Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI, Request
|
| 2 |
+
from llama_cpp import Llama
|
| 3 |
+
from huggingface_hub import hf_hub_download
|
| 4 |
+
import os
|
| 5 |
+
import platform
|
| 6 |
+
import psutil
|
| 7 |
+
import multiprocessing
|
| 8 |
+
import time
|
| 9 |
+
import tiktoken # For estimating token count
|
| 10 |
+
import logging # Import the logging module
|
| 11 |
+
|
| 12 |
+
# === Configure Logging ===
|
| 13 |
+
# Get the root logger
|
| 14 |
+
logger = logging.getLogger(__name__)
|
| 15 |
+
# Set the logging level (e.g., INFO, DEBUG, WARNING, ERROR, CRITICAL)
|
| 16 |
+
logger.setLevel(logging.INFO)
|
| 17 |
+
# Create a console handler and set its format
|
| 18 |
+
handler = logging.StreamHandler()
|
| 19 |
+
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
| 20 |
+
handler.setFormatter(formatter)
|
| 21 |
+
# Add the handler to the logger if it's not already added
|
| 22 |
+
if not logger.handlers:
|
| 23 |
+
logger.addHandler(handler)
|
| 24 |
+
|
| 25 |
+
app = FastAPI()
|
| 26 |
+
|
| 27 |
+
# === Model Config ===
|
| 28 |
+
REPO_ID = "TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF"
|
| 29 |
+
FILENAME = "tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf" # Q4_K_M is a good balance of size and quality
|
| 30 |
+
MODEL_DIR = "models"
|
| 31 |
+
MODEL_PATH = os.path.join(MODEL_DIR, FILENAME)
|
| 32 |
+
|
| 33 |
+
# === Download if model not available ===
|
| 34 |
+
if not os.path.exists(MODEL_PATH):
|
| 35 |
+
logger.info(f"⬇️ Downloading {FILENAME} from Hugging Face...")
|
| 36 |
+
try:
|
| 37 |
+
model_path = hf_hub_download(
|
| 38 |
+
repo_id=REPO_ID,
|
| 39 |
+
filename=FILENAME,
|
| 40 |
+
cache_dir=MODEL_DIR,
|
| 41 |
+
local_dir=MODEL_DIR,
|
| 42 |
+
local_dir_use_symlinks=False
|
| 43 |
+
)
|
| 44 |
+
logger.info(f"✅ Model downloaded to: {model_path}")
|
| 45 |
+
except Exception as e:
|
| 46 |
+
logger.error(f"❌ Error downloading model: {e}")
|
| 47 |
+
# Exit or handle error appropriately if model download fails
|
| 48 |
+
exit(1)
|
| 49 |
+
else:
|
| 50 |
+
logger.info(f"✅ Model already available at: {MODEL_PATH}")
|
| 51 |
+
model_path = MODEL_PATH
|
| 52 |
+
|
| 53 |
+
# === Optimal thread usage ===
|
| 54 |
+
logical_cores = psutil.cpu_count(logical=True)
|
| 55 |
+
physical_cores = psutil.cpu_count(logical=False)
|
| 56 |
+
recommended_threads = max(1, physical_cores) # Ensure at least 1 thread
|
| 57 |
+
|
| 58 |
+
logger.info(f"Detected physical cores: {physical_cores}, logical cores: {logical_cores}")
|
| 59 |
+
logger.info(f"Using n_threads: {recommended_threads}")
|
| 60 |
+
|
| 61 |
+
# === Load the model ===
|
| 62 |
+
try:
|
| 63 |
+
llm = Llama(
|
| 64 |
+
model_path=model_path,
|
| 65 |
+
n_ctx=2048, # Context window size for the model (still needed, but not fully utilized for history)
|
| 66 |
+
n_threads=recommended_threads,
|
| 67 |
+
use_mlock=True, # Lock model in RAM for faster access
|
| 68 |
+
n_gpu_layers=0, # CPU only
|
| 69 |
+
chat_format="chatml", # TinyLlama Chat uses ChatML format
|
| 70 |
+
verbose=False # Keep llama.cpp's internal verbose logging off
|
| 71 |
+
)
|
| 72 |
+
logger.info("� Llama model loaded successfully!")
|
| 73 |
+
except Exception as e:
|
| 74 |
+
logger.error(f"❌ Error loading Llama model: {e}")
|
| 75 |
+
exit(1)
|
| 76 |
+
|
| 77 |
+
# Initialize tiktoken encoder for token counting
|
| 78 |
+
try:
|
| 79 |
+
encoding = tiktoken.get_encoding("cl100k_base")
|
| 80 |
+
except Exception:
|
| 81 |
+
logger.warning("⚠️ Could not load tiktoken 'cl100k_base' encoding. Token count for prompt might be less accurate.")
|
| 82 |
+
encoding = None
|
| 83 |
+
|
| 84 |
+
def count_tokens_in_text(text):
|
| 85 |
+
"""Estimates tokens in a given text using tiktoken or simple char count."""
|
| 86 |
+
if encoding:
|
| 87 |
+
return len(encoding.encode(text))
|
| 88 |
+
else:
|
| 89 |
+
# Fallback for when tiktoken isn't available or for simple estimation
|
| 90 |
+
return len(text) // 4 # Rough estimate: 1 token ~ 4 characters
|
| 91 |
+
|
| 92 |
+
@app.get("/")
|
| 93 |
+
def root():
|
| 94 |
+
logger.info("Root endpoint accessed.")
|
| 95 |
+
return {"message": "✅ Data Analysis AI API is live and optimized for speed (no context retention)!"}
|
| 96 |
+
|
| 97 |
+
@app.get("/get_sys")
|
| 98 |
+
def get_sys_specs():
|
| 99 |
+
"""Returns system specifications including CPU, RAM, and OS details."""
|
| 100 |
+
logger.info("System specs endpoint accessed.")
|
| 101 |
+
memory = psutil.virtual_memory()
|
| 102 |
+
return {
|
| 103 |
+
"CPU": {
|
| 104 |
+
"physical_cores": physical_cores,
|
| 105 |
+
"logical_cores": logical_cores,
|
| 106 |
+
"max_freq_mhz": psutil.cpu_freq().max if psutil.cpu_freq() else "N/A",
|
| 107 |
+
"cpu_usage_percent": psutil.cpu_percent(interval=1) # CPU usage over 1 second
|
| 108 |
+
},
|
| 109 |
+
"RAM": {
|
| 110 |
+
"total_GB": round(memory.total / (1024 ** 3), 2),
|
| 111 |
+
"available_GB": round(memory.available / (1024 ** 3), 2),
|
| 112 |
+
"usage_percent": memory.percent
|
| 113 |
+
},
|
| 114 |
+
"System": {
|
| 115 |
+
"platform": platform.platform(),
|
| 116 |
+
"architecture": platform.machine(),
|
| 117 |
+
"python_version": platform.python_version()
|
| 118 |
+
},
|
| 119 |
+
"Model_Config": {
|
| 120 |
+
"model_name": FILENAME,
|
| 121 |
+
"n_ctx": llm.n_ctx(),
|
| 122 |
+
"n_threads": llm.n_threads(),
|
| 123 |
+
"use_mlock": llm.use_mlock()
|
| 124 |
+
}
|
| 125 |
+
}
|
| 126 |
+
|
| 127 |
+
@app.get("/process_list")
|
| 128 |
+
def process_list():
|
| 129 |
+
"""Returns a list of processes consuming significant CPU."""
|
| 130 |
+
logger.info("Process list endpoint accessed.")
|
| 131 |
+
time.sleep(1) # Let CPU settle for accurate measurement
|
| 132 |
+
processes = []
|
| 133 |
+
for proc in psutil.process_iter(['pid', 'name', 'cpu_percent', 'memory_percent']):
|
| 134 |
+
try:
|
| 135 |
+
cpu = proc.cpu_percent()
|
| 136 |
+
mem = proc.memory_percent()
|
| 137 |
+
# Filter processes using more than 5% CPU or 2% memory
|
| 138 |
+
if cpu > 5 or mem > 2:
|
| 139 |
+
processes.append({
|
| 140 |
+
"pid": proc.pid,
|
| 141 |
+
"name": proc.name(),
|
| 142 |
+
"cpu_percent": round(cpu, 2),
|
| 143 |
+
"memory_percent": round(mem, 2)
|
| 144 |
+
})
|
| 145 |
+
except (psutil.NoSuchProcess, psutil.AccessDenied, psutil.ZombieProcess):
|
| 146 |
+
pass
|
| 147 |
+
# Sort by CPU usage descending
|
| 148 |
+
processes.sort(key=lambda x: x['cpu_percent'], reverse=True)
|
| 149 |
+
return {"heavy_processes": processes}
|
| 150 |
+
|
| 151 |
+
@app.post("/generate")
|
| 152 |
+
async def generate(request: Request):
|
| 153 |
+
"""
|
| 154 |
+
Generates a response from the LLM without retaining chat context.
|
| 155 |
+
Expects a JSON body with 'prompt'.
|
| 156 |
+
"""
|
| 157 |
+
logger.info("➡️ /generate endpoint received a request.") # Log at the very beginning
|
| 158 |
+
data = await request.json()
|
| 159 |
+
prompt = data.get("prompt", "").strip()
|
| 160 |
+
|
| 161 |
+
if not prompt:
|
| 162 |
+
logger.warning("Prompt cannot be empty in /generate request.")
|
| 163 |
+
return {"error": "Prompt cannot be empty"}, 400
|
| 164 |
+
|
| 165 |
+
# Define the system prompt - sent with every request
|
| 166 |
+
system_prompt_content = (
|
| 167 |
+
"You are a highly efficient and objective Data and News analysis API. "
|
| 168 |
+
"Your sole function is to process the provided data, news and instructions, then output ONLY the requested analysis in the specified format. "
|
| 169 |
+
"**Crucially, do NOT include any conversational text, greetings, introductions (e.g., 'Here is the report', 'Below is the analysis'), conclusions, or any remarks about being an AI.** "
|
| 170 |
+
"Respond directly with the content. "
|
| 171 |
+
"Adhere strictly to all formatting requirements given in the user's prompt (e.g., 'summary:{}', numbered lists, bullet points). "
|
| 172 |
+
"Focus exclusively on data insights, statistics, trends, influencing factors, and actionable recommendations. "
|
| 173 |
+
"Be concise, professional, and factual. "
|
| 174 |
+
"If a request cannot be fulfilled due to data limitations or model capabilities, respond with: 'STATUS: FAILED_ANALYSIS; REASON: Unable to process this specific analytical request due to limitations.' No other text should be included."
|
| 175 |
+
)
|
| 176 |
+
|
| 177 |
+
|
| 178 |
+
# Construct messages for the current request only
|
| 179 |
+
messages_for_llm = [
|
| 180 |
+
{"role": "system", "content": system_prompt_content},
|
| 181 |
+
{"role": "user", "content": prompt}
|
| 182 |
+
]
|
| 183 |
+
|
| 184 |
+
# Calculate tokens in the user's prompt
|
| 185 |
+
prompt_tokens = count_tokens_in_text(prompt)
|
| 186 |
+
|
| 187 |
+
logger.info(f"🧾 Prompt received: {prompt}")
|
| 188 |
+
logger.info(f"Tokens in prompt: {prompt_tokens}")
|
| 189 |
+
|
| 190 |
+
try:
|
| 191 |
+
response = llm.create_chat_completion(
|
| 192 |
+
messages=messages_for_llm,
|
| 193 |
+
max_tokens=800, # Keep response length short for maximum speed
|
| 194 |
+
temperature=0.7, # Adjust temperature for creativity vs. coherence (0.0-1.0)
|
| 195 |
+
stop=["</s>"] # Stop sequence for TinyLlama Chat
|
| 196 |
+
)
|
| 197 |
+
ai_response_content = response["choices"][0]["message"]["content"].strip()
|
| 198 |
+
|
| 199 |
+
response_token_count = count_tokens_in_text(ai_response_content)
|
| 200 |
+
|
| 201 |
+
logger.info("✅ Response generated successfully.")
|
| 202 |
+
return {
|
| 203 |
+
"response": ai_response_content,
|
| 204 |
+
"prompt_tokens": prompt_tokens, # Return tokens in the prompt
|
| 205 |
+
"response_token_count": response_token_count
|
| 206 |
+
}
|
| 207 |
+
except Exception as e:
|
| 208 |
+
logger.error(f"❌ Error during generation: {e}", exc_info=True) # Log exception details
|
| 209 |
+
return {"error": f"Failed to generate response: {e}. Please try again."}, 500
|