import torch import nemo.collections.asr as nemo_asr import gc import numpy as np import torchaudio pretrained_model_path="./stt_fa_fastconformer_hybrid_large_finetuned.nemo" # Clear up memory torch.cuda.empty_cache() gc.collect() model = nemo_asr.models.EncDecHybridRNNTCTCModel.restore_from(pretrained_model_path) device = 'cuda' if torch.cuda.is_available() else 'cpu' # device = 'cpu' # You can transcribe even longer samples on the CPU, though it will take much longer ! model = model.to(device) model.freeze() def transcribe(audio): # 'audio' is a tuple: (sample_rate, data) sample_rate, data = audio # Convert to mono if stereo if data.ndim > 1: data = data.mean(axis=1) # Ensure the model is on the correct device device = 'cuda' if torch.cuda.is_available() else 'cpu' # Convert audio data to the expected format if isinstance(data, np.ndarray): audio_tensor = torch.tensor(data, dtype=torch.float32) else: raise ValueError("Audio data must be a numpy array") # Resample if sample rate is not 16000 target_sample_rate = 16000 if sample_rate != target_sample_rate: resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=target_sample_rate) audio_tensor = resampler(audio_tensor) # Trim audio if longer than 600 seconds max_length = 600 * target_sample_rate # 600 seconds if audio_tensor.shape[-1] > max_length: audio_tensor = audio_tensor[..., :max_length] # Transcribe with torch.no_grad(): transcript = model.transcribe(audio_tensor) return transcript[0][0] # Assuming single input import gradio as gr interface = gr.Interface( fn=transcribe, inputs=gr.Audio(sources=["upload", "microphone"]), # Allows both file upload and recording outputs="text", live=False # Set to True for real-time transcription ) interface.launch()