Update ONNXVITS_infer.py
Browse files- ONNXVITS_infer.py +81 -130
ONNXVITS_infer.py
CHANGED
|
@@ -13,17 +13,18 @@ from torch.nn import Conv1d, ConvTranspose1d, Conv2d
|
|
| 13 |
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
| 14 |
from commons import init_weights, get_padding
|
| 15 |
|
|
|
|
| 16 |
class TextEncoder(nn.Module):
|
| 17 |
def __init__(self,
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
super().__init__()
|
| 28 |
self.n_vocab = n_vocab
|
| 29 |
self.out_channels = out_channels
|
|
@@ -34,12 +35,12 @@ class TextEncoder(nn.Module):
|
|
| 34 |
self.kernel_size = kernel_size
|
| 35 |
self.p_dropout = p_dropout
|
| 36 |
self.emotion_embedding = emotion_embedding
|
| 37 |
-
|
| 38 |
-
if self.n_vocab!=0:
|
| 39 |
self.emb = nn.Embedding(n_vocab, hidden_channels)
|
| 40 |
if emotion_embedding:
|
| 41 |
self.emo_proj = nn.Linear(1024, hidden_channels)
|
| 42 |
-
nn.init.normal_(self.emb.weight, 0.0, hidden_channels
|
| 43 |
|
| 44 |
self.encoder = attentions.Encoder(
|
| 45 |
hidden_channels,
|
|
@@ -48,15 +49,15 @@ class TextEncoder(nn.Module):
|
|
| 48 |
n_layers,
|
| 49 |
kernel_size,
|
| 50 |
p_dropout)
|
| 51 |
-
self.proj= nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
| 52 |
|
| 53 |
def forward(self, x, x_lengths, emotion_embedding=None):
|
| 54 |
-
if self.n_vocab!=0:
|
| 55 |
-
x = self.emb(x) * math.sqrt(self.hidden_channels)
|
| 56 |
if emotion_embedding is not None:
|
| 57 |
print("emotion added")
|
| 58 |
x = x + self.emo_proj(emotion_embedding.unsqueeze(1))
|
| 59 |
-
x = torch.transpose(x, 1, -1)
|
| 60 |
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
|
| 61 |
|
| 62 |
x = self.encoder(x * x_mask, x_mask)
|
|
@@ -65,15 +66,16 @@ class TextEncoder(nn.Module):
|
|
| 65 |
m, logs = torch.split(stats, self.out_channels, dim=1)
|
| 66 |
return x, m, logs, x_mask
|
| 67 |
|
|
|
|
| 68 |
class PosteriorEncoder(nn.Module):
|
| 69 |
def __init__(self,
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
super().__init__()
|
| 78 |
self.in_channels = in_channels
|
| 79 |
self.out_channels = out_channels
|
|
@@ -96,35 +98,36 @@ class PosteriorEncoder(nn.Module):
|
|
| 96 |
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
|
| 97 |
return z, m, logs, x_mask
|
| 98 |
|
|
|
|
| 99 |
class SynthesizerTrn(models.SynthesizerTrn):
|
| 100 |
"""
|
| 101 |
Synthesizer for Training
|
| 102 |
"""
|
| 103 |
|
| 104 |
-
def __init__(self,
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
super().__init__(
|
| 128 |
n_vocab,
|
| 129 |
spec_channels,
|
| 130 |
segment_size,
|
|
@@ -135,11 +138,11 @@ class SynthesizerTrn(models.SynthesizerTrn):
|
|
| 135 |
n_layers,
|
| 136 |
kernel_size,
|
| 137 |
p_dropout,
|
| 138 |
-
resblock,
|
| 139 |
-
resblock_kernel_sizes,
|
| 140 |
-
resblock_dilation_sizes,
|
| 141 |
-
upsample_rates,
|
| 142 |
-
upsample_initial_channel,
|
| 143 |
upsample_kernel_sizes,
|
| 144 |
n_speakers=n_speakers,
|
| 145 |
gin_channels=gin_channels,
|
|
@@ -147,27 +150,28 @@ class SynthesizerTrn(models.SynthesizerTrn):
|
|
| 147 |
**kwargs
|
| 148 |
)
|
| 149 |
self.enc_p = TextEncoder(n_vocab,
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
self.enc_q = PosteriorEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels)
|
| 159 |
|
| 160 |
-
def infer(self, x, x_lengths, sid=None, noise_scale=1, length_scale=1, noise_scale_w=1., max_len=None,
|
|
|
|
| 161 |
from ONNXVITS_utils import runonnx
|
| 162 |
-
|
| 163 |
-
|
| 164 |
|
| 165 |
if self.n_speakers > 0:
|
| 166 |
-
g = self.emb_g(sid).unsqueeze(-1)
|
| 167 |
else:
|
| 168 |
g = None
|
| 169 |
|
| 170 |
-
#logw = self.dp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w)
|
| 171 |
logw = runonnx("ONNX_net/dp.onnx", x=x.numpy(), x_mask=x_mask.numpy(), g=g.numpy())
|
| 172 |
logw = torch.from_numpy(logw[0])
|
| 173 |
|
|
@@ -178,26 +182,27 @@ class SynthesizerTrn(models.SynthesizerTrn):
|
|
| 178 |
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
|
| 179 |
attn = commons.generate_path(w_ceil, attn_mask)
|
| 180 |
|
| 181 |
-
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2)
|
| 182 |
-
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1,
|
|
|
|
| 183 |
|
| 184 |
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
|
| 185 |
-
|
| 186 |
-
#z = self.flow(z_p, y_mask, g=g, reverse=True)
|
| 187 |
z = runonnx("ONNX_net/flow.onnx", z_p=z_p.numpy(), y_mask=y_mask.numpy(), g=g.numpy())
|
| 188 |
z = torch.from_numpy(z[0])
|
| 189 |
|
| 190 |
-
#o = self.dec((z * y_mask)[:,:,:max_len], g=g)
|
| 191 |
-
o = runonnx("ONNX_net/dec.onnx", z_in=(z * y_mask)[
|
| 192 |
o = torch.from_numpy(o[0])
|
| 193 |
|
| 194 |
return o, attn, y_mask, (z, z_p, m_p, logs_p)
|
| 195 |
|
| 196 |
def predict_duration(self, x, x_lengths, sid=None, noise_scale=1, length_scale=1, noise_scale_w=1., max_len=None,
|
| 197 |
-
|
| 198 |
from ONNXVITS_utils import runonnx
|
| 199 |
|
| 200 |
-
#x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
|
| 201 |
x, m_p, logs_p, x_mask = runonnx("ONNX_net/enc_p.onnx", x=x.numpy(), x_lengths=x_lengths.numpy())
|
| 202 |
x = torch.from_numpy(x)
|
| 203 |
m_p = torch.from_numpy(m_p)
|
|
@@ -205,68 +210,14 @@ class SynthesizerTrn(models.SynthesizerTrn):
|
|
| 205 |
x_mask = torch.from_numpy(x_mask)
|
| 206 |
|
| 207 |
if self.n_speakers > 0:
|
| 208 |
-
g = self.emb_g(sid).unsqueeze(-1)
|
| 209 |
else:
|
| 210 |
g = None
|
| 211 |
|
| 212 |
-
#logw = self.dp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w)
|
| 213 |
logw = runonnx("ONNX_net/dp.onnx", x=x.numpy(), x_mask=x_mask.numpy(), g=g.numpy())
|
| 214 |
logw = torch.from_numpy(logw[0])
|
| 215 |
|
| 216 |
w = torch.exp(logw) * x_mask * length_scale
|
| 217 |
w_ceil = torch.ceil(w)
|
| 218 |
-
return list(w_ceil.squeeze())
|
| 219 |
-
|
| 220 |
-
def infer_with_duration(self, x, x_lengths, w_ceil, sid=None, noise_scale=1, length_scale=1, noise_scale_w=1., max_len=None,
|
| 221 |
-
emotion_embedding=None):
|
| 222 |
-
from ONNXVITS_utils import runonnx
|
| 223 |
-
|
| 224 |
-
#x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
|
| 225 |
-
x, m_p, logs_p, x_mask = runonnx("ONNX_net/enc_p.onnx", x=x.numpy(), x_lengths=x_lengths.numpy())
|
| 226 |
-
x = torch.from_numpy(x)
|
| 227 |
-
m_p = torch.from_numpy(m_p)
|
| 228 |
-
logs_p = torch.from_numpy(logs_p)
|
| 229 |
-
x_mask = torch.from_numpy(x_mask)
|
| 230 |
-
|
| 231 |
-
if self.n_speakers > 0:
|
| 232 |
-
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
|
| 233 |
-
else:
|
| 234 |
-
g = None
|
| 235 |
-
assert len(w_ceil) == x.shape[2]
|
| 236 |
-
w_ceil = torch.FloatTensor(w_ceil).reshape(1, 1, -1)
|
| 237 |
-
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
|
| 238 |
-
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), 1).to(x_mask.dtype)
|
| 239 |
-
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
|
| 240 |
-
attn = commons.generate_path(w_ceil, attn_mask)
|
| 241 |
-
|
| 242 |
-
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
|
| 243 |
-
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
|
| 244 |
-
|
| 245 |
-
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
|
| 246 |
-
|
| 247 |
-
#z = self.flow(z_p, y_mask, g=g, reverse=True)
|
| 248 |
-
z = runonnx("ONNX_net/flow.onnx", z_p=z_p.numpy(), y_mask=y_mask.numpy(), g=g.numpy())
|
| 249 |
-
z = torch.from_numpy(z[0])
|
| 250 |
-
|
| 251 |
-
#o = self.dec((z * y_mask)[:,:,:max_len], g=g)
|
| 252 |
-
o = runonnx("ONNX_net/dec.onnx", z_in=(z * y_mask)[:,:,:max_len].numpy(), g=g.numpy())
|
| 253 |
-
o = torch.from_numpy(o[0])
|
| 254 |
-
|
| 255 |
-
return o, attn, y_mask, (z, z_p, m_p, logs_p)
|
| 256 |
-
|
| 257 |
-
def voice_conversion(self, y, y_lengths, sid_src, sid_tgt):
|
| 258 |
-
from ONNXVITS_utils import runonnx
|
| 259 |
-
assert self.n_speakers > 0, "n_speakers have to be larger than 0."
|
| 260 |
-
g_src = self.emb_g(sid_src).unsqueeze(-1)
|
| 261 |
-
g_tgt = self.emb_g(sid_tgt).unsqueeze(-1)
|
| 262 |
-
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g_src)
|
| 263 |
-
# z_p = self.flow(z, y_mask, g=g_src)
|
| 264 |
-
z_p = runonnx("ONNX_net/flow.onnx", z_p=z.numpy(), y_mask=y_mask.numpy(), g=g_src.numpy())
|
| 265 |
-
z_p = torch.from_numpy(z_p[0])
|
| 266 |
-
# z_hat = self.flow(z_p, y_mask, g=g_tgt, reverse=True)
|
| 267 |
-
z_hat = runonnx("ONNX_net/flow.onnx", z_p=z_p.numpy(), y_mask=y_mask.numpy(), g=g_tgt.numpy())
|
| 268 |
-
z_hat = torch.from_numpy(z_hat[0])
|
| 269 |
-
# o_hat = self.dec(z_hat * y_mask, g=g_tgt)
|
| 270 |
-
o_hat = runonnx("ONNX_net/dec.onnx", z_in=(z_hat * y_mask).numpy(), g=g_tgt.numpy())
|
| 271 |
-
o_hat = torch.from_numpy(o_hat[0])
|
| 272 |
-
return o_hat, y_mask, (z, z_p, z_hat)
|
|
|
|
| 13 |
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
| 14 |
from commons import init_weights, get_padding
|
| 15 |
|
| 16 |
+
|
| 17 |
class TextEncoder(nn.Module):
|
| 18 |
def __init__(self,
|
| 19 |
+
n_vocab,
|
| 20 |
+
out_channels,
|
| 21 |
+
hidden_channels,
|
| 22 |
+
filter_channels,
|
| 23 |
+
n_heads,
|
| 24 |
+
n_layers,
|
| 25 |
+
kernel_size,
|
| 26 |
+
p_dropout,
|
| 27 |
+
emotion_embedding):
|
| 28 |
super().__init__()
|
| 29 |
self.n_vocab = n_vocab
|
| 30 |
self.out_channels = out_channels
|
|
|
|
| 35 |
self.kernel_size = kernel_size
|
| 36 |
self.p_dropout = p_dropout
|
| 37 |
self.emotion_embedding = emotion_embedding
|
| 38 |
+
|
| 39 |
+
if self.n_vocab != 0:
|
| 40 |
self.emb = nn.Embedding(n_vocab, hidden_channels)
|
| 41 |
if emotion_embedding:
|
| 42 |
self.emo_proj = nn.Linear(1024, hidden_channels)
|
| 43 |
+
nn.init.normal_(self.emb.weight, 0.0, hidden_channels ** -0.5)
|
| 44 |
|
| 45 |
self.encoder = attentions.Encoder(
|
| 46 |
hidden_channels,
|
|
|
|
| 49 |
n_layers,
|
| 50 |
kernel_size,
|
| 51 |
p_dropout)
|
| 52 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
| 53 |
|
| 54 |
def forward(self, x, x_lengths, emotion_embedding=None):
|
| 55 |
+
if self.n_vocab != 0:
|
| 56 |
+
x = self.emb(x) * math.sqrt(self.hidden_channels) # [b, t, h]
|
| 57 |
if emotion_embedding is not None:
|
| 58 |
print("emotion added")
|
| 59 |
x = x + self.emo_proj(emotion_embedding.unsqueeze(1))
|
| 60 |
+
x = torch.transpose(x, 1, -1) # [b, h, t]
|
| 61 |
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
|
| 62 |
|
| 63 |
x = self.encoder(x * x_mask, x_mask)
|
|
|
|
| 66 |
m, logs = torch.split(stats, self.out_channels, dim=1)
|
| 67 |
return x, m, logs, x_mask
|
| 68 |
|
| 69 |
+
|
| 70 |
class PosteriorEncoder(nn.Module):
|
| 71 |
def __init__(self,
|
| 72 |
+
in_channels,
|
| 73 |
+
out_channels,
|
| 74 |
+
hidden_channels,
|
| 75 |
+
kernel_size,
|
| 76 |
+
dilation_rate,
|
| 77 |
+
n_layers,
|
| 78 |
+
gin_channels=0):
|
| 79 |
super().__init__()
|
| 80 |
self.in_channels = in_channels
|
| 81 |
self.out_channels = out_channels
|
|
|
|
| 98 |
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
|
| 99 |
return z, m, logs, x_mask
|
| 100 |
|
| 101 |
+
|
| 102 |
class SynthesizerTrn(models.SynthesizerTrn):
|
| 103 |
"""
|
| 104 |
Synthesizer for Training
|
| 105 |
"""
|
| 106 |
|
| 107 |
+
def __init__(self,
|
| 108 |
+
n_vocab,
|
| 109 |
+
spec_channels,
|
| 110 |
+
segment_size,
|
| 111 |
+
inter_channels,
|
| 112 |
+
hidden_channels,
|
| 113 |
+
filter_channels,
|
| 114 |
+
n_heads,
|
| 115 |
+
n_layers,
|
| 116 |
+
kernel_size,
|
| 117 |
+
p_dropout,
|
| 118 |
+
resblock,
|
| 119 |
+
resblock_kernel_sizes,
|
| 120 |
+
resblock_dilation_sizes,
|
| 121 |
+
upsample_rates,
|
| 122 |
+
upsample_initial_channel,
|
| 123 |
+
upsample_kernel_sizes,
|
| 124 |
+
n_speakers=0,
|
| 125 |
+
gin_channels=0,
|
| 126 |
+
use_sdp=True,
|
| 127 |
+
emotion_embedding=False,
|
| 128 |
+
**kwargs):
|
| 129 |
+
|
| 130 |
+
super().__init__(
|
| 131 |
n_vocab,
|
| 132 |
spec_channels,
|
| 133 |
segment_size,
|
|
|
|
| 138 |
n_layers,
|
| 139 |
kernel_size,
|
| 140 |
p_dropout,
|
| 141 |
+
resblock,
|
| 142 |
+
resblock_kernel_sizes,
|
| 143 |
+
resblock_dilation_sizes,
|
| 144 |
+
upsample_rates,
|
| 145 |
+
upsample_initial_channel,
|
| 146 |
upsample_kernel_sizes,
|
| 147 |
n_speakers=n_speakers,
|
| 148 |
gin_channels=gin_channels,
|
|
|
|
| 150 |
**kwargs
|
| 151 |
)
|
| 152 |
self.enc_p = TextEncoder(n_vocab,
|
| 153 |
+
inter_channels,
|
| 154 |
+
hidden_channels,
|
| 155 |
+
filter_channels,
|
| 156 |
+
n_heads,
|
| 157 |
+
n_layers,
|
| 158 |
+
kernel_size,
|
| 159 |
+
p_dropout,
|
| 160 |
+
emotion_embedding)
|
| 161 |
self.enc_q = PosteriorEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels)
|
| 162 |
|
| 163 |
+
def infer(self, x, x_lengths, sid=None, noise_scale=1, length_scale=1, noise_scale_w=1., max_len=None,
|
| 164 |
+
emotion_embedding=None):
|
| 165 |
from ONNXVITS_utils import runonnx
|
| 166 |
+
with torch.no_grad():
|
| 167 |
+
x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths, emotion_embedding)
|
| 168 |
|
| 169 |
if self.n_speakers > 0:
|
| 170 |
+
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
|
| 171 |
else:
|
| 172 |
g = None
|
| 173 |
|
| 174 |
+
# logw = self.dp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w)
|
| 175 |
logw = runonnx("ONNX_net/dp.onnx", x=x.numpy(), x_mask=x_mask.numpy(), g=g.numpy())
|
| 176 |
logw = torch.from_numpy(logw[0])
|
| 177 |
|
|
|
|
| 182 |
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
|
| 183 |
attn = commons.generate_path(w_ceil, attn_mask)
|
| 184 |
|
| 185 |
+
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
|
| 186 |
+
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1,
|
| 187 |
+
2) # [b, t', t], [b, t, d] -> [b, d, t']
|
| 188 |
|
| 189 |
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
|
| 190 |
+
|
| 191 |
+
# z = self.flow(z_p, y_mask, g=g, reverse=True)
|
| 192 |
z = runonnx("ONNX_net/flow.onnx", z_p=z_p.numpy(), y_mask=y_mask.numpy(), g=g.numpy())
|
| 193 |
z = torch.from_numpy(z[0])
|
| 194 |
|
| 195 |
+
# o = self.dec((z * y_mask)[:,:,:max_len], g=g)
|
| 196 |
+
o = runonnx("ONNX_net/dec.onnx", z_in=(z * y_mask)[:, :, :max_len].numpy(), g=g.numpy())
|
| 197 |
o = torch.from_numpy(o[0])
|
| 198 |
|
| 199 |
return o, attn, y_mask, (z, z_p, m_p, logs_p)
|
| 200 |
|
| 201 |
def predict_duration(self, x, x_lengths, sid=None, noise_scale=1, length_scale=1, noise_scale_w=1., max_len=None,
|
| 202 |
+
emotion_embedding=None):
|
| 203 |
from ONNXVITS_utils import runonnx
|
| 204 |
|
| 205 |
+
# x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
|
| 206 |
x, m_p, logs_p, x_mask = runonnx("ONNX_net/enc_p.onnx", x=x.numpy(), x_lengths=x_lengths.numpy())
|
| 207 |
x = torch.from_numpy(x)
|
| 208 |
m_p = torch.from_numpy(m_p)
|
|
|
|
| 210 |
x_mask = torch.from_numpy(x_mask)
|
| 211 |
|
| 212 |
if self.n_speakers > 0:
|
| 213 |
+
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
|
| 214 |
else:
|
| 215 |
g = None
|
| 216 |
|
| 217 |
+
# logw = self.dp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w)
|
| 218 |
logw = runonnx("ONNX_net/dp.onnx", x=x.numpy(), x_mask=x_mask.numpy(), g=g.numpy())
|
| 219 |
logw = torch.from_numpy(logw[0])
|
| 220 |
|
| 221 |
w = torch.exp(logw) * x_mask * length_scale
|
| 222 |
w_ceil = torch.ceil(w)
|
| 223 |
+
return list(w_ceil.squeeze())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|