False, | |
| alpha=True, | |
| ) | |
| self.ar_decoder = decoder_cls( | |
| decoder_layer_cls( | |
| d_model, | |
| nhead, | |
| dim_feedforward=d_model * 4, | |
| dropout=0.1, | |
| batch_first=True, | |
| norm_first=norm_first, | |
| ), | |
| num_layers=num_layers, | |
| norm=LayerNorm(d_model) if norm_first else None, | |
| ) | |
| self.ar_predict_layer = nn.Linear( | |
| d_model, NUM_AUDIO_TOKENS + 1, bias=False | |
| ) | |
| self.rng = random.Random(0) | |
| self.num_heads = nhead | |
| self.prefix_mode = prefix_mode | |
| self.num_quantizers = num_quantizers | |
| assert num_quantizers >= 1 | |
| if num_quantizers > 1: | |
| self.nar_audio_embeddings = nn.ModuleList( | |
| [TokenEmbedding(nar_d_model, NUM_AUDIO_TOKENS + 1)] | |
| + [ | |
| TokenEmbedding(nar_d_model, NUM_AUDIO_TOKENS) | |
| for i in range(num_quantizers - 1) | |
| ] | |
| ) # W_a | |
| # PreNet | |
| if add_prenet: | |
| self.nar_text_prenet = nn.Sequential( | |
| Transpose(), | |
| nn.Conv1d( | |
| nar_d_model, nar_d_model, kernel_size=5, padding="same" | |
| ), | |
| nn.BatchNorm1d(nar_d_model), | |
| nn.ReLU(), | |
| nn.Dropout(0.5), | |
| nn.Conv1d( | |
| nar_d_model, nar_d_model, kernel_size=5, padding="same" | |
| ), | |
| nn.BatchNorm1d(nar_d_model), | |
| nn.ReLU(), | |
| nn.Dropout(0.5), | |
| nn.Conv1d( | |
| nar_d_model, nar_d_model, kernel_size=5, padding="same" | |
| ), | |
| nn.BatchNorm1d(nar_d_model), | |
| nn.ReLU(), | |
| nn.Dropout(0.5), | |
| Transpose(), | |
| nn.Linear(nar_d_model, nar_d_model), | |
| ) | |
| self.nar_audio_prenet = nn.Sequential( | |
| nn.Linear(nar_d_model, 256), | |
| nn.ReLU(), | |
| nn.Dropout(0.25), | |
| nn.Linear(256, 256), | |
| nn.ReLU(), | |
| nn.Dropout(0.25), | |
| nn.Linear(256, nar_d_model), | |
| ) | |
| else: | |
| self.nar_text_prenet = nn.Identity() | |
| self.nar_audio_prenet = nn.Identity() | |
| self.nar_text_position = SinePositionalEmbedding( | |
| nar_d_model, | |
| dropout=0.0, | |
| scale=False, | |
| alpha=False, | |
| ) | |
| self.nar_audio_position = SinePositionalEmbedding( | |
| nar_d_model, | |
| dropout=0.1, | |
| scale=False, | |
| alpha=False, | |
| ) | |
| self.nar_decoder = decoder_cls( | |
| decoder_layer_cls( | |
| nar_d_model, | |
| int(nhead * nar_scale_factor), | |
| dim_feedforward=nar_d_model * 4, | |
| dropout=0.1, | |
| batch_first=True, | |
| norm_first=norm_first, | |
| adaptive_layer_norm=True, | |
| ), | |
| num_layers=int(num_layers * nar_scale_factor), | |
| norm=AdaptiveLayerNorm( | |
| nar_d_model, norm=nn.LayerNorm(nar_d_model) | |
| ) | |
| if norm_first | |
| else None, | |
| ) | |
| self.nar_predict_layers = nn.ModuleList( | |
| [ | |
| nn.Linear(nar_d_model, NUM_AUDIO_TOKENS, bias=False) | |
| for i in range(num_quantizers - 1) | |
| ] | |
| ) | |
| self.nar_stage_embeddings = nn.ModuleList( | |
| [ | |
| TokenEmbedding(nar_d_model, 1) | |
| for i in range(num_quantizers - 1) | |
| ] | |
| ) | |
| if share_embedding: | |
| # We share the parameters of the output projection layer with the parameters of the acoustic embedding Wa | |
| # NOTE(Feiteng): In the experiment, this undermines accuracy | |
| # self.ar_predict_layer.weight = self.ar_audio_embedding.weight | |
| # We also share the parameters of the acoustic embedding layer and the output prediction layer, | |
| # which means the weights of the j-th prediction layer are the same as the (j + 1)-th acoustic embedding layer. | |
| for j in range(0, num_quantizers - 2): | |
| self.nar_predict_layers[ | |
| j | |
| ].weight = self.nar_audio_embeddings[j + 2].weight | |
| def stage_parameters(self, stage: int = 1) -> Iterator[nn.Parameter]: | |
| assert stage > 0 | |
| if stage == 1: | |
| for name, param in self.named_parameters(): | |
| if name.startswith("ar_"): | |
| print(f" AR parameter: {name}") | |
| yield param | |
| if stage == 2: | |
| for name, param in self.named_parameters(): | |
| if name.startswith("nar_"): | |
| print(f"NAR parameter: {name}") | |
| yield param | |
| def stage_named_parameters( | |
| self, stage: int = 1 | |
| ) -> Iterator[Tuple[str, nn.Parameter]]: | |
| assert stage > 0 | |
| if stage == 1: | |
| for pair in self.named_parameters(): | |
| if pair[0].startswith("ar_"): | |
| yield pair | |
| if stage == 2: | |
| for pair in self.named_parameters(): | |
| if pair[0].startswith("nar_"): | |
| yield pair | |
| def pad_y_eos(self, y, y_mask_int, eos_id): | |
| targets = F.pad(y, (0, 1), value=0) + eos_id * F.pad( | |
| y_mask_int, (0, 1), value=1 | |
| ) | |
| # inputs, targets | |
| if self.ar_audio_prepend_bos: | |
| return ( | |
| F.pad(targets[:, :-1], (1, 0), value=NUM_AUDIO_TOKENS + 1), | |
| targets, | |
| ) | |
| return targets[:, :-1], targets[:, 1:] | |
| def _prepare_prompts(self, y, y_lens, codes, nar_stage, y_prompts_codes, prefix_mode): | |
| # 5.1 For the NAR acoustic prompt tokens, we select a random segment waveform of 3 seconds | |
| # from the same utterance. | |
| # We implement this differently. | |
| if prefix_mode == 0: | |
| # no prefix | |
| prefix_len = 0 | |
| y_emb = self.nar_audio_embeddings[0](y) | |
| for j in range(1, nar_stage): | |
| # Formula (4) (5) | |
| y_emb = y_emb + self.nar_audio_embeddings[j](codes[..., j]) | |
| elif prefix_mode == 1: | |
| # prefix at begining | |
| int_low = (0.25 * y_lens.min()).type(torch.int64).item() | |
| prefix_len = torch.randint(0, int_low * 2, size=()).item() | |
| prefix_len = min(prefix_len, 225) # 24000/320 * 3s = 225 frames | |
| y_prompts = self.nar_audio_embeddings[0](y[:, :prefix_len]) | |
| y_emb = self.nar_audio_embeddings[0](y[:, prefix_len:]) | |
| for j in range(1, self.num_quantizers): | |
| y_prompts += self.nar_audio_embeddings[j]( | |
| codes[:, :prefix_len, j] | |
| ) | |
| if j < nar_stage: | |
| y_emb += self.nar_audio_embeddings[j]( | |
| codes[:, prefix_len:, j] | |
| ) | |
| y_emb = torch.concat([y_prompts, y_emb], axis=1) | |
| elif prefix_mode in [2, 4]: | |
| if prefix_mode == 2: | |
| # random prefix | |
| prefix_len = min(225, int(0.25 * y_lens.min().item())) | |
| y_prompts_codes = [] | |
| for b in range(codes.shape[0]): | |
| start = self.rng.randint(0, y_lens[b].item() - prefix_len) | |
| y_prompts_codes.append( | |
| torch.clone(codes[b, start : start + prefix_len]) | |
| ) | |
| codes[ | |
| b, start : start + prefix_len, nar_stage | |
| ] = NUM_AUDIO_TOKENS | |
| y_prompts_codes = torch.stack(y_prompts_codes, dim=0) | |
| else: | |
| prefix_len = y_prompts_codes.shape[1] | |
| y_prompts = self.nar_audio_embeddings[0](y_prompts_codes[..., 0]) | |
| y_emb = self.nar_audio_embeddings[0](y) | |
| for j in range(1, self.num_quantizers): | |
| y_prompts += self.nar_audio_embeddings[j]( | |
| y_prompts_codes[..., j] | |
| ) | |
| if j < nar_stage: | |
| y_emb += self.nar_audio_embeddings[j](codes[..., j]) | |
| y_emb = torch.concat([y_prompts, y_emb], axis=1) | |
| else: | |
| raise ValueError | |
| return y_emb, prefix_len | |
| def forward( | |
| self, | |
| x: torch.Tensor, | |
| x_lens: torch.Tensor, | |
| y: Union[torch.Tensor], | |
| y_lens: Union[torch.Tensor], | |
| reduction: str = "sum", | |
| train_stage: int = 0, | |
| **kwargs, | |
| ) -> Tuple[torch.Tensor, Union[torch.Tensor, None]]: | |
| raise NotImplementedError | |
| def inference( | |
| self, | |
| x: torch.Tensor, | |
| x_lens: torch.Tensor, | |
| y: torch.Tensor, | |
| enroll_x_lens: Union[torch.Tensor, None] = None, | |
| top_k: int = -100, | |
| temperature: float = 1.0, | |
| ) -> torch.Tensor: | |
| raise NotImplementedError | |
| def visualize( | |
| self, | |
| predicts: Tuple[torch.Tensor], | |
| batch: Dict[str, Union[List, torch.Tensor]], | |
| output_dir: str, | |
| limit: int = 4, | |
| ) -> None: | |
| raise NotImplementedError | |
| class VALLE(VALLF): | |
| """It implements https://arxiv.org/abs/2301.02111 | |
| "Neural Codec Language Models are Zero-Shot Text to Speech Synthesizers" | |
| """ | |
| def __init__( | |
| self, | |
| d_model: int, | |
| nhead: int, | |
| num_layers: int, | |
| norm_first: bool = True, | |
| add_prenet: bool = False, | |
| prefix_mode: int = 0, | |
| share_embedding: bool = True, | |
| nar_scale_factor: float = 1.0, | |
| **kwargs, | |
| ): | |
| """ | |
| Args: | |
| d_model: | |
| The number of expected features in the input (required). | |
| nhead: | |
| The number of heads in the multiheadattention models (required). | |
| num_layers: | |
| The number of sub-decoder-layers in the decoder (required). | |
| """ | |
| super(VALLE, self).__init__( | |
| d_model, | |
| nhead, | |
| num_layers, | |
| norm_first=norm_first, | |
| add_prenet=add_prenet, | |
| decoder_cls=TransformerEncoder, | |
| decoder_layer_cls=TransformerEncoderLayer, | |
| prefix_mode=prefix_mode, | |
| share_embedding=share_embedding, | |
| nar_scale_factor=nar_scale_factor, | |
| **kwargs, | |
| ) | |
| self.language_ID = { | |
| 'en': 0, | |
| 'zh': 1, | |
| 'ja': 2, | |
| } | |
| self.ar_language_embedding = TokenEmbedding(d_model, len(self.language_ID)) | |
| self.nar_language_embedding = TokenEmbedding(d_model, len(self.language_ID)) | |
| def forward( | |
| self, | |
| x: torch.Tensor, | |
| x_lens: torch.Tensor, | |
| y: Union[torch.Tensor], | |
| y_lens: Union[torch.Tensor], | |
| reduction: str = "sum", | |
| train_stage: int = 0, | |
| **kwargs, | |
| ): | |
| raise NotImplementedError | |
| def inference( | |
| self, | |
| x: torch.Tensor, | |
| x_lens: torch.Tensor, | |
| y: torch.Tensor, | |
| enroll_x_lens: torch.Tensor, | |
| top_k: int = -100, | |
| temperature: float = 1.0, | |
| prompt_language: str = None, | |
| text_language: str = None, | |
| ) -> torch.Tensor: | |
| """ | |
| Args: | |
| x: | |
| A 2-D tensor of shape (1, S). | |
| x_lens: | |
| A 1-D tensor of shape (1,). It contains the number of tokens in `x` | |
| before padding. | |
| y: | |
| A 3-D tensor of shape (1, T, 8). | |
| top_k: (`optional`) int | |
| The number of highest probability tokens to keep for top-k-filtering. Default to -100. | |
| temperature: (`optional`) float | |
| The value used to module the next token probabilities. Must be strictly positive. Default to 1.0. | |
| Returns: | |
| Return the predicted audio code matrix. | |
| """ | |
| assert x.ndim == 2, x.shape | |
| assert x_lens.ndim == 1, x_lens.shape | |
| assert y.ndim == 3, y.shape | |
| assert y.shape[0] == 1, y.shape | |
| assert torch.all(x_lens > 0) | |
| # NOTE: x has been padded in TextTokenCollater | |
| text = x | |
| x = self.ar_text_embedding(text) | |
| # Add language embedding | |
| prompt_language_id = torch.LongTensor(np.array([self.language_ID[prompt_language]])).to(x.device) | |
| text_language_id = torch.LongTensor(np.array([self.language_ID[text_language]])).to(x.device) | |
| x[:, :enroll_x_lens, :] += self.ar_language_embedding(prompt_language_id) | |
| x[:, enroll_x_lens:, :] += self.ar_language_embedding(text_language_id) | |
| x = self.ar_text_prenet(x) | |
| x = self.ar_text_position(x) | |
| text_len = x_lens.max() | |
| prompts = y | |
| prefix_len = y.shape[1] | |
| # AR Decoder | |
| # TODO: Managing decoder steps avoid repetitive computation | |
| y = prompts[..., 0] | |
| if self.ar_audio_prepend_bos: | |
| y = F.pad(y, (1, 0), value=NUM_AUDIO_TOKENS + 1) | |
| x_len = x_lens.max() | |
| x_attn_mask = torch.zeros((x_len, x_len), dtype=torch.bool) | |
| kv_cache = None | |
| use_kv_caching = True | |
| while True: | |
| y_emb = self.ar_audio_embedding(y) | |
| y_emb = self.ar_audio_prenet(y_emb) | |
| y_pos = self.ar_audio_position(y_emb) | |
| xy_pos = torch.concat([x, y_pos], dim=1) | |
| y_len = y.shape[1] | |
| x_attn_mask_pad = F.pad( | |
| x_attn_mask, | |
| (0, y_len), | |
| value=True, | |
| ) | |
| y_attn_mask = F.pad( | |
| torch.triu( | |
| torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1 | |
| ), | |
| (x_len, 0), | |
| value=False, | |
| ) | |
| xy_attn_mask = torch.concat( | |
| [x_attn_mask_pad, y_attn_mask], dim=0 | |
| ).to(y.device) | |
| if use_kv_caching and kv_cache is not None: | |
| xy_pos = xy_pos[:, [-1]] | |
| else: | |
| pass | |
| xy_dec, kv_cache = self.ar_decoder.infer( | |
| xy_pos, | |
| mask=xy_attn_mask, | |
| past_kv=kv_cache, | |
| use_cache=use_kv_caching, | |
| ) | |
| # xy_dec, _ = self.ar_decoder( | |
| # (xy_pos, None), | |
| # mask=xy_attn_mask, | |
| # ) | |
| logits = self.ar_predict_layer(xy_dec[:, -1]) | |
| samples = topk_sampling( | |
| logits, top_k=top_k, top_p=1, temperature=temperature | |
| ) | |
| if ( | |
| torch.argmax(logits, dim=-1)[0] == NUM_AUDIO_TOKENS | |
| or samples[0, 0] == NUM_AUDIO_TOKENS | |
| or (y.shape[1] - prompts.shape[1]) > x_lens.max() * 16 | |
| ): | |
| if prompts.shape[1] == y.shape[1]: | |
| raise SyntaxError( | |
| "well trained model shouldn't reach here." | |
| ) | |
| print(f"VALL-E EOS [{prompts.shape[1]} -> {y.shape[1]}]") | |
| break | |
| y = torch.concat([y, samples], dim=1) | |
| codes = [y[:, prefix_len + int(self.ar_audio_prepend_bos) :]] | |
| if self.num_quantizers == 1: | |
| return torch.stack(codes, dim=-1) | |
| # Non-AR Decoders | |
| y_emb = self.nar_audio_embeddings[0]( | |
| y[:, int(self.ar_audio_prepend_bos) :] | |
| ) | |
| if self.prefix_mode in [2, 4]: # Exclude enrolled_phonemes | |
| enrolled_len = enroll_x_lens.max().item() | |
| # SOS + Synthesis Text + EOS | |
| text = torch.concat( | |
| [ | |
| text[:, :1], | |
| text[:, enrolled_len - 1 :], | |
| ], | |
| dim=1, | |
| ) | |
| text_len = text_len - (enrolled_len - 2) | |
| assert text.shape[0] == 1 | |
| x = self.nar_text_embedding(text) | |
| # Add language embedding | |
| prompt_language_id = torch.LongTensor(np.array([self.language_ID[prompt_language]])).to(x.device) | |
| text_language_id = torch.LongTensor(np.array([self.language_ID[text_language]])).to(x.device) | |
| x[:, :enroll_x_lens, :] += self.nar_language_embedding(prompt_language_id) | |
| x[:, enroll_x_lens:, :] += self.nar_language_embedding(text_language_id) | |
| x = self.nar_text_prenet(x) | |
| x = self.nar_text_position(x) | |
| if self.prefix_mode == 0: | |
| for i, (predict_layer, embedding_layer) in enumerate( | |
| zip( | |
| self.nar_predict_layers, | |
| self.nar_audio_embeddings[1:], | |
| ) | |
| ): | |
| y_pos = self.nar_audio_prenet(y_emb) | |
| y_pos = self.nar_audio_position(y_pos) | |
| xy_pos = torch.concat([x, y_pos], dim=1) | |
| xy_dec, _ = self.nar_decoder( | |
| (xy_pos, self.nar_stage_embeddings[i].weight) | |
| ) | |
| logits = predict_layer(xy_dec[:, text_len + prefix_len :]) | |
| samples = torch.argmax(logits, dim=-1) | |
| codes.append(samples) | |
| if i < self.num_quantizers - 2: | |
| y_emb[:, :prefix_len] += embedding_layer( | |
| prompts[..., i + 1] | |
| ) | |
| y_emb[:, prefix_len:] += embedding_layer(samples) | |
| else: | |
| for j in range(1, self.num_quantizers): | |
| y_emb[:, :prefix_len] += self.nar_audio_embeddings[j]( | |
| prompts[..., j] | |
| ) | |
| for i, (predict_layer, embedding_layer) in enumerate( | |
| zip( | |
| self.nar_predict_layers, | |
| self.nar_audio_embeddings[1:], | |
| ) | |
| ): | |
| y_pos = self.nar_audio_prenet(y_emb) | |
| y_pos = self.nar_audio_position(y_pos) | |
| xy_pos = torch.concat([x, y_pos], dim=1) | |
| xy_dec, _ = self.nar_decoder( | |
| (xy_pos, self.nar_stage_embeddings[i].weight) | |
| ) | |
| logits = predict_layer(xy_dec[:, text_len + prefix_len :]) | |
| samples = torch.argmax(logits, dim=-1) | |
| codes.append(samples) | |
| if i < self.num_quantizers - 2: | |
| y_emb[:, prefix_len:] += embedding_layer(samples) | |
| assert len(codes) == self.num_quantizers | |
| return torch.stack(codes, dim=-1) | |
| def continual( | |
| self, | |
| x: torch.Tensor, | |
| x_lens: torch.Tensor, | |
| y: torch.Tensor, | |
| ) -> torch.Tensor: | |
| """ | |
| Args: | |
| x: | |
| A 2-D tensor of shape (1, S). | |
| x_lens: | |
| A 1-D tensor of shape (1,). It contains the number of tokens in `x` | |
| before padding. | |
| y: | |
| A 3-D tensor of shape (1, T, 8). | |
| Returns: | |
| Return the predicted audio code matrix. | |
| """ | |
| assert x.ndim == 2, x.shape | |
| assert x_lens.ndim == 1, x_lens.shape | |
| assert y.ndim == 3, y.shape | |
| assert y.shape[0] == 1, y.shape | |
| assert torch.all(x_lens > 0) | |
| assert self.num_quantizers == 8 | |
| # NOTE: x has been padded in TextTokenCollater | |
| text = x | |
| x = self.ar_text_embedding(text) | |
| x = self.ar_text_prenet(x) | |
| x = self.ar_text_position(x) | |
| text_len = x_lens.max() | |
| prefix_len = min(int(y.shape[1] * 0.5), 3 * 75) | |
| # AR Decoder | |
| prompts = y[:, :prefix_len] | |
| codes = [y[:, prefix_len:, 0]] | |
| # Non-AR Decoders | |
| x = self.nar_text_embedding(text) | |
| x = self.nar_text_prenet(x) | |
| x = self.nar_text_position(x) | |
| y_emb = self.nar_audio_embeddings[0](y[..., 0]) | |
| if self.prefix_mode == 0: | |
| for i, (predict_layer, embedding_layer) in enumerate( | |
| zip( | |
| self.nar_predict_layers, | |
| self.nar_audio_embeddings[1:], | |
| ) | |
| ): | |
| y_pos = self.nar_audio_position(y_emb) | |
| y_pos = self.nar_audio_prenet(y_pos) | |
| xy_pos = torch.concat([x, y_pos], dim=1) | |
| xy_dec, _ = self.nar_decoder( | |
| (xy_pos, self.nar_stage_embeddings[i].weight) | |
| ) | |
| logits = predict_layer(xy_dec[:, text_len + prefix_len :]) | |
| samples = torch.argmax(logits, dim=-1) | |
| codes.append(samples) | |
| if i < 6: | |
| y_emb[:, :prefix_len] += embedding_layer( | |
| prompts[..., i + 1] | |
| ) | |
| y_emb[:, prefix_len:] += embedding_layer(samples) | |
| else: | |
| for j in range(1, 8): | |
| y_emb[:, :prefix_len] += self.nar_audio_embeddings[j]( | |
| prompts[..., j] | |
| ) | |
| for i, (predict_layer, embedding_layer) in enumerate( | |
| zip( | |
| self.nar_predict_layers, | |
| self.nar_audio_embeddings[1:], | |
| ) | |
| ): | |
| y_pos = self.nar_audio_prenet(y_emb) | |
| y_pos = self.nar_audio_position(y_pos) | |
| xy_pos = torch.concat([x, y_pos], dim=1) | |
| xy_dec, _ = self.nar_decoder( | |
| (xy_pos, self.nar_stage_embeddings[i].weight) | |
| ) | |
| logits = predict_layer(xy_dec[:, text_len + prefix_len :]) | |
| samples = torch.argmax(logits, dim=-1) | |
| codes.append(samples) | |
| if i < 6: | |
| y_emb[:, prefix_len:] += embedding_layer(samples) | |
| assert len(codes) == 8 | |
| return torch.stack(codes, dim=-1) | |
| # https://github.com/microsoft/unilm/blob/master/xtune/src/transformers/modeling_utils.py | |
| def top_k_top_p_filtering( | |
| logits, top_k=0, top_p=1.0, filter_value=-float("Inf"), min_tokens_to_keep=1 | |
| ): | |
| """Filter a distribution of logits using top-k and/or nucleus (top-p) filtering | |
| Args: | |
| logits: logits distribution shape (batch size, vocabulary size) | |
| if top_k > 0: keep only top k tokens with highest probability (top-k filtering). | |
| if top_p < 1.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering). | |
| Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751) | |
| Make sure we keep at least min_tokens_to_keep per batch example in the output | |
| From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317 | |
| """ | |
| if top_k > 0: | |
| top_k = min( | |
| max(top_k, min_tokens_to_keep), logits.size(-1) | |
| ) # Safety check | |
| # Remove all tokens with a probability less than the last token of the top-k | |
| indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None] | |
| logits[indices_to_remove] = filter_value | |
| if top_p < 1.0: | |
| sorted_logits, sorted_indices = torch.sort(logits, descending=True) | |
| cumulative_probs = torch.cumsum( | |
| F.softmax(sorted_logits, dim=-1), dim=-1 | |
| ) | |
| # Remove tokens with cumulative probability above the threshold (token with 0 are kept) | |
| sorted_indices_to_remove = cumulative_probs > top_p | |
| if min_tokens_to_keep > 1: | |
| # Keep at least min_tokens_to_keep (set to min_tokens_to_keep-1 because we add the first one below) | |
| sorted_indices_to_remove[..., :min_tokens_to_keep] = 0 | |
| # Shift the indices to the right to keep also the first token above the threshold | |
| sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[ | |
| ..., :-1 | |
| ].clone() | |
| sorted_indices_to_remove[..., 0] = 0 | |
| # scatter sorted tensors to original indexing | |
| indices_to_remove = sorted_indices_to_remove.scatter( | |
| 1, sorted_indices, sorted_indices_to_remove | |
| ) | |
| logits[indices_to_remove] = filter_value | |
| return logits | |
| def topk_sampling(logits, top_k=10, top_p=1.0, temperature=1.0): | |
| # temperature: (`optional`) float | |
| # The value used to module the next token probabilities. Must be strictly positive. Default to 1.0. | |
| # top_k: (`optional`) int | |
| # The number of highest probability vocabulary tokens to keep for top-k-filtering. Between 1 and infinity. Default to 50. | |
| # top_p: (`optional`) float | |
| # The cumulative probability of parameter highest probability vocabulary tokens to keep for nucleus sampling. Must be between 0 and 1. Default to 1. | |
| # Temperature (higher temperature => more likely to sample low probability tokens) | |
| if temperature != 1.0: | |
| logits = logits / temperature | |
| # Top-p/top-k filtering | |
| logits = top_k_top_p_filtering(logits, top_k=top_k, top_p=top_p) | |
| # Sample | |
| token = torch.multinomial(F.softmax(logits, dim=-1), num_samples=1) | |
| return token | |