Spaces:
Sleeping
Sleeping
Upload folder using huggingface_hub
Browse files- README.md +92 -5
- app.py +322 -0
- requirements.txt +9 -0
- src/__pycache__/pipeline.cpython-310.pyc +0 -0
- src/__pycache__/pipeline.cpython-39.pyc +0 -0
- src/__pycache__/scheduler.cpython-310.pyc +0 -0
- src/__pycache__/scheduler.cpython-39.pyc +0 -0
- src/__pycache__/transformer.cpython-310.pyc +0 -0
- src/__pycache__/transformer.cpython-39.pyc +0 -0
- src/pipeline.py +1231 -0
- src/scheduler.py +175 -0
- src/transformer.py +1459 -0
- train/__pycache__/dataset_utils.cpython-39.pyc +0 -0
- train/__pycache__/trainer_utils.cpython-310.pyc +0 -0
- train/__pycache__/trainer_utils.cpython-39.pyc +0 -0
- train/dataset_utils.py +472 -0
- train/instruction_tuning.py +1246 -0
- train/instruction_tuning.sh +37 -0
- train/train_text_decoder.py +1017 -0
- train/train_text_decoder.sh +31 -0
- train/train_text_encoder.py +903 -0
- train/train_text_encoder.sh +34 -0
- train/train_unified.py +1141 -0
- train/train_unified.sh +33 -0
- train/train_unified_new.py +1078 -0
- train/trainer_utils.py +101 -0
README.md
CHANGED
|
@@ -1,13 +1,100 @@
|
|
| 1 |
---
|
| 2 |
-
title: Muddit
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
colorTo: purple
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version:
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: apache-2.0
|
| 11 |
---
|
| 12 |
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Muddit Interface
|
| 3 |
+
emoji: 🎨
|
| 4 |
+
colorFrom: blue
|
| 5 |
colorTo: purple
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 4.0.0
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: apache-2.0
|
| 11 |
---
|
| 12 |
|
| 13 |
+
# 🎨 Muddit Interface
|
| 14 |
+
|
| 15 |
+
A unified model interface for **Text-to-Image generation** and **Visual Question Answering (VQA)** powered by advanced transformer architectures.
|
| 16 |
+
|
| 17 |
+
## ✨ Features
|
| 18 |
+
|
| 19 |
+
### 🖼️ Text-to-Image Generation
|
| 20 |
+
- Generate high-quality images from detailed text descriptions
|
| 21 |
+
- Customizable parameters (resolution, inference steps, CFG scale, seed)
|
| 22 |
+
- Support for negative prompts to avoid unwanted elements
|
| 23 |
+
- Real-time generation with progress tracking
|
| 24 |
+
|
| 25 |
+
### ❓ Visual Question Answering
|
| 26 |
+
- Upload images and ask natural language questions
|
| 27 |
+
- Get detailed descriptions and answers about image content
|
| 28 |
+
- Support for various question types (counting, description, identification)
|
| 29 |
+
- Advanced visual understanding capabilities
|
| 30 |
+
|
| 31 |
+
## 🚀 How to Use
|
| 32 |
+
|
| 33 |
+
### Text-to-Image
|
| 34 |
+
1. Go to the **"🖼️ Text-to-Image"** tab
|
| 35 |
+
2. Enter your text description in the **Prompt** field
|
| 36 |
+
3. Optionally add a **Negative Prompt** to exclude unwanted elements
|
| 37 |
+
4. Adjust parameters as needed:
|
| 38 |
+
- **Width/Height**: Image resolution (256-1024px)
|
| 39 |
+
- **Inference Steps**: Quality vs speed (1-100)
|
| 40 |
+
- **CFG Scale**: Prompt adherence (1.0-20.0)
|
| 41 |
+
- **Seed**: For reproducible results
|
| 42 |
+
5. Click **"🎨 Generate Image"**
|
| 43 |
+
|
| 44 |
+
### Visual Question Answering
|
| 45 |
+
1. Go to the **"❓ Visual Question Answering"** tab
|
| 46 |
+
2. **Upload an image** using the image input
|
| 47 |
+
3. **Ask a question** about the image
|
| 48 |
+
4. Adjust processing parameters if needed
|
| 49 |
+
5. Click **"🤔 Ask Question"** to get an answer
|
| 50 |
+
|
| 51 |
+
## 📝 Example Prompts
|
| 52 |
+
|
| 53 |
+
### Text-to-Image Examples:
|
| 54 |
+
- "A majestic night sky awash with billowing clouds, sparkling with a million twinkling stars"
|
| 55 |
+
- "A hyper realistic image of a chimpanzee with a glass-enclosed brain on his head, standing amidst lush, bioluminescent foliage"
|
| 56 |
+
- "A samurai in a stylized cyberpunk outfit adorned with intricate steampunk gear and floral accents"
|
| 57 |
+
|
| 58 |
+
### VQA Examples:
|
| 59 |
+
- "What objects do you see in this image?"
|
| 60 |
+
- "How many people are in the picture?"
|
| 61 |
+
- "What is the main subject of this image?"
|
| 62 |
+
- "Describe the scene in detail"
|
| 63 |
+
- "What colors dominate this image?"
|
| 64 |
+
|
| 65 |
+
## 🛠️ Technical Details
|
| 66 |
+
|
| 67 |
+
- **Architecture**: Unified transformer-based model
|
| 68 |
+
- **Text Encoder**: CLIP for text understanding
|
| 69 |
+
- **Vision Encoder**: VQ-VAE for image processing
|
| 70 |
+
- **Generation**: Advanced diffusion-based synthesis
|
| 71 |
+
- **VQA**: Multimodal understanding with attention mechanisms
|
| 72 |
+
|
| 73 |
+
## ⚙️ Parameters Guide
|
| 74 |
+
|
| 75 |
+
| Parameter | Description | Recommended Range |
|
| 76 |
+
|-----------|-------------|-------------------|
|
| 77 |
+
| **Inference Steps** | More steps = higher quality, slower generation | 20-64 |
|
| 78 |
+
| **CFG Scale** | How closely to follow the prompt | 7.0-12.0 |
|
| 79 |
+
| **Resolution** | Output image size | 512x512 to 1024x1024 |
|
| 80 |
+
| **Seed** | For reproducible results | Any integer or -1 for random |
|
| 81 |
+
|
| 82 |
+
## 🎯 Use Cases
|
| 83 |
+
|
| 84 |
+
- **Creative Content**: Generate artwork, illustrations, concepts
|
| 85 |
+
- **Visual Analysis**: Analyze and understand image content
|
| 86 |
+
- **Education**: Learn about visual AI and multimodal models
|
| 87 |
+
- **Research**: Explore capabilities of unified vision-language models
|
| 88 |
+
- **Accessibility**: Describe images for visually impaired users
|
| 89 |
+
|
| 90 |
+
## 📄 License
|
| 91 |
+
|
| 92 |
+
This project is licensed under the Apache 2.0 License.
|
| 93 |
+
|
| 94 |
+
## 🤝 Contributing
|
| 95 |
+
|
| 96 |
+
Feedback and contributions are welcome! Please feel free to submit issues or pull requests.
|
| 97 |
+
|
| 98 |
+
---
|
| 99 |
+
|
| 100 |
+
*Powered by Gradio and Hugging Face Spaces* 🤗
|
app.py
ADDED
|
@@ -0,0 +1,322 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import sys
|
| 2 |
+
import os
|
| 3 |
+
import warnings
|
| 4 |
+
import tempfile
|
| 5 |
+
|
| 6 |
+
import gradio as gr
|
| 7 |
+
import torch
|
| 8 |
+
from PIL import Image
|
| 9 |
+
import numpy as np
|
| 10 |
+
|
| 11 |
+
from transformers import (
|
| 12 |
+
CLIPTextModelWithProjection,
|
| 13 |
+
CLIPTokenizer,
|
| 14 |
+
)
|
| 15 |
+
from diffusers.models.autoencoders.vq_model import VQModel
|
| 16 |
+
|
| 17 |
+
from src.transformer import SymmetricTransformer2DModel
|
| 18 |
+
from src.pipeline import UnifiedPipeline
|
| 19 |
+
from src.scheduler import Scheduler
|
| 20 |
+
from train.trainer_utils import load_images_to_tensor
|
| 21 |
+
|
| 22 |
+
# Suppress FutureWarnings to reduce clutter
|
| 23 |
+
warnings.filterwarnings("ignore", category=FutureWarning)
|
| 24 |
+
|
| 25 |
+
# Set Gradio temp directory to a writable location
|
| 26 |
+
def setup_gradio_temp_dir():
|
| 27 |
+
"""Setup a writable temp directory for Gradio with fallback options"""
|
| 28 |
+
possible_dirs = [
|
| 29 |
+
os.path.join(os.getcwd(), "gradio_tmp"), # Project directory
|
| 30 |
+
os.path.join(os.path.expanduser("~"), ".gradio_tmp"), # Home directory
|
| 31 |
+
tempfile.mkdtemp(prefix="gradio_") # System temp with unique name
|
| 32 |
+
]
|
| 33 |
+
|
| 34 |
+
for temp_dir in possible_dirs:
|
| 35 |
+
try:
|
| 36 |
+
os.makedirs(temp_dir, exist_ok=True)
|
| 37 |
+
# Test write permission
|
| 38 |
+
test_file = os.path.join(temp_dir, "test_write.tmp")
|
| 39 |
+
with open(test_file, "w") as f:
|
| 40 |
+
f.write("test")
|
| 41 |
+
os.remove(test_file)
|
| 42 |
+
|
| 43 |
+
os.environ["GRADIO_TEMP_DIR"] = temp_dir
|
| 44 |
+
print(f"✅ Gradio temp directory set to: {temp_dir}")
|
| 45 |
+
return temp_dir
|
| 46 |
+
except (PermissionError, OSError) as e:
|
| 47 |
+
print(f"⚠️ Cannot use {temp_dir}: {e}")
|
| 48 |
+
continue
|
| 49 |
+
|
| 50 |
+
raise RuntimeError("Could not find a writable directory for Gradio temp files")
|
| 51 |
+
|
| 52 |
+
setup_gradio_temp_dir()
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
class MudditInterface:
|
| 57 |
+
def __init__(self, model_path="MeissonFlow/Meissonic", transformer_path="QingyuShi/Muddit"):
|
| 58 |
+
if torch.cuda.is_available():
|
| 59 |
+
device = "cuda"
|
| 60 |
+
else:
|
| 61 |
+
device = "cpu"
|
| 62 |
+
self.device = device
|
| 63 |
+
self.model_path = model_path
|
| 64 |
+
self.transformer_path = transformer_path or model_path
|
| 65 |
+
|
| 66 |
+
print("Loading models...")
|
| 67 |
+
self.load_models()
|
| 68 |
+
print("Models loaded successfully!")
|
| 69 |
+
|
| 70 |
+
def load_models(self):
|
| 71 |
+
"""Load all required models"""
|
| 72 |
+
try:
|
| 73 |
+
print("📥 Loading transformer model...")
|
| 74 |
+
self.model = SymmetricTransformer2DModel.from_pretrained(
|
| 75 |
+
self.transformer_path,
|
| 76 |
+
subfolder="transformer",
|
| 77 |
+
)
|
| 78 |
+
print("📥 Loading VQ model...")
|
| 79 |
+
self.vq_model = VQModel.from_pretrained(
|
| 80 |
+
self.model_path,
|
| 81 |
+
subfolder="vqvae"
|
| 82 |
+
)
|
| 83 |
+
print("📥 Loading text encoder...")
|
| 84 |
+
self.text_encoder = CLIPTextModelWithProjection.from_pretrained(
|
| 85 |
+
self.model_path,
|
| 86 |
+
subfolder="text_encoder"
|
| 87 |
+
)
|
| 88 |
+
print("📥 Loading tokenizer...")
|
| 89 |
+
self.tokenizer = CLIPTokenizer.from_pretrained(
|
| 90 |
+
self.model_path,
|
| 91 |
+
subfolder="tokenizer"
|
| 92 |
+
)
|
| 93 |
+
print("📥 Loading scheduler...")
|
| 94 |
+
self.scheduler = Scheduler.from_pretrained(
|
| 95 |
+
self.model_path,
|
| 96 |
+
subfolder="scheduler"
|
| 97 |
+
)
|
| 98 |
+
|
| 99 |
+
print("🔧 Assembling pipeline...")
|
| 100 |
+
self.pipe = UnifiedPipeline(
|
| 101 |
+
vqvae=self.vq_model,
|
| 102 |
+
tokenizer=self.tokenizer,
|
| 103 |
+
text_encoder=self.text_encoder,
|
| 104 |
+
transformer=self.model,
|
| 105 |
+
scheduler=self.scheduler,
|
| 106 |
+
)
|
| 107 |
+
print(f"🚀 Moving models to {self.device}...")
|
| 108 |
+
self.pipe.to(self.device)
|
| 109 |
+
except Exception as e:
|
| 110 |
+
print(f"❌ Error loading models: {str(e)}")
|
| 111 |
+
raise
|
| 112 |
+
|
| 113 |
+
def text_to_image(self, prompt, negative_prompt, height, width, steps, cfg_scale, seed):
|
| 114 |
+
"""Generate image from text prompt"""
|
| 115 |
+
try:
|
| 116 |
+
if seed == -1:
|
| 117 |
+
generator = None
|
| 118 |
+
else:
|
| 119 |
+
generator = torch.manual_seed(seed)
|
| 120 |
+
|
| 121 |
+
if not negative_prompt:
|
| 122 |
+
negative_prompt = "worst quality, low quality, low res, blurry, distortion, watermark, logo, signature, text, jpeg artifacts, signature, sketch, duplicate, ugly, identifying mark"
|
| 123 |
+
|
| 124 |
+
output = self.pipe(
|
| 125 |
+
prompt=[prompt],
|
| 126 |
+
negative_prompt=negative_prompt,
|
| 127 |
+
height=height,
|
| 128 |
+
width=width,
|
| 129 |
+
guidance_scale=cfg_scale,
|
| 130 |
+
num_inference_steps=steps,
|
| 131 |
+
mask_token_embedding=None,
|
| 132 |
+
generator=generator
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
if hasattr(output, 'images') and len(output.images) > 0:
|
| 136 |
+
return output.images[0]
|
| 137 |
+
else:
|
| 138 |
+
return None
|
| 139 |
+
|
| 140 |
+
except Exception as e:
|
| 141 |
+
gr.Error(f"Error generating image: {str(e)}")
|
| 142 |
+
return None
|
| 143 |
+
|
| 144 |
+
def image_to_text(self, image, question, height, width, steps, cfg_scale):
|
| 145 |
+
"""Answer question about the image"""
|
| 146 |
+
try:
|
| 147 |
+
if image is None:
|
| 148 |
+
return "Please upload an image."
|
| 149 |
+
|
| 150 |
+
# Convert PIL image to tensor
|
| 151 |
+
if isinstance(image, np.ndarray):
|
| 152 |
+
image = Image.fromarray(image)
|
| 153 |
+
|
| 154 |
+
# Save image temporarily and load using the existing function
|
| 155 |
+
temp_path = "temp_image.jpg"
|
| 156 |
+
image.save(temp_path)
|
| 157 |
+
|
| 158 |
+
try:
|
| 159 |
+
images = load_images_to_tensor(temp_path, target_size=(height, width))
|
| 160 |
+
finally:
|
| 161 |
+
if os.path.exists(temp_path):
|
| 162 |
+
os.remove(temp_path)
|
| 163 |
+
|
| 164 |
+
if images is None:
|
| 165 |
+
return "Failed to process the image."
|
| 166 |
+
|
| 167 |
+
questions = [question] * len(images)
|
| 168 |
+
|
| 169 |
+
output = self.pipe(
|
| 170 |
+
prompt=questions,
|
| 171 |
+
image=images,
|
| 172 |
+
height=height,
|
| 173 |
+
width=width,
|
| 174 |
+
guidance_scale=cfg_scale,
|
| 175 |
+
num_inference_steps=steps,
|
| 176 |
+
mask_token_embedding=None,
|
| 177 |
+
)
|
| 178 |
+
|
| 179 |
+
if hasattr(output, 'prompts') and len(output.prompts) > 0:
|
| 180 |
+
return output.prompts[0]
|
| 181 |
+
else:
|
| 182 |
+
return "No response generated."
|
| 183 |
+
|
| 184 |
+
except Exception as e:
|
| 185 |
+
return f"Error processing image: {str(e)}"
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
def create_muddit_interface():
|
| 189 |
+
# Initialize the model interface
|
| 190 |
+
interface = MudditInterface()
|
| 191 |
+
|
| 192 |
+
with gr.Blocks(title="Muddit Interface", theme=gr.themes.Soft()) as demo:
|
| 193 |
+
gr.Markdown("# 🎨 Muddit Interface")
|
| 194 |
+
gr.Markdown("Generate images from text or ask questions about images using Muddit.")
|
| 195 |
+
|
| 196 |
+
with gr.Tabs():
|
| 197 |
+
# Text-to-Image Tab
|
| 198 |
+
with gr.TabItem("🖼️ Text-to-Image"):
|
| 199 |
+
gr.Markdown("### Generate images from text descriptions")
|
| 200 |
+
|
| 201 |
+
with gr.Row():
|
| 202 |
+
with gr.Column(scale=1):
|
| 203 |
+
t2i_prompt = gr.Textbox(
|
| 204 |
+
label="Prompt",
|
| 205 |
+
placeholder="A majestic night sky awash with billowing clouds, sparkling with a million twinkling stars",
|
| 206 |
+
lines=3
|
| 207 |
+
)
|
| 208 |
+
t2i_negative = gr.Textbox(
|
| 209 |
+
label="Negative Prompt (optional)",
|
| 210 |
+
placeholder="worst quality, low quality, blurry...",
|
| 211 |
+
lines=2
|
| 212 |
+
)
|
| 213 |
+
|
| 214 |
+
with gr.Row():
|
| 215 |
+
t2i_width = gr.Slider(
|
| 216 |
+
minimum=256, maximum=1024, value=1024, step=64,
|
| 217 |
+
label="Width"
|
| 218 |
+
)
|
| 219 |
+
t2i_height = gr.Slider(
|
| 220 |
+
minimum=256, maximum=1024, value=1024, step=64,
|
| 221 |
+
label="Height"
|
| 222 |
+
)
|
| 223 |
+
|
| 224 |
+
with gr.Row():
|
| 225 |
+
t2i_steps = gr.Slider(
|
| 226 |
+
minimum=1, maximum=100, value=64, step=1,
|
| 227 |
+
label="Inference Steps"
|
| 228 |
+
)
|
| 229 |
+
t2i_cfg = gr.Slider(
|
| 230 |
+
minimum=1.0, maximum=20.0, value=9.0, step=0.5,
|
| 231 |
+
label="CFG Scale"
|
| 232 |
+
)
|
| 233 |
+
|
| 234 |
+
t2i_seed = gr.Number(
|
| 235 |
+
label="Seed (-1 for random)",
|
| 236 |
+
value=42,
|
| 237 |
+
precision=0
|
| 238 |
+
)
|
| 239 |
+
|
| 240 |
+
t2i_generate = gr.Button("🎨 Generate Image", variant="primary")
|
| 241 |
+
|
| 242 |
+
with gr.Column(scale=1):
|
| 243 |
+
t2i_output = gr.Image(label="Generated Image", type="pil")
|
| 244 |
+
|
| 245 |
+
t2i_generate.click(
|
| 246 |
+
fn=interface.text_to_image,
|
| 247 |
+
inputs=[t2i_prompt, t2i_negative, t2i_height, t2i_width, t2i_steps, t2i_cfg, t2i_seed],
|
| 248 |
+
outputs=[t2i_output]
|
| 249 |
+
)
|
| 250 |
+
|
| 251 |
+
# Visual Question Answering Tab
|
| 252 |
+
with gr.TabItem("❓ Visual Question Answering"):
|
| 253 |
+
gr.Markdown("### Ask questions about images")
|
| 254 |
+
|
| 255 |
+
with gr.Row():
|
| 256 |
+
with gr.Column(scale=1):
|
| 257 |
+
vqa_image = gr.Image(
|
| 258 |
+
label="Upload Image",
|
| 259 |
+
type="pil"
|
| 260 |
+
)
|
| 261 |
+
vqa_question = gr.Textbox(
|
| 262 |
+
label="Question",
|
| 263 |
+
placeholder="What do you see in this image?",
|
| 264 |
+
lines=2
|
| 265 |
+
)
|
| 266 |
+
|
| 267 |
+
with gr.Row():
|
| 268 |
+
vqa_width = gr.Slider(
|
| 269 |
+
minimum=256, maximum=1024, value=1024, step=64,
|
| 270 |
+
label="Width"
|
| 271 |
+
)
|
| 272 |
+
vqa_height = gr.Slider(
|
| 273 |
+
minimum=256, maximum=1024, value=1024, step=64,
|
| 274 |
+
label="Height"
|
| 275 |
+
)
|
| 276 |
+
|
| 277 |
+
with gr.Row():
|
| 278 |
+
vqa_steps = gr.Slider(
|
| 279 |
+
minimum=1, maximum=100, value=64, step=1,
|
| 280 |
+
label="Inference Steps"
|
| 281 |
+
)
|
| 282 |
+
vqa_cfg = gr.Slider(
|
| 283 |
+
minimum=1.0, maximum=20.0, value=9.0, step=0.5,
|
| 284 |
+
label="CFG Scale"
|
| 285 |
+
)
|
| 286 |
+
|
| 287 |
+
vqa_submit = gr.Button("🤔 Ask Question", variant="primary")
|
| 288 |
+
|
| 289 |
+
with gr.Column(scale=1):
|
| 290 |
+
vqa_output = gr.Textbox(
|
| 291 |
+
label="Answer",
|
| 292 |
+
lines=5,
|
| 293 |
+
interactive=False
|
| 294 |
+
)
|
| 295 |
+
|
| 296 |
+
vqa_submit.click(
|
| 297 |
+
fn=interface.image_to_text,
|
| 298 |
+
inputs=[vqa_image, vqa_question, vqa_height, vqa_width, vqa_steps, vqa_cfg],
|
| 299 |
+
outputs=[vqa_output]
|
| 300 |
+
)
|
| 301 |
+
|
| 302 |
+
# Example section
|
| 303 |
+
with gr.Accordion("📝 Examples", open=False):
|
| 304 |
+
gr.Markdown("""
|
| 305 |
+
### Text-to-Image Examples:
|
| 306 |
+
- "A majestic night sky awash with billowing clouds, sparkling with a million twinkling stars"
|
| 307 |
+
- "A hyper realistic image of a chimpanzee with a glass-enclosed brain on his head"
|
| 308 |
+
- "A samurai in a stylized cyberpunk outfit adorned with intricate steampunk gear"
|
| 309 |
+
|
| 310 |
+
### VQA Examples:
|
| 311 |
+
- "What objects do you see in this image?"
|
| 312 |
+
- "How many people are in the picture?"
|
| 313 |
+
- "What is the main subject of this image?"
|
| 314 |
+
- "Describe the scene in detail"
|
| 315 |
+
""")
|
| 316 |
+
|
| 317 |
+
return demo
|
| 318 |
+
|
| 319 |
+
|
| 320 |
+
if __name__ == "__main__":
|
| 321 |
+
demo = create_muddit_interface()
|
| 322 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio>=4.0.0
|
| 2 |
+
torch>=2.0.0
|
| 3 |
+
torchvision>=0.15.0
|
| 4 |
+
transformers>=4.40.0
|
| 5 |
+
diffusers>=0.30.0
|
| 6 |
+
pillow>=9.0.0
|
| 7 |
+
numpy>=1.21.0
|
| 8 |
+
accelerate>=0.20.0
|
| 9 |
+
safetensors>=0.3.0
|
src/__pycache__/pipeline.cpython-310.pyc
ADDED
|
Binary file (27.8 kB). View file
|
|
|
src/__pycache__/pipeline.cpython-39.pyc
ADDED
|
Binary file (27.5 kB). View file
|
|
|
src/__pycache__/scheduler.cpython-310.pyc
ADDED
|
Binary file (5.12 kB). View file
|
|
|
src/__pycache__/scheduler.cpython-39.pyc
ADDED
|
Binary file (5.09 kB). View file
|
|
|
src/__pycache__/transformer.cpython-310.pyc
ADDED
|
Binary file (37.5 kB). View file
|
|
|
src/__pycache__/transformer.cpython-39.pyc
ADDED
|
Binary file (37.4 kB). View file
|
|
|
src/pipeline.py
ADDED
|
@@ -0,0 +1,1231 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2024 The HuggingFace Team and The MeissonFlow Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
import os
|
| 15 |
+
import sys
|
| 16 |
+
from dataclasses import dataclass
|
| 17 |
+
|
| 18 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
| 19 |
+
import PIL.Image
|
| 20 |
+
import torch
|
| 21 |
+
import PIL
|
| 22 |
+
import numpy as np
|
| 23 |
+
|
| 24 |
+
from transformers import (
|
| 25 |
+
CLIPTextModelWithProjection,
|
| 26 |
+
CLIPTokenizer,
|
| 27 |
+
CLIPImageProcessor,
|
| 28 |
+
CLIPVisionModelWithProjection,
|
| 29 |
+
)
|
| 30 |
+
from transformers.models.gemma2.modeling_gemma2 import Gemma2Model
|
| 31 |
+
from transformers.models.gemma.tokenization_gemma_fast import GemmaTokenizerFast
|
| 32 |
+
|
| 33 |
+
from diffusers.image_processor import VaeImageProcessor
|
| 34 |
+
from diffusers.models import VQModel
|
| 35 |
+
from diffusers.utils import replace_example_docstring
|
| 36 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
| 37 |
+
from diffusers.utils import BaseOutput
|
| 38 |
+
|
| 39 |
+
from src.scheduler import Scheduler
|
| 40 |
+
from src.transformer import SymmetricTransformer2DModel
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
EXAMPLE_DOC_STRING = """
|
| 44 |
+
Examples:
|
| 45 |
+
```py
|
| 46 |
+
>>> image = pipe(prompt).images[0]
|
| 47 |
+
```
|
| 48 |
+
"""
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
|
| 52 |
+
latent_image_ids = torch.zeros(height // 2, width // 2, 3)
|
| 53 |
+
latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2)[:, None]
|
| 54 |
+
latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2)[None, :]
|
| 55 |
+
|
| 56 |
+
latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
|
| 57 |
+
|
| 58 |
+
latent_image_ids = latent_image_ids.reshape(
|
| 59 |
+
latent_image_id_height * latent_image_id_width, latent_image_id_channels
|
| 60 |
+
)
|
| 61 |
+
|
| 62 |
+
return latent_image_ids.to(device=device, dtype=dtype)
|
| 63 |
+
|
| 64 |
+
def dedup_consecutive_words(text: str) -> str:
|
| 65 |
+
"""
|
| 66 |
+
>>> dedup_consecutive_words("hello hello world world world")
|
| 67 |
+
'hello world'
|
| 68 |
+
"""
|
| 69 |
+
words = text.split()
|
| 70 |
+
if not words:
|
| 71 |
+
return text
|
| 72 |
+
|
| 73 |
+
out = [words[0]]
|
| 74 |
+
for w in words[1:]:
|
| 75 |
+
if w != out[-1]:
|
| 76 |
+
out.append(w)
|
| 77 |
+
return " ".join(out)
|
| 78 |
+
|
| 79 |
+
def keep_upto_last_period(text: str) -> str:
|
| 80 |
+
"""
|
| 81 |
+
Return the substring up to (and including) the last period-mark.
|
| 82 |
+
|
| 83 |
+
The function searches first for the Chinese full stop “。”;
|
| 84 |
+
if none is found, it falls back to the ASCII dot “.”.
|
| 85 |
+
|
| 86 |
+
Parameters
|
| 87 |
+
----------
|
| 88 |
+
text : str
|
| 89 |
+
Input string.
|
| 90 |
+
|
| 91 |
+
Returns
|
| 92 |
+
-------
|
| 93 |
+
str
|
| 94 |
+
Substring ending at the final period-mark. If no period is present,
|
| 95 |
+
the original string is returned unchanged.
|
| 96 |
+
"""
|
| 97 |
+
# Weired problem
|
| 98 |
+
text = text.replace("is such is", "").replace("such is", "")
|
| 99 |
+
# Fallback to the ASCII period
|
| 100 |
+
idx = -1
|
| 101 |
+
if idx == -1:
|
| 102 |
+
idx = text.rfind(".")
|
| 103 |
+
# If still not found, return original text
|
| 104 |
+
if idx == -1:
|
| 105 |
+
return text
|
| 106 |
+
# Keep everything up to (and including) the last period
|
| 107 |
+
return text[:idx + 1]
|
| 108 |
+
|
| 109 |
+
@dataclass
|
| 110 |
+
class UnifiedPipelineOutput(BaseOutput):
|
| 111 |
+
"""
|
| 112 |
+
Output class for image pipelines.
|
| 113 |
+
|
| 114 |
+
Args:
|
| 115 |
+
images (`List[PIL.Image.Image]` or `np.ndarray`)
|
| 116 |
+
List of denoised PIL images of length `batch_size` or NumPy array of shape `(batch_size, height, width,
|
| 117 |
+
num_channels)`.
|
| 118 |
+
"""
|
| 119 |
+
|
| 120 |
+
images: Union[List[PIL.Image.Image], np.ndarray]
|
| 121 |
+
prompts: List[str]
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
class UnifiedPipeline(DiffusionPipeline):
|
| 125 |
+
image_processor: VaeImageProcessor
|
| 126 |
+
vqvae: VQModel
|
| 127 |
+
tokenizer: CLIPTokenizer
|
| 128 |
+
tokenizer_2: GemmaTokenizerFast
|
| 129 |
+
text_encoder: CLIPTextModelWithProjection
|
| 130 |
+
text_encoder_2: Gemma2Model
|
| 131 |
+
transformer: SymmetricTransformer2DModel
|
| 132 |
+
scheduler: Scheduler
|
| 133 |
+
model_cpu_offload_seq = "text_encoder->transformer->vqvae"
|
| 134 |
+
|
| 135 |
+
def __init__(
|
| 136 |
+
self,
|
| 137 |
+
vqvae: VQModel,
|
| 138 |
+
tokenizer: CLIPTokenizer,
|
| 139 |
+
text_encoder: CLIPTextModelWithProjection,
|
| 140 |
+
transformer: SymmetricTransformer2DModel,
|
| 141 |
+
scheduler: Scheduler,
|
| 142 |
+
tokenizer_2: GemmaTokenizerFast = None,
|
| 143 |
+
text_encoder_2: Gemma2Model = None,
|
| 144 |
+
):
|
| 145 |
+
super().__init__()
|
| 146 |
+
|
| 147 |
+
self.register_modules(
|
| 148 |
+
vqvae=vqvae,
|
| 149 |
+
tokenizer=tokenizer,
|
| 150 |
+
tokenizer_2=tokenizer_2,
|
| 151 |
+
text_encoder=text_encoder,
|
| 152 |
+
text_encoder_2=text_encoder_2,
|
| 153 |
+
transformer=transformer,
|
| 154 |
+
scheduler=scheduler,
|
| 155 |
+
)
|
| 156 |
+
self.vae_scale_factor = 2 ** (len(self.vqvae.config.block_out_channels) - 1)
|
| 157 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_normalize=False)
|
| 158 |
+
|
| 159 |
+
@torch.no_grad()
|
| 160 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
| 161 |
+
def __call__(
|
| 162 |
+
self,
|
| 163 |
+
prompt: Optional[Union[List[str], str]] = None,
|
| 164 |
+
height: Optional[int] = 1024,
|
| 165 |
+
width: Optional[int] = 1024,
|
| 166 |
+
image: Optional[Union[torch.Tensor, PIL.Image.Image]] = None,
|
| 167 |
+
num_inference_steps: int = 48,
|
| 168 |
+
guidance_scale: float = 9.0,
|
| 169 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
| 170 |
+
num_images_per_prompt: Optional[int] = 1,
|
| 171 |
+
generator: Optional[torch.Generator] = None,
|
| 172 |
+
latents: Optional[torch.IntTensor] = None,
|
| 173 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
| 174 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 175 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
| 176 |
+
negative_encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 177 |
+
output_type = "pil",
|
| 178 |
+
return_dict: bool = True,
|
| 179 |
+
callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
|
| 180 |
+
callback_steps: int = 1,
|
| 181 |
+
micro_conditioning_aesthetic_score: int = 6,
|
| 182 |
+
micro_conditioning_crop_coord: Tuple[int, int] = (0, 0),
|
| 183 |
+
temperature: Union[int, Tuple[int, int], List[int]] = (2, 0),
|
| 184 |
+
mask_token_embedding: Optional[str] = None,
|
| 185 |
+
):
|
| 186 |
+
"""
|
| 187 |
+
The call function to the pipeline for generation.
|
| 188 |
+
|
| 189 |
+
Args:
|
| 190 |
+
prompt (`str` or `List[str]`, *optional*):
|
| 191 |
+
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
|
| 192 |
+
height (`int`, *optional*, defaults to `self.transformer.config.sample_size * self.vae_scale_factor`):
|
| 193 |
+
The height in pixels of the generated image.
|
| 194 |
+
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
| 195 |
+
The width in pixels of the generated image.
|
| 196 |
+
num_inference_steps (`int`, *optional*, defaults to 16):
|
| 197 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
| 198 |
+
expense of slower inference.
|
| 199 |
+
guidance_scale (`float`, *optional*, defaults to 10.0):
|
| 200 |
+
A higher guidance scale value encourages the model to generate images closely linked to the text
|
| 201 |
+
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
|
| 202 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
| 203 |
+
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
|
| 204 |
+
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
|
| 205 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
| 206 |
+
The number of images to generate per prompt.
|
| 207 |
+
generator (`torch.Generator`, *optional*):
|
| 208 |
+
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
| 209 |
+
generation deterministic.
|
| 210 |
+
latents (`torch.IntTensor`, *optional*):
|
| 211 |
+
Pre-generated tokens representing latent vectors in `self.vqvae`, to be used as inputs for image
|
| 212 |
+
gneration. If not provided, the starting latents will be completely masked.
|
| 213 |
+
prompt_embeds (`torch.Tensor`, *optional*):
|
| 214 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
| 215 |
+
provided, text embeddings are generated from the `prompt` input argument. A single vector from the
|
| 216 |
+
pooled and projected final hidden states.
|
| 217 |
+
encoder_hidden_states (`torch.Tensor`, *optional*):
|
| 218 |
+
Pre-generated penultimate hidden states from the text encoder providing additional text conditioning.
|
| 219 |
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
| 220 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
| 221 |
+
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
| 222 |
+
negative_encoder_hidden_states (`torch.Tensor`, *optional*):
|
| 223 |
+
Analogous to `encoder_hidden_states` for the positive prompt.
|
| 224 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
| 225 |
+
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
| 226 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 227 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
| 228 |
+
plain tuple.
|
| 229 |
+
callback (`Callable`, *optional*):
|
| 230 |
+
A function that calls every `callback_steps` steps during inference. The function is called with the
|
| 231 |
+
following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
|
| 232 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
| 233 |
+
The frequency at which the `callback` function is called. If not specified, the callback is called at
|
| 234 |
+
every step.
|
| 235 |
+
cross_attention_kwargs (`dict`, *optional*):
|
| 236 |
+
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
|
| 237 |
+
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
| 238 |
+
micro_conditioning_aesthetic_score (`int`, *optional*, defaults to 6):
|
| 239 |
+
The targeted aesthetic score according to the laion aesthetic classifier. See
|
| 240 |
+
https://laion.ai/blog/laion-aesthetics/ and the micro-conditioning section of
|
| 241 |
+
https://arxiv.org/abs/2307.01952.
|
| 242 |
+
micro_conditioning_crop_coord (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
| 243 |
+
The targeted height, width crop coordinates. See the micro-conditioning section of
|
| 244 |
+
https://arxiv.org/abs/2307.01952.
|
| 245 |
+
temperature (`Union[int, Tuple[int, int], List[int]]`, *optional*, defaults to (2, 0)):
|
| 246 |
+
Configures the temperature scheduler on `self.scheduler` see `Scheduler#set_timesteps`.
|
| 247 |
+
|
| 248 |
+
Examples:
|
| 249 |
+
|
| 250 |
+
Returns:
|
| 251 |
+
[`~pipelines.pipeline_utils.ImagePipelineOutput`] or `tuple`:
|
| 252 |
+
If `return_dict` is `True`, [`~pipelines.pipeline_utils.ImagePipelineOutput`] is returned, otherwise a
|
| 253 |
+
`tuple` is returned where the first element is a list with the generated images.
|
| 254 |
+
"""
|
| 255 |
+
if (prompt_embeds is not None and encoder_hidden_states is None) or (
|
| 256 |
+
prompt_embeds is None and encoder_hidden_states is not None
|
| 257 |
+
):
|
| 258 |
+
raise ValueError("pass either both `prompt_embeds` and `encoder_hidden_states` or neither")
|
| 259 |
+
|
| 260 |
+
if (negative_prompt_embeds is not None and negative_encoder_hidden_states is None) or (
|
| 261 |
+
negative_prompt_embeds is None and negative_encoder_hidden_states is not None
|
| 262 |
+
):
|
| 263 |
+
raise ValueError(
|
| 264 |
+
"pass either both `negatve_prompt_embeds` and `negative_encoder_hidden_states` or neither"
|
| 265 |
+
)
|
| 266 |
+
|
| 267 |
+
if self.text_encoder_2 is not None:
|
| 268 |
+
self.text_encoder_2.to(self._execution_device)
|
| 269 |
+
|
| 270 |
+
text2image = image is None
|
| 271 |
+
image2text = image is not None
|
| 272 |
+
|
| 273 |
+
if image2text:
|
| 274 |
+
if self.text_encoder_2 is not None:
|
| 275 |
+
prompt = "<extra_id_0>" * 256
|
| 276 |
+
prompt = [prompt] * len(image)
|
| 277 |
+
|
| 278 |
+
text_encoder_2_mask_id = self.tokenizer_2.convert_tokens_to_ids("<extra_id_0>")
|
| 279 |
+
self.scheduler.config.mask_token_id = text_encoder_2_mask_id
|
| 280 |
+
else:
|
| 281 |
+
mask_token = "<mask>"
|
| 282 |
+
self.tokenizer.add_tokens(mask_token, special_tokens=False)
|
| 283 |
+
clip_mask_id = self.tokenizer.convert_tokens_to_ids(mask_token)
|
| 284 |
+
self.text_encoder.resize_token_embeddings(len(self.tokenizer))
|
| 285 |
+
|
| 286 |
+
if mask_token_embedding is not None:
|
| 287 |
+
try:
|
| 288 |
+
if mask_token_embedding.endswith(".pth"):
|
| 289 |
+
mask_token_embedding = torch.load(mask_token_embedding)
|
| 290 |
+
else:
|
| 291 |
+
mask_token_embedding_path = os.path.join(mask_token_embedding, "mask_token_embedding.pth")
|
| 292 |
+
assert os.path.exists(mask_token_embedding_path), f"{mask_token_embedding_path} doesn't exists!"
|
| 293 |
+
mask_token_embedding = torch.load(mask_token_embedding_path)
|
| 294 |
+
|
| 295 |
+
mask_token_embedding = mask_token_embedding.to(self._execution_device, dtype=self.text_encoder.dtype)
|
| 296 |
+
self.text_encoder.get_input_embeddings().weight.data[clip_mask_id].copy_(mask_token_embedding)
|
| 297 |
+
|
| 298 |
+
except Exception as e:
|
| 299 |
+
print(f"Error loading mask token embedding: {e}")
|
| 300 |
+
print("Using random initialized mask token embedding")
|
| 301 |
+
mask_token_embedding = None
|
| 302 |
+
|
| 303 |
+
self.scheduler.config.mask_token_id = clip_mask_id
|
| 304 |
+
|
| 305 |
+
input_ids = torch.ones(
|
| 306 |
+
size=(len(image), self.tokenizer.model_max_length),
|
| 307 |
+
dtype=torch.int64,
|
| 308 |
+
device=self._execution_device
|
| 309 |
+
)
|
| 310 |
+
input_ids = input_ids * clip_mask_id
|
| 311 |
+
|
| 312 |
+
question_len = []
|
| 313 |
+
if prompt is None:
|
| 314 |
+
question_len = [0] * len(image)
|
| 315 |
+
elif isinstance(prompt, str):
|
| 316 |
+
question_ids = torch.LongTensor([self.tokenizer.encode(prompt)])
|
| 317 |
+
question_ids = question_ids.repeat(len(image), 1)
|
| 318 |
+
|
| 319 |
+
q_len = len(question_ids[0]) - 1 # remove <eos> token
|
| 320 |
+
question_len = [q_len] * len(image)
|
| 321 |
+
|
| 322 |
+
input_ids[:, :q_len] = question_ids[:, :-1]
|
| 323 |
+
else:
|
| 324 |
+
assert isinstance(prompt, list), f"prompt must be None or str or list!"
|
| 325 |
+
assert len(prompt) == len(image), f"VQA require equal num of images and prompts!"
|
| 326 |
+
for i, p in enumerate(prompt):
|
| 327 |
+
question_ids = torch.LongTensor([self.tokenizer.encode(p)])
|
| 328 |
+
|
| 329 |
+
q_len = len(question_ids[0]) - 1
|
| 330 |
+
question_len.append(q_len)
|
| 331 |
+
|
| 332 |
+
input_ids[i, :q_len] = question_ids[0, :-1]
|
| 333 |
+
else:
|
| 334 |
+
self.scheduler.config.mask_token_id = self.transformer.config.vocab_size - 1
|
| 335 |
+
|
| 336 |
+
if isinstance(prompt, str):
|
| 337 |
+
prompt = [prompt]
|
| 338 |
+
|
| 339 |
+
if image is not None:
|
| 340 |
+
batch_size = len(image)
|
| 341 |
+
else:
|
| 342 |
+
batch_size = len(prompt)
|
| 343 |
+
|
| 344 |
+
if height is None:
|
| 345 |
+
height = self.transformer.config.sample_size * self.vae_scale_factor
|
| 346 |
+
|
| 347 |
+
if width is None:
|
| 348 |
+
width = self.transformer.config.sample_size * self.vae_scale_factor
|
| 349 |
+
|
| 350 |
+
if isinstance(self.text_encoder, CLIPTextModelWithProjection):
|
| 351 |
+
text_encoder_type = "open_clip"
|
| 352 |
+
if isinstance(self.text_encoder_2, Gemma2Model):
|
| 353 |
+
text_encoder_type = "gemma"
|
| 354 |
+
|
| 355 |
+
if prompt_embeds is None:
|
| 356 |
+
if text_encoder_type == "t5_clip":
|
| 357 |
+
if text2image:
|
| 358 |
+
input_ids_clip = self.tokenizer(
|
| 359 |
+
prompt,
|
| 360 |
+
return_tensors="pt",
|
| 361 |
+
padding="max_length",
|
| 362 |
+
truncation=True,
|
| 363 |
+
add_special_tokens=True,
|
| 364 |
+
max_length=77,
|
| 365 |
+
).input_ids.to(self._execution_device)
|
| 366 |
+
outputs = self.text_encoder(input_ids_clip, return_dict=True, output_hidden_states=True)
|
| 367 |
+
prompt_embeds = outputs.text_embeds
|
| 368 |
+
|
| 369 |
+
input_ids_t5 = self.tokenizer_2(
|
| 370 |
+
prompt,
|
| 371 |
+
return_tensors="pt",
|
| 372 |
+
padding="max_length",
|
| 373 |
+
truncation=True,
|
| 374 |
+
add_special_tokens=True,
|
| 375 |
+
max_length=256,
|
| 376 |
+
).input_ids.to(self._execution_device)
|
| 377 |
+
|
| 378 |
+
outputs_2 = self.text_encoder_2(input_ids_t5, return_dict=True, output_hidden_states=True)
|
| 379 |
+
encoder_hidden_states = outputs_2.last_hidden_state
|
| 380 |
+
elif text_encoder_type == "open_clip":
|
| 381 |
+
if text2image:
|
| 382 |
+
input_ids = self.tokenizer(
|
| 383 |
+
prompt,
|
| 384 |
+
return_tensors="pt",
|
| 385 |
+
padding="max_length",
|
| 386 |
+
truncation=True,
|
| 387 |
+
add_special_tokens=True,
|
| 388 |
+
max_length=77,
|
| 389 |
+
).input_ids.to(self._execution_device)
|
| 390 |
+
|
| 391 |
+
outputs = self.text_encoder(input_ids, return_dict=True, output_hidden_states=True)
|
| 392 |
+
prompt_embeds = outputs.text_embeds
|
| 393 |
+
encoder_hidden_states = outputs.hidden_states[-2]
|
| 394 |
+
elif text_encoder_type == "gemma":
|
| 395 |
+
if text2image:
|
| 396 |
+
input_ids_clip = self.tokenizer(
|
| 397 |
+
prompt,
|
| 398 |
+
return_tensors="pt",
|
| 399 |
+
padding="max_length",
|
| 400 |
+
truncation=True,
|
| 401 |
+
add_special_tokens=True,
|
| 402 |
+
max_length=77,
|
| 403 |
+
).input_ids.to(self._execution_device)
|
| 404 |
+
outputs = self.text_encoder(input_ids_clip, return_dict=True, output_hidden_states=True)
|
| 405 |
+
prompt_embeds = outputs.text_embeds
|
| 406 |
+
|
| 407 |
+
input_ids_2 = self.tokenizer_2(
|
| 408 |
+
prompt,
|
| 409 |
+
truncation=True,
|
| 410 |
+
padding="max_length",
|
| 411 |
+
max_length=256,
|
| 412 |
+
return_tensors="pt",
|
| 413 |
+
).input_ids.to(self._execution_device)
|
| 414 |
+
|
| 415 |
+
outputs_2 = self.text_encoder_2(input_ids_2, return_dict=True, output_hidden_states=True)
|
| 416 |
+
encoder_hidden_states = outputs_2.last_hidden_state
|
| 417 |
+
|
| 418 |
+
prompt_embeds = prompt_embeds.repeat(num_images_per_prompt, 1)
|
| 419 |
+
encoder_hidden_states = encoder_hidden_states.repeat(num_images_per_prompt, 1, 1)
|
| 420 |
+
|
| 421 |
+
if guidance_scale > 1.0 and text2image:
|
| 422 |
+
if negative_prompt_embeds is None:
|
| 423 |
+
if negative_prompt is None:
|
| 424 |
+
negative_prompt = [""] * len(prompt)
|
| 425 |
+
|
| 426 |
+
if isinstance(negative_prompt, str):
|
| 427 |
+
negative_prompt = [negative_prompt] * len(prompt)
|
| 428 |
+
|
| 429 |
+
if text_encoder_type == "t5_clip":
|
| 430 |
+
input_ids = self.tokenizer(
|
| 431 |
+
negative_prompt,
|
| 432 |
+
return_tensors="pt",
|
| 433 |
+
padding="max_length",
|
| 434 |
+
truncation=True,
|
| 435 |
+
add_special_tokens=True,
|
| 436 |
+
max_length=77,
|
| 437 |
+
).input_ids.to(self._execution_device)
|
| 438 |
+
outputs = self.text_encoder(input_ids, return_dict=True, output_hidden_states=True)
|
| 439 |
+
negative_prompt_embeds = outputs.text_embeds
|
| 440 |
+
|
| 441 |
+
input_ids_2 = self.tokenizer_2(
|
| 442 |
+
negative_prompt,
|
| 443 |
+
return_tensors="pt",
|
| 444 |
+
padding="max_length",
|
| 445 |
+
truncation=True,
|
| 446 |
+
add_special_tokens=True,
|
| 447 |
+
max_length=256,
|
| 448 |
+
).input_ids.to(self._execution_device)
|
| 449 |
+
outputs_2 = self.text_encoder_2(input_ids_2, return_dict=True, output_hidden_states=True)
|
| 450 |
+
negative_encoder_hidden_states = outputs_2.last_hidden_state
|
| 451 |
+
|
| 452 |
+
elif text_encoder_type == "open_clip":
|
| 453 |
+
input_ids = self.tokenizer(
|
| 454 |
+
negative_prompt,
|
| 455 |
+
return_tensors="pt",
|
| 456 |
+
padding="max_length",
|
| 457 |
+
truncation=True,
|
| 458 |
+
add_special_tokens=True,
|
| 459 |
+
max_length=77,
|
| 460 |
+
).input_ids.to(self._execution_device)
|
| 461 |
+
|
| 462 |
+
outputs = self.text_encoder(input_ids, return_dict=True, output_hidden_states=True)
|
| 463 |
+
|
| 464 |
+
negative_prompt_embeds = outputs.text_embeds
|
| 465 |
+
negative_encoder_hidden_states = outputs.hidden_states[-2]
|
| 466 |
+
|
| 467 |
+
elif text_encoder_type == "gemma":
|
| 468 |
+
input_ids = self.tokenizer(
|
| 469 |
+
negative_prompt,
|
| 470 |
+
return_tensors="pt",
|
| 471 |
+
padding="max_length",
|
| 472 |
+
truncation=True,
|
| 473 |
+
add_special_tokens=True,
|
| 474 |
+
max_length=77,
|
| 475 |
+
).input_ids.to(self._execution_device)
|
| 476 |
+
outputs = self.text_encoder(input_ids, return_dict=True, output_hidden_states=True)
|
| 477 |
+
negative_prompt_embeds = outputs.text_embeds
|
| 478 |
+
|
| 479 |
+
input_ids_2 = self.tokenizer_2(
|
| 480 |
+
negative_prompt,
|
| 481 |
+
truncation=True,
|
| 482 |
+
padding="max_length",
|
| 483 |
+
max_length=256,
|
| 484 |
+
return_tensors="pt",
|
| 485 |
+
).input_ids.to(self._execution_device)
|
| 486 |
+
outputs_2 = self.text_encoder_2(input_ids_2, return_dict=True, output_hidden_states=True)
|
| 487 |
+
negative_encoder_hidden_states = outputs_2.last_hidden_state
|
| 488 |
+
|
| 489 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(num_images_per_prompt, 1)
|
| 490 |
+
negative_encoder_hidden_states = negative_encoder_hidden_states.repeat(num_images_per_prompt, 1, 1)
|
| 491 |
+
|
| 492 |
+
prompt_embeds = torch.concat([negative_prompt_embeds, prompt_embeds])
|
| 493 |
+
encoder_hidden_states = torch.concat([negative_encoder_hidden_states, encoder_hidden_states])
|
| 494 |
+
|
| 495 |
+
# Note that the micro conditionings _do_ flip the order of width, height for the original size
|
| 496 |
+
# and the crop coordinates. This is how it was done in the original code base
|
| 497 |
+
micro_conds = torch.tensor(
|
| 498 |
+
[
|
| 499 |
+
width,
|
| 500 |
+
height,
|
| 501 |
+
micro_conditioning_crop_coord[0],
|
| 502 |
+
micro_conditioning_crop_coord[1],
|
| 503 |
+
micro_conditioning_aesthetic_score,
|
| 504 |
+
],
|
| 505 |
+
device=self._execution_device,
|
| 506 |
+
dtype=encoder_hidden_states.dtype,
|
| 507 |
+
)
|
| 508 |
+
micro_conds = micro_conds.unsqueeze(0)
|
| 509 |
+
micro_conds = micro_conds.expand(2 * batch_size if guidance_scale > 1.0 and text2image else batch_size, -1)
|
| 510 |
+
|
| 511 |
+
shape = (batch_size, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
| 512 |
+
|
| 513 |
+
if latents is None and text2image:
|
| 514 |
+
latents = torch.full(
|
| 515 |
+
shape, self.scheduler.config.mask_token_id, dtype=torch.long, device=self._execution_device
|
| 516 |
+
)
|
| 517 |
+
elif image2text:
|
| 518 |
+
if text_encoder_type in ("t5_clip", "gemma"):
|
| 519 |
+
latents = input_ids_2 # [b, l]
|
| 520 |
+
else:
|
| 521 |
+
latents = input_ids
|
| 522 |
+
|
| 523 |
+
model_input = None
|
| 524 |
+
|
| 525 |
+
step_by_step = []
|
| 526 |
+
|
| 527 |
+
self.scheduler.set_timesteps(num_inference_steps, temperature, self._execution_device)
|
| 528 |
+
num_warmup_steps = len(self.scheduler.timesteps) - num_inference_steps * self.scheduler.order
|
| 529 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
| 530 |
+
for i, timestep in enumerate(self.scheduler.timesteps):
|
| 531 |
+
if guidance_scale > 1.0 and text2image:
|
| 532 |
+
model_input = torch.cat([latents] * 2)
|
| 533 |
+
encoder_hidden_states = encoder_hidden_states
|
| 534 |
+
elif image2text:
|
| 535 |
+
if model_input is None:
|
| 536 |
+
model_input = self.vqvae.quantize(
|
| 537 |
+
self.vqvae.encode(image.to(self._execution_device, dtype=self.vqvae.dtype)).latents
|
| 538 |
+
)[2][2].reshape(batch_size, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
| 539 |
+
|
| 540 |
+
if text_encoder_type in ("t5_clip", "gemma"):
|
| 541 |
+
outputs_t5 = self.text_encoder_2(latents, return_dict=True)
|
| 542 |
+
encoder_hidden_states = outputs_t5.last_hidden_state
|
| 543 |
+
|
| 544 |
+
batch_prompt = []
|
| 545 |
+
for i in range(latents.size(0)):
|
| 546 |
+
masked_prompt_input_id = latents[i].tolist()
|
| 547 |
+
prompt = self.tokenizer_2.decode(masked_prompt_input_id, skip_special_tokens=True)
|
| 548 |
+
batch_prompt.append(prompt)
|
| 549 |
+
|
| 550 |
+
masked_prompt_input_ids_clip = self.tokenizer(
|
| 551 |
+
batch_prompt,
|
| 552 |
+
truncation=True,
|
| 553 |
+
padding="max_length",
|
| 554 |
+
max_length=77,
|
| 555 |
+
return_tensors="pt"
|
| 556 |
+
).input_ids
|
| 557 |
+
masked_prompt_input_ids_clip = masked_prompt_input_ids_clip.to(self._execution_device)
|
| 558 |
+
outputs_clip = self.text_encoder(input_ids=masked_prompt_input_ids_clip, return_dict=True)
|
| 559 |
+
prompt_embeds = outputs_clip.text_embeds
|
| 560 |
+
|
| 561 |
+
else:
|
| 562 |
+
outputs = self.text_encoder(latents, return_dict=True, output_hidden_states=True)
|
| 563 |
+
prompt_embeds = outputs.text_embeds
|
| 564 |
+
encoder_hidden_states = outputs.hidden_states[-2]
|
| 565 |
+
else:
|
| 566 |
+
model_input = latents
|
| 567 |
+
encoder_hidden_states = encoder_hidden_states
|
| 568 |
+
|
| 569 |
+
if height == 1024: #args.resolution == 1024:
|
| 570 |
+
img_ids = _prepare_latent_image_ids(
|
| 571 |
+
model_input.shape[0],
|
| 572 |
+
model_input.shape[-2],
|
| 573 |
+
model_input.shape[-1],
|
| 574 |
+
model_input.device,
|
| 575 |
+
model_input.dtype
|
| 576 |
+
)
|
| 577 |
+
else:
|
| 578 |
+
img_ids = _prepare_latent_image_ids(
|
| 579 |
+
model_input.shape[0],
|
| 580 |
+
model_input.shape[-2],
|
| 581 |
+
model_input.shape[-1],
|
| 582 |
+
model_input.device,
|
| 583 |
+
model_input.dtype
|
| 584 |
+
)
|
| 585 |
+
txt_ids = torch.zeros(encoder_hidden_states.shape[1], 3).to(
|
| 586 |
+
device=encoder_hidden_states.device,
|
| 587 |
+
dtype=encoder_hidden_states.dtype
|
| 588 |
+
)
|
| 589 |
+
|
| 590 |
+
# timestep_ = int(timestep / num_inference_steps * 1000)
|
| 591 |
+
model_output, encoder_hidden_states_tmp = self.transformer(
|
| 592 |
+
hidden_states=model_input,
|
| 593 |
+
micro_conds=micro_conds,
|
| 594 |
+
pooled_projections=prompt_embeds,
|
| 595 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 596 |
+
img_ids=img_ids,
|
| 597 |
+
txt_ids=txt_ids,
|
| 598 |
+
timestep=torch.tensor([timestep / num_inference_steps], device=model_input.device),
|
| 599 |
+
)
|
| 600 |
+
|
| 601 |
+
if image2text:
|
| 602 |
+
encoder_hidden_states = encoder_hidden_states_tmp.clone()
|
| 603 |
+
|
| 604 |
+
if guidance_scale > 1.0 and text2image:
|
| 605 |
+
uncond_logits, cond_logits = model_output.chunk(2)
|
| 606 |
+
to_scheduler = uncond_logits + guidance_scale * (cond_logits - uncond_logits)
|
| 607 |
+
elif image2text:
|
| 608 |
+
to_scheduler = encoder_hidden_states
|
| 609 |
+
else:
|
| 610 |
+
to_scheduler = model_output
|
| 611 |
+
|
| 612 |
+
latents = self.scheduler.step(
|
| 613 |
+
model_output=to_scheduler,
|
| 614 |
+
timestep=timestep,
|
| 615 |
+
sample=latents,
|
| 616 |
+
generator=generator,
|
| 617 |
+
).prev_sample
|
| 618 |
+
|
| 619 |
+
# this line will print the intermediate results of the image-to-text generation
|
| 620 |
+
# step_by_step.append(self.tokenizer.decode(latents[0].tolist(), skip_special_tokens=True))
|
| 621 |
+
|
| 622 |
+
# this line will print the intermediate results of the text-to-image generation
|
| 623 |
+
# output = self.vqvae.decode(
|
| 624 |
+
# latents,
|
| 625 |
+
# force_not_quantize=True,
|
| 626 |
+
# shape=(
|
| 627 |
+
# batch_size,
|
| 628 |
+
# height // self.vae_scale_factor,
|
| 629 |
+
# width // self.vae_scale_factor,
|
| 630 |
+
# self.vqvae.config.latent_channels,
|
| 631 |
+
# ),
|
| 632 |
+
# ).sample.clip(0, 1)
|
| 633 |
+
# output = self.image_processor.postprocess(output, output_type) # output is a list of PIL.Image, you need to save it.
|
| 634 |
+
|
| 635 |
+
if i == len(self.scheduler.timesteps) - 1 or (
|
| 636 |
+
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
|
| 637 |
+
):
|
| 638 |
+
progress_bar.update()
|
| 639 |
+
if callback is not None and i % callback_steps == 0:
|
| 640 |
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
| 641 |
+
callback(step_idx, timestep, latents)
|
| 642 |
+
|
| 643 |
+
# with open("step_by_step.txt", "w") as file:
|
| 644 |
+
# for prompt in step_by_step:
|
| 645 |
+
# file.write(prompt + "\n")
|
| 646 |
+
|
| 647 |
+
if guidance_scale > 1.0 and text2image:
|
| 648 |
+
decoded_input_ids = encoder_hidden_states[encoder_hidden_states.shape[0] // 2:].argmax(-1)
|
| 649 |
+
else:
|
| 650 |
+
decoded_input_ids = encoder_hidden_states.argmax(-1)
|
| 651 |
+
|
| 652 |
+
prompts = []
|
| 653 |
+
for i, prompt in enumerate(decoded_input_ids):
|
| 654 |
+
if image2text:
|
| 655 |
+
q_len = question_len[i]
|
| 656 |
+
prompt = self.tokenizer.decode(prompt.tolist()[q_len:], skip_special_tokens=True)
|
| 657 |
+
prompts.append(keep_upto_last_period(dedup_consecutive_words(prompt)))
|
| 658 |
+
else:
|
| 659 |
+
prompts.append("Placeholder")
|
| 660 |
+
|
| 661 |
+
if output_type == "latent":
|
| 662 |
+
output = latents
|
| 663 |
+
else:
|
| 664 |
+
needs_upcasting = self.vqvae.dtype == torch.float16 and self.vqvae.config.force_upcast
|
| 665 |
+
|
| 666 |
+
if needs_upcasting:
|
| 667 |
+
self.vqvae.float()
|
| 668 |
+
|
| 669 |
+
if text2image:
|
| 670 |
+
to_vqvae = latents
|
| 671 |
+
else:
|
| 672 |
+
to_vqvae = model_input
|
| 673 |
+
|
| 674 |
+
output = self.vqvae.decode(
|
| 675 |
+
to_vqvae,
|
| 676 |
+
force_not_quantize=True,
|
| 677 |
+
shape=(
|
| 678 |
+
batch_size,
|
| 679 |
+
height // self.vae_scale_factor,
|
| 680 |
+
width // self.vae_scale_factor,
|
| 681 |
+
self.vqvae.config.latent_channels,
|
| 682 |
+
),
|
| 683 |
+
).sample.clip(0, 1)
|
| 684 |
+
output = self.image_processor.postprocess(output, output_type)
|
| 685 |
+
|
| 686 |
+
if needs_upcasting:
|
| 687 |
+
self.vqvae.half()
|
| 688 |
+
|
| 689 |
+
self.maybe_free_model_hooks()
|
| 690 |
+
|
| 691 |
+
if not return_dict:
|
| 692 |
+
return (output,)
|
| 693 |
+
|
| 694 |
+
return UnifiedPipelineOutput(images=output, prompts=prompts)
|
| 695 |
+
|
| 696 |
+
|
| 697 |
+
class UnifiedPipeline_new(DiffusionPipeline):
|
| 698 |
+
image_processor: VaeImageProcessor
|
| 699 |
+
vqvae: VQModel
|
| 700 |
+
tokenizer: CLIPTokenizer
|
| 701 |
+
tokenizer_2: GemmaTokenizerFast
|
| 702 |
+
text_encoder: CLIPTextModelWithProjection
|
| 703 |
+
text_encoder_2: Gemma2Model
|
| 704 |
+
image_encoder: CLIPVisionModelWithProjection
|
| 705 |
+
clip_image_processor: CLIPImageProcessor
|
| 706 |
+
transformer: SymmetricTransformer2DModel
|
| 707 |
+
scheduler: Scheduler
|
| 708 |
+
|
| 709 |
+
def __init__(
|
| 710 |
+
self,
|
| 711 |
+
vqvae: VQModel,
|
| 712 |
+
tokenizer: CLIPTokenizer,
|
| 713 |
+
text_encoder: CLIPTextModelWithProjection,
|
| 714 |
+
transformer: SymmetricTransformer2DModel,
|
| 715 |
+
scheduler: Scheduler,
|
| 716 |
+
tokenizer_2: Optional[GemmaTokenizerFast]=None,
|
| 717 |
+
text_encoder_2: Optional[Gemma2Model]=None,
|
| 718 |
+
image_encoder: Optional[CLIPVisionModelWithProjection]=None,
|
| 719 |
+
clip_image_processor: Optional[CLIPImageProcessor]=None,
|
| 720 |
+
):
|
| 721 |
+
super().__init__()
|
| 722 |
+
|
| 723 |
+
self.register_modules(
|
| 724 |
+
vqvae=vqvae,
|
| 725 |
+
tokenizer=tokenizer,
|
| 726 |
+
tokenizer_2=tokenizer_2,
|
| 727 |
+
text_encoder=text_encoder,
|
| 728 |
+
text_encoder_2=text_encoder_2,
|
| 729 |
+
image_encoder=image_encoder,
|
| 730 |
+
clip_image_processor=clip_image_processor,
|
| 731 |
+
transformer=transformer,
|
| 732 |
+
scheduler=scheduler,
|
| 733 |
+
)
|
| 734 |
+
self.vae_scale_factor = 2 ** (len(self.vqvae.config.block_out_channels) - 1)
|
| 735 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_normalize=False)
|
| 736 |
+
|
| 737 |
+
@torch.no_grad()
|
| 738 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
| 739 |
+
def __call__(
|
| 740 |
+
self,
|
| 741 |
+
prompt: Optional[Union[List[str], str]] = None,
|
| 742 |
+
height: Optional[int] = 1024,
|
| 743 |
+
width: Optional[int] = 1024,
|
| 744 |
+
image: Optional[torch.Tensor] = None,
|
| 745 |
+
num_inference_steps: int = 48,
|
| 746 |
+
guidance_scale: float = 9.0,
|
| 747 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
| 748 |
+
num_images_per_prompt: Optional[int] = 1,
|
| 749 |
+
generator: Optional[torch.Generator] = None,
|
| 750 |
+
latents: Optional[torch.IntTensor] = None,
|
| 751 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
| 752 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 753 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
| 754 |
+
negative_encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 755 |
+
output_type = "pil",
|
| 756 |
+
return_dict: bool = True,
|
| 757 |
+
callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
|
| 758 |
+
callback_steps: int = 1,
|
| 759 |
+
micro_conditioning_aesthetic_score: int = 6,
|
| 760 |
+
micro_conditioning_crop_coord: Tuple[int, int] = (0, 0),
|
| 761 |
+
temperature: Union[int, Tuple[int, int], List[int]] = (2, 0),
|
| 762 |
+
mask_token_embedding: Optional[str] = None,
|
| 763 |
+
):
|
| 764 |
+
"""
|
| 765 |
+
The call function to the pipeline for generation.
|
| 766 |
+
|
| 767 |
+
Args:
|
| 768 |
+
prompt (`str` or `List[str]`, *optional*):
|
| 769 |
+
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
|
| 770 |
+
height (`int`, *optional*, defaults to `self.transformer.config.sample_size * self.vae_scale_factor`):
|
| 771 |
+
The height in pixels of the generated image.
|
| 772 |
+
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
| 773 |
+
The width in pixels of the generated image.
|
| 774 |
+
num_inference_steps (`int`, *optional*, defaults to 16):
|
| 775 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
| 776 |
+
expense of slower inference.
|
| 777 |
+
guidance_scale (`float`, *optional*, defaults to 10.0):
|
| 778 |
+
A higher guidance scale value encourages the model to generate images closely linked to the text
|
| 779 |
+
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
|
| 780 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
| 781 |
+
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
|
| 782 |
+
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
|
| 783 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
| 784 |
+
The number of images to generate per prompt.
|
| 785 |
+
generator (`torch.Generator`, *optional*):
|
| 786 |
+
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
| 787 |
+
generation deterministic.
|
| 788 |
+
latents (`torch.IntTensor`, *optional*):
|
| 789 |
+
Pre-generated tokens representing latent vectors in `self.vqvae`, to be used as inputs for image
|
| 790 |
+
gneration. If not provided, the starting latents will be completely masked.
|
| 791 |
+
prompt_embeds (`torch.Tensor`, *optional*):
|
| 792 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
| 793 |
+
provided, text embeddings are generated from the `prompt` input argument. A single vector from the
|
| 794 |
+
pooled and projected final hidden states.
|
| 795 |
+
encoder_hidden_states (`torch.Tensor`, *optional*):
|
| 796 |
+
Pre-generated penultimate hidden states from the text encoder providing additional text conditioning.
|
| 797 |
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
| 798 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
| 799 |
+
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
| 800 |
+
negative_encoder_hidden_states (`torch.Tensor`, *optional*):
|
| 801 |
+
Analogous to `encoder_hidden_states` for the positive prompt.
|
| 802 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
| 803 |
+
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
| 804 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 805 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
| 806 |
+
plain tuple.
|
| 807 |
+
callback (`Callable`, *optional*):
|
| 808 |
+
A function that calls every `callback_steps` steps during inference. The function is called with the
|
| 809 |
+
following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
|
| 810 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
| 811 |
+
The frequency at which the `callback` function is called. If not specified, the callback is called at
|
| 812 |
+
every step.
|
| 813 |
+
cross_attention_kwargs (`dict`, *optional*):
|
| 814 |
+
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
|
| 815 |
+
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
| 816 |
+
micro_conditioning_aesthetic_score (`int`, *optional*, defaults to 6):
|
| 817 |
+
The targeted aesthetic score according to the laion aesthetic classifier. See
|
| 818 |
+
https://laion.ai/blog/laion-aesthetics/ and the micro-conditioning section of
|
| 819 |
+
https://arxiv.org/abs/2307.01952.
|
| 820 |
+
micro_conditioning_crop_coord (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
| 821 |
+
The targeted height, width crop coordinates. See the micro-conditioning section of
|
| 822 |
+
https://arxiv.org/abs/2307.01952.
|
| 823 |
+
temperature (`Union[int, Tuple[int, int], List[int]]`, *optional*, defaults to (2, 0)):
|
| 824 |
+
Configures the temperature scheduler on `self.scheduler` see `Scheduler#set_timesteps`.
|
| 825 |
+
|
| 826 |
+
Examples:
|
| 827 |
+
|
| 828 |
+
Returns:
|
| 829 |
+
[`~pipelines.pipeline_utils.ImagePipelineOutput`] or `tuple`:
|
| 830 |
+
If `return_dict` is `True`, [`~pipelines.pipeline_utils.ImagePipelineOutput`] is returned, otherwise a
|
| 831 |
+
`tuple` is returned where the first element is a list with the generated images.
|
| 832 |
+
"""
|
| 833 |
+
if (prompt_embeds is not None and encoder_hidden_states is None) or (
|
| 834 |
+
prompt_embeds is None and encoder_hidden_states is not None
|
| 835 |
+
):
|
| 836 |
+
raise ValueError("pass either both `prompt_embeds` and `encoder_hidden_states` or neither")
|
| 837 |
+
|
| 838 |
+
if (negative_prompt_embeds is not None and negative_encoder_hidden_states is None) or (
|
| 839 |
+
negative_prompt_embeds is None and negative_encoder_hidden_states is not None
|
| 840 |
+
):
|
| 841 |
+
raise ValueError(
|
| 842 |
+
"pass either both `negatve_prompt_embeds` and `negative_encoder_hidden_states` or neither"
|
| 843 |
+
)
|
| 844 |
+
|
| 845 |
+
if self.text_encoder_2 is not None:
|
| 846 |
+
self.text_encoder_2.to(self._execution_device)
|
| 847 |
+
|
| 848 |
+
text2image = image is None
|
| 849 |
+
image2text = image is not None
|
| 850 |
+
|
| 851 |
+
if image2text:
|
| 852 |
+
if self.text_encoder_2 is not None:
|
| 853 |
+
prompt = "<mask>" * 256
|
| 854 |
+
prompt = [prompt] * image.shape[0]
|
| 855 |
+
|
| 856 |
+
text_encoder_2_mask_id = self.tokenizer_2.convert_tokens_to_ids("<mask>")
|
| 857 |
+
self.scheduler.config.mask_token_id = text_encoder_2_mask_id
|
| 858 |
+
else:
|
| 859 |
+
mask_token = "<mask>"
|
| 860 |
+
self.tokenizer.add_tokens(mask_token, special_tokens=False)
|
| 861 |
+
clip_mask_id = self.tokenizer.convert_tokens_to_ids(mask_token)
|
| 862 |
+
self.text_encoder.resize_token_embeddings(len(self.tokenizer))
|
| 863 |
+
|
| 864 |
+
if mask_token_embedding is not None:
|
| 865 |
+
try:
|
| 866 |
+
if mask_token_embedding.endswith(".pth"):
|
| 867 |
+
mask_token_embedding = torch.load(mask_token_embedding)
|
| 868 |
+
else:
|
| 869 |
+
mask_token_embedding = os.path.dirname(mask_token_embedding)
|
| 870 |
+
mask_token_embedding_path = os.path.join(mask_token_embedding, "mask_token_embedding.pth")
|
| 871 |
+
assert os.path.exists(mask_token_embedding_path), f"{mask_token_embedding_path} doesn't exists!"
|
| 872 |
+
mask_token_embedding = torch.load(mask_token_embedding_path)
|
| 873 |
+
|
| 874 |
+
mask_token_embedding = mask_token_embedding.to(self._execution_device, dtype=self.text_encoder.dtype)
|
| 875 |
+
self.text_encoder.get_input_embeddings().weight.data[clip_mask_id].copy_(mask_token_embedding)
|
| 876 |
+
|
| 877 |
+
except Exception as e:
|
| 878 |
+
print(f"Error loading mask token embedding: {e}")
|
| 879 |
+
print("Using random initialized mask token embedding")
|
| 880 |
+
mask_token_embedding = None
|
| 881 |
+
|
| 882 |
+
self.scheduler.config.mask_token_id = clip_mask_id
|
| 883 |
+
|
| 884 |
+
input_ids = torch.ones(
|
| 885 |
+
size=(image.shape[0], self.tokenizer.model_max_length),
|
| 886 |
+
dtype=torch.int64,
|
| 887 |
+
device=self._execution_device
|
| 888 |
+
)
|
| 889 |
+
input_ids = input_ids * clip_mask_id
|
| 890 |
+
|
| 891 |
+
question_len = []
|
| 892 |
+
if prompt is None:
|
| 893 |
+
question_len = [0] * image.shape[0]
|
| 894 |
+
elif isinstance(prompt, str):
|
| 895 |
+
question_ids = torch.LongTensor([self.tokenizer.encode(prompt)])
|
| 896 |
+
question_ids = question_ids.repeat(image.shape[0], 1)
|
| 897 |
+
|
| 898 |
+
q_len = len(question_ids[0]) - 1 # remove <eos> token
|
| 899 |
+
question_len = [q_len] * image.shape[0]
|
| 900 |
+
|
| 901 |
+
input_ids[:, :q_len] = question_ids[:, :-1]
|
| 902 |
+
else:
|
| 903 |
+
assert isinstance(prompt, list), f"prompt must be None or str or list!"
|
| 904 |
+
assert len(prompt) == image.shape[0], f"VQA require equal num of images and prompts!"
|
| 905 |
+
for i, p in enumerate(prompt):
|
| 906 |
+
question_ids = torch.LongTensor([self.tokenizer.encode(p)])
|
| 907 |
+
|
| 908 |
+
q_len = len(question_ids[0]) - 1
|
| 909 |
+
question_len.append(q_len)
|
| 910 |
+
|
| 911 |
+
input_ids[i, :q_len] = question_ids[0, :-1]
|
| 912 |
+
else:
|
| 913 |
+
self.scheduler.config.mask_token_id = self.transformer.config.vocab_size - 1
|
| 914 |
+
|
| 915 |
+
if image is not None:
|
| 916 |
+
batch_size = image.shape[0]
|
| 917 |
+
elif isinstance(prompt, list):
|
| 918 |
+
batch_size = len(prompt)
|
| 919 |
+
elif isinstance(prompt, str):
|
| 920 |
+
batch_size = 1
|
| 921 |
+
prompt = [prompt]
|
| 922 |
+
else:
|
| 923 |
+
raise ValueError("prompt must be None or str or list!")
|
| 924 |
+
|
| 925 |
+
if height is None:
|
| 926 |
+
height = self.transformer.config.sample_size * self.vae_scale_factor
|
| 927 |
+
|
| 928 |
+
if width is None:
|
| 929 |
+
width = self.transformer.config.sample_size * self.vae_scale_factor
|
| 930 |
+
|
| 931 |
+
if isinstance(self.text_encoder, CLIPTextModelWithProjection):
|
| 932 |
+
text_encoder_type = "open_clip"
|
| 933 |
+
if isinstance(self.text_encoder_2, Gemma2Model):
|
| 934 |
+
text_encoder_type = "gemma"
|
| 935 |
+
|
| 936 |
+
if prompt_embeds is None and text2image:
|
| 937 |
+
if text_encoder_type == "open_clip":
|
| 938 |
+
input_ids = self.tokenizer(
|
| 939 |
+
prompt,
|
| 940 |
+
return_tensors="pt",
|
| 941 |
+
padding="max_length",
|
| 942 |
+
truncation=True,
|
| 943 |
+
add_special_tokens=True,
|
| 944 |
+
max_length=77,
|
| 945 |
+
).input_ids.to(self._execution_device)
|
| 946 |
+
|
| 947 |
+
outputs = self.text_encoder(input_ids, return_dict=True, output_hidden_states=True)
|
| 948 |
+
prompt_embeds = outputs.text_embeds
|
| 949 |
+
encoder_hidden_states = outputs.hidden_states[-2]
|
| 950 |
+
elif text_encoder_type == "gemma":
|
| 951 |
+
input_ids_clip = self.tokenizer(
|
| 952 |
+
prompt,
|
| 953 |
+
return_tensors="pt",
|
| 954 |
+
padding="max_length",
|
| 955 |
+
truncation=True,
|
| 956 |
+
add_special_tokens=True,
|
| 957 |
+
max_length=77,
|
| 958 |
+
).input_ids.to(self._execution_device)
|
| 959 |
+
outputs = self.text_encoder(input_ids_clip, return_dict=True, output_hidden_states=True)
|
| 960 |
+
prompt_embeds = outputs.text_embeds
|
| 961 |
+
|
| 962 |
+
input_ids_2 = self.tokenizer_2(
|
| 963 |
+
prompt,
|
| 964 |
+
truncation=True,
|
| 965 |
+
padding="max_length",
|
| 966 |
+
max_length=256,
|
| 967 |
+
return_tensors="pt",
|
| 968 |
+
).input_ids.to(self._execution_device)
|
| 969 |
+
|
| 970 |
+
outputs_2 = self.text_encoder_2(input_ids_2, return_dict=True, output_hidden_states=True)
|
| 971 |
+
encoder_hidden_states = outputs_2.last_hidden_state
|
| 972 |
+
|
| 973 |
+
prompt_embeds = prompt_embeds.repeat(num_images_per_prompt, 1)
|
| 974 |
+
encoder_hidden_states = encoder_hidden_states.repeat(num_images_per_prompt, 1, 1)
|
| 975 |
+
|
| 976 |
+
if guidance_scale > 1.0 and text2image:
|
| 977 |
+
if negative_prompt_embeds is None:
|
| 978 |
+
if negative_prompt is None:
|
| 979 |
+
negative_prompt = [""] * len(prompt)
|
| 980 |
+
|
| 981 |
+
if isinstance(negative_prompt, str):
|
| 982 |
+
negative_prompt = [negative_prompt] * len(prompt)
|
| 983 |
+
|
| 984 |
+
if text_encoder_type == "t5_clip":
|
| 985 |
+
input_ids = self.tokenizer(
|
| 986 |
+
negative_prompt,
|
| 987 |
+
return_tensors="pt",
|
| 988 |
+
padding="max_length",
|
| 989 |
+
truncation=True,
|
| 990 |
+
add_special_tokens=True,
|
| 991 |
+
max_length=77,
|
| 992 |
+
).input_ids.to(self._execution_device)
|
| 993 |
+
outputs = self.text_encoder(input_ids, return_dict=True, output_hidden_states=True)
|
| 994 |
+
negative_prompt_embeds = outputs.text_embeds
|
| 995 |
+
|
| 996 |
+
input_ids_2 = self.tokenizer_2(
|
| 997 |
+
negative_prompt,
|
| 998 |
+
return_tensors="pt",
|
| 999 |
+
padding="max_length",
|
| 1000 |
+
truncation=True,
|
| 1001 |
+
add_special_tokens=True,
|
| 1002 |
+
max_length=256,
|
| 1003 |
+
).input_ids.to(self._execution_device)
|
| 1004 |
+
outputs_2 = self.text_encoder_2(input_ids_2, return_dict=True, output_hidden_states=True)
|
| 1005 |
+
negative_encoder_hidden_states = outputs_2.last_hidden_state
|
| 1006 |
+
|
| 1007 |
+
elif text_encoder_type == "open_clip":
|
| 1008 |
+
input_ids = self.tokenizer(
|
| 1009 |
+
negative_prompt,
|
| 1010 |
+
return_tensors="pt",
|
| 1011 |
+
padding="max_length",
|
| 1012 |
+
truncation=True,
|
| 1013 |
+
add_special_tokens=True,
|
| 1014 |
+
max_length=77,
|
| 1015 |
+
).input_ids.to(self._execution_device)
|
| 1016 |
+
|
| 1017 |
+
outputs = self.text_encoder(input_ids, return_dict=True, output_hidden_states=True)
|
| 1018 |
+
|
| 1019 |
+
negative_prompt_embeds = outputs.text_embeds
|
| 1020 |
+
negative_encoder_hidden_states = outputs.hidden_states[-2]
|
| 1021 |
+
|
| 1022 |
+
elif text_encoder_type == "gemma":
|
| 1023 |
+
input_ids = self.tokenizer(
|
| 1024 |
+
negative_prompt,
|
| 1025 |
+
return_tensors="pt",
|
| 1026 |
+
padding="max_length",
|
| 1027 |
+
truncation=True,
|
| 1028 |
+
add_special_tokens=True,
|
| 1029 |
+
max_length=77,
|
| 1030 |
+
).input_ids.to(self._execution_device)
|
| 1031 |
+
outputs = self.text_encoder(input_ids, return_dict=True, output_hidden_states=True)
|
| 1032 |
+
negative_prompt_embeds = outputs.text_embeds
|
| 1033 |
+
|
| 1034 |
+
input_ids_2 = self.tokenizer_2(
|
| 1035 |
+
negative_prompt,
|
| 1036 |
+
truncation=True,
|
| 1037 |
+
padding="max_length",
|
| 1038 |
+
max_length=256,
|
| 1039 |
+
return_tensors="pt",
|
| 1040 |
+
).input_ids.to(self._execution_device)
|
| 1041 |
+
outputs_2 = self.text_encoder_2(input_ids_2, return_dict=True, output_hidden_states=True)
|
| 1042 |
+
negative_encoder_hidden_states = outputs_2.last_hidden_state
|
| 1043 |
+
|
| 1044 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(num_images_per_prompt, 1)
|
| 1045 |
+
negative_encoder_hidden_states = negative_encoder_hidden_states.repeat(num_images_per_prompt, 1, 1)
|
| 1046 |
+
|
| 1047 |
+
prompt_embeds = torch.concat([negative_prompt_embeds, prompt_embeds])
|
| 1048 |
+
encoder_hidden_states = torch.concat([negative_encoder_hidden_states, encoder_hidden_states])
|
| 1049 |
+
|
| 1050 |
+
# Note that the micro conditionings _do_ flip the order of width, height for the original size
|
| 1051 |
+
# and the crop coordinates. This is how it was done in the original code base
|
| 1052 |
+
micro_conds = torch.tensor(
|
| 1053 |
+
[
|
| 1054 |
+
width,
|
| 1055 |
+
height,
|
| 1056 |
+
micro_conditioning_crop_coord[0],
|
| 1057 |
+
micro_conditioning_crop_coord[1],
|
| 1058 |
+
micro_conditioning_aesthetic_score,
|
| 1059 |
+
],
|
| 1060 |
+
device=self._execution_device,
|
| 1061 |
+
dtype=self.transformer.dtype,
|
| 1062 |
+
)
|
| 1063 |
+
micro_conds = micro_conds.unsqueeze(0)
|
| 1064 |
+
micro_conds = micro_conds.expand(2 * batch_size if guidance_scale > 1.0 and text2image else batch_size, -1)
|
| 1065 |
+
|
| 1066 |
+
shape = (batch_size, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
| 1067 |
+
|
| 1068 |
+
if latents is None and text2image:
|
| 1069 |
+
latents = torch.full(
|
| 1070 |
+
shape,
|
| 1071 |
+
self.scheduler.config.mask_token_id,
|
| 1072 |
+
dtype=torch.long,
|
| 1073 |
+
device=self._execution_device
|
| 1074 |
+
)
|
| 1075 |
+
elif image2text:
|
| 1076 |
+
if text_encoder_type in ("t5_clip", "gemma"):
|
| 1077 |
+
latents = input_ids_2 # [b, l]
|
| 1078 |
+
else:
|
| 1079 |
+
latents = input_ids
|
| 1080 |
+
|
| 1081 |
+
model_input = None
|
| 1082 |
+
step_by_step = []
|
| 1083 |
+
|
| 1084 |
+
self.scheduler.set_timesteps(num_inference_steps, temperature, self._execution_device)
|
| 1085 |
+
num_warmup_steps = len(self.scheduler.timesteps) - num_inference_steps * self.scheduler.order
|
| 1086 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
| 1087 |
+
for i, timestep in enumerate(self.scheduler.timesteps):
|
| 1088 |
+
if guidance_scale > 1.0 and text2image:
|
| 1089 |
+
model_input = torch.cat([latents] * 2)
|
| 1090 |
+
elif image2text:
|
| 1091 |
+
if model_input is None:
|
| 1092 |
+
model_input = self.vqvae.quantize(
|
| 1093 |
+
self.vqvae.encode(image.to(self._execution_device, dtype=self.vqvae.dtype)).latents
|
| 1094 |
+
)[2][2].reshape(batch_size, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
| 1095 |
+
|
| 1096 |
+
prompt_embeds = self.image_encoder(
|
| 1097 |
+
self.clip_image_processor(
|
| 1098 |
+
image,
|
| 1099 |
+
return_tensors="pt",
|
| 1100 |
+
do_rescale=False,
|
| 1101 |
+
do_resize=True,
|
| 1102 |
+
do_normalize=True,
|
| 1103 |
+
).to(self._execution_device, dtype=self.image_encoder.dtype).pixel_values
|
| 1104 |
+
).image_embeds # [b, 1024]
|
| 1105 |
+
|
| 1106 |
+
if text_encoder_type in ("t5_clip", "gemma"):
|
| 1107 |
+
outputs = self.text_encoder_2(latents, return_dict=True)
|
| 1108 |
+
encoder_hidden_states = outputs.last_hidden_state
|
| 1109 |
+
else:
|
| 1110 |
+
outputs = self.text_encoder(latents, return_dict=True, output_hidden_states=True)
|
| 1111 |
+
encoder_hidden_states = outputs.hidden_states[-2]
|
| 1112 |
+
else:
|
| 1113 |
+
model_input = latents
|
| 1114 |
+
|
| 1115 |
+
img_ids = _prepare_latent_image_ids(
|
| 1116 |
+
model_input.shape[0],
|
| 1117 |
+
model_input.shape[-2],
|
| 1118 |
+
model_input.shape[-1],
|
| 1119 |
+
self._execution_device,
|
| 1120 |
+
self.transformer.dtype
|
| 1121 |
+
)
|
| 1122 |
+
txt_ids = torch.zeros(encoder_hidden_states.shape[1], 3).to(
|
| 1123 |
+
device=self._execution_device,
|
| 1124 |
+
dtype=self.transformer.dtype
|
| 1125 |
+
)
|
| 1126 |
+
|
| 1127 |
+
# timestep_ = int(timestep / num_inference_steps * 1000)
|
| 1128 |
+
model_output, encoder_hidden_states_tmp = self.transformer(
|
| 1129 |
+
hidden_states=model_input,
|
| 1130 |
+
micro_conds=micro_conds,
|
| 1131 |
+
pooled_projections=prompt_embeds,
|
| 1132 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 1133 |
+
img_ids=img_ids,
|
| 1134 |
+
txt_ids=txt_ids,
|
| 1135 |
+
timestep=torch.tensor([timestep], device=self._execution_device),
|
| 1136 |
+
)
|
| 1137 |
+
|
| 1138 |
+
if image2text:
|
| 1139 |
+
encoder_hidden_states = encoder_hidden_states_tmp.clone()
|
| 1140 |
+
|
| 1141 |
+
if guidance_scale > 1.0 and text2image:
|
| 1142 |
+
uncond_logits, cond_logits = model_output.chunk(2)
|
| 1143 |
+
to_scheduler = uncond_logits + guidance_scale * (cond_logits - uncond_logits)
|
| 1144 |
+
elif image2text:
|
| 1145 |
+
to_scheduler = encoder_hidden_states
|
| 1146 |
+
else:
|
| 1147 |
+
to_scheduler = model_output
|
| 1148 |
+
|
| 1149 |
+
latents = self.scheduler.step(
|
| 1150 |
+
model_output=to_scheduler,
|
| 1151 |
+
timestep=timestep,
|
| 1152 |
+
sample=latents,
|
| 1153 |
+
generator=generator,
|
| 1154 |
+
).prev_sample
|
| 1155 |
+
|
| 1156 |
+
# this line will print the intermediate results of the image-to-text generation
|
| 1157 |
+
# step_by_step.append(self.tokenizer.decode(latents[0].tolist(), skip_special_tokens=True))
|
| 1158 |
+
|
| 1159 |
+
# this line will print the intermediate results of the text-to-image generation
|
| 1160 |
+
# output = self.vqvae.decode(
|
| 1161 |
+
# latents,
|
| 1162 |
+
# force_not_quantize=True,
|
| 1163 |
+
# shape=(
|
| 1164 |
+
# batch_size,
|
| 1165 |
+
# height // self.vae_scale_factor,
|
| 1166 |
+
# width // self.vae_scale_factor,
|
| 1167 |
+
# self.vqvae.config.latent_channels,
|
| 1168 |
+
# ),
|
| 1169 |
+
# ).sample.clip(0, 1)
|
| 1170 |
+
# output = self.image_processor.postprocess(output, output_type) # output is a list of PIL.Image, you need to save it.
|
| 1171 |
+
|
| 1172 |
+
if i == len(self.scheduler.timesteps) - 1 or (
|
| 1173 |
+
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
|
| 1174 |
+
):
|
| 1175 |
+
progress_bar.update()
|
| 1176 |
+
if callback is not None and i % callback_steps == 0:
|
| 1177 |
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
| 1178 |
+
callback(step_idx, timestep, latents)
|
| 1179 |
+
|
| 1180 |
+
# with open("step_by_step.txt", "w") as file:
|
| 1181 |
+
# for prompt in step_by_step:
|
| 1182 |
+
# file.write(prompt + "\n")
|
| 1183 |
+
|
| 1184 |
+
if guidance_scale > 1.0 and text2image:
|
| 1185 |
+
decoded_input_ids = encoder_hidden_states[encoder_hidden_states.shape[0] // 2:].argmax(-1)
|
| 1186 |
+
else:
|
| 1187 |
+
decoded_input_ids = encoder_hidden_states.argmax(-1)
|
| 1188 |
+
|
| 1189 |
+
prompts = []
|
| 1190 |
+
for i, prompt in enumerate(decoded_input_ids):
|
| 1191 |
+
if image2text:
|
| 1192 |
+
q_len = question_len[i]
|
| 1193 |
+
prompt = self.tokenizer.decode(prompt.tolist()[q_len:], skip_special_tokens=True)
|
| 1194 |
+
prompts.append(keep_upto_last_period(dedup_consecutive_words(prompt)))
|
| 1195 |
+
else:
|
| 1196 |
+
prompts.append("Placeholder")
|
| 1197 |
+
|
| 1198 |
+
if output_type == "latent":
|
| 1199 |
+
output = latents
|
| 1200 |
+
else:
|
| 1201 |
+
needs_upcasting = self.vqvae.dtype == torch.float16 and self.vqvae.config.force_upcast
|
| 1202 |
+
|
| 1203 |
+
if needs_upcasting:
|
| 1204 |
+
self.vqvae.float()
|
| 1205 |
+
|
| 1206 |
+
if text2image:
|
| 1207 |
+
to_vqvae = latents
|
| 1208 |
+
else:
|
| 1209 |
+
to_vqvae = model_input
|
| 1210 |
+
|
| 1211 |
+
output = self.vqvae.decode(
|
| 1212 |
+
to_vqvae,
|
| 1213 |
+
force_not_quantize=True,
|
| 1214 |
+
shape=(
|
| 1215 |
+
batch_size,
|
| 1216 |
+
height // self.vae_scale_factor,
|
| 1217 |
+
width // self.vae_scale_factor,
|
| 1218 |
+
self.vqvae.config.latent_channels,
|
| 1219 |
+
),
|
| 1220 |
+
).sample.clip(0, 1)
|
| 1221 |
+
output = self.image_processor.postprocess(output, output_type)
|
| 1222 |
+
|
| 1223 |
+
if needs_upcasting:
|
| 1224 |
+
self.vqvae.half()
|
| 1225 |
+
|
| 1226 |
+
self.maybe_free_model_hooks()
|
| 1227 |
+
|
| 1228 |
+
if not return_dict:
|
| 1229 |
+
return (output,)
|
| 1230 |
+
|
| 1231 |
+
return UnifiedPipelineOutput(images=output, prompts=prompts)
|
src/scheduler.py
ADDED
|
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2024 The HuggingFace Team and The MeissonFlow Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
import math
|
| 15 |
+
from dataclasses import dataclass
|
| 16 |
+
from typing import List, Optional, Tuple, Union
|
| 17 |
+
|
| 18 |
+
import torch
|
| 19 |
+
|
| 20 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
| 21 |
+
from diffusers.utils import BaseOutput
|
| 22 |
+
from diffusers.schedulers.scheduling_utils import SchedulerMixin
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def gumbel_noise(t, generator=None):
|
| 26 |
+
device = generator.device if generator is not None else t.device
|
| 27 |
+
noise = torch.zeros_like(t, device=device).uniform_(0, 1, generator=generator).to(t.device)
|
| 28 |
+
return -torch.log((-torch.log(noise.clamp(1e-20))).clamp(1e-20))
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def mask_by_random_topk(mask_len, probs, temperature=1.0, generator=None):
|
| 32 |
+
confidence = torch.log(probs.clamp(1e-20)) + temperature * gumbel_noise(probs, generator=generator)
|
| 33 |
+
sorted_confidence = torch.sort(confidence, dim=-1).values
|
| 34 |
+
cut_off = torch.gather(sorted_confidence, 1, mask_len.long())
|
| 35 |
+
masking = confidence < cut_off
|
| 36 |
+
return masking
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
@dataclass
|
| 40 |
+
class SchedulerOutput(BaseOutput):
|
| 41 |
+
"""
|
| 42 |
+
Output class for the scheduler's `step` function output.
|
| 43 |
+
|
| 44 |
+
Args:
|
| 45 |
+
prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
|
| 46 |
+
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
|
| 47 |
+
denoising loop.
|
| 48 |
+
pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
|
| 49 |
+
The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
|
| 50 |
+
`pred_original_sample` can be used to preview progress or for guidance.
|
| 51 |
+
"""
|
| 52 |
+
|
| 53 |
+
prev_sample: torch.Tensor
|
| 54 |
+
pred_original_sample: torch.Tensor = None
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
class Scheduler(SchedulerMixin, ConfigMixin):
|
| 58 |
+
order = 1
|
| 59 |
+
|
| 60 |
+
temperatures: torch.Tensor
|
| 61 |
+
|
| 62 |
+
@register_to_config
|
| 63 |
+
def __init__(
|
| 64 |
+
self,
|
| 65 |
+
mask_token_id: int,
|
| 66 |
+
masking_schedule: str = "cosine",
|
| 67 |
+
):
|
| 68 |
+
self.temperatures = None
|
| 69 |
+
self.timesteps = None
|
| 70 |
+
|
| 71 |
+
def set_timesteps(
|
| 72 |
+
self,
|
| 73 |
+
num_inference_steps: int,
|
| 74 |
+
temperature: Union[int, Tuple[int, int], List[int]] = (2, 0),
|
| 75 |
+
device: Union[str, torch.device] = None,
|
| 76 |
+
):
|
| 77 |
+
self.timesteps = torch.arange(num_inference_steps, device=device).flip(0)
|
| 78 |
+
|
| 79 |
+
if isinstance(temperature, (tuple, list)):
|
| 80 |
+
self.temperatures = torch.linspace(temperature[0], temperature[1], num_inference_steps, device=device)
|
| 81 |
+
else:
|
| 82 |
+
self.temperatures = torch.linspace(temperature, 0.01, num_inference_steps, device=device)
|
| 83 |
+
|
| 84 |
+
def step(
|
| 85 |
+
self,
|
| 86 |
+
model_output: torch.Tensor,
|
| 87 |
+
timestep: torch.long,
|
| 88 |
+
sample: torch.LongTensor,
|
| 89 |
+
starting_mask_ratio: int = 1,
|
| 90 |
+
generator: Optional[torch.Generator] = None,
|
| 91 |
+
return_dict: bool = True,
|
| 92 |
+
) -> Union[SchedulerOutput, Tuple]:
|
| 93 |
+
two_dim_input = sample.ndim == 3 and model_output.ndim == 4
|
| 94 |
+
|
| 95 |
+
if two_dim_input:
|
| 96 |
+
batch_size, codebook_size, height, width = model_output.shape
|
| 97 |
+
sample = sample.reshape(batch_size, height * width)
|
| 98 |
+
model_output = model_output.reshape(batch_size, codebook_size, height * width).permute(0, 2, 1)
|
| 99 |
+
|
| 100 |
+
unknown_map = sample == self.config.mask_token_id
|
| 101 |
+
|
| 102 |
+
probs = model_output.softmax(dim=-1)
|
| 103 |
+
|
| 104 |
+
device = probs.device
|
| 105 |
+
probs_ = probs.to(generator.device) if generator is not None else probs # handles when generator is on CPU
|
| 106 |
+
if probs_.device.type == "cpu" and probs_.dtype != torch.float32:
|
| 107 |
+
probs_ = probs_.float() # multinomial is not implemented for cpu half precision
|
| 108 |
+
probs_ = probs_.reshape(-1, probs.size(-1))
|
| 109 |
+
pred_original_sample = torch.multinomial(probs_, 1, generator=generator).to(device=device)
|
| 110 |
+
pred_original_sample = pred_original_sample[:, 0].view(*probs.shape[:-1])
|
| 111 |
+
pred_original_sample = torch.where(unknown_map, pred_original_sample, sample)
|
| 112 |
+
|
| 113 |
+
if timestep == 0:
|
| 114 |
+
prev_sample = pred_original_sample
|
| 115 |
+
else:
|
| 116 |
+
seq_len = sample.shape[1]
|
| 117 |
+
step_idx = (self.timesteps == timestep).nonzero()
|
| 118 |
+
ratio = (step_idx + 1) / len(self.timesteps)
|
| 119 |
+
|
| 120 |
+
if self.config.masking_schedule == "cosine":
|
| 121 |
+
mask_ratio = torch.cos(ratio * math.pi / 2)
|
| 122 |
+
elif self.config.masking_schedule == "linear":
|
| 123 |
+
mask_ratio = 1 - ratio
|
| 124 |
+
else:
|
| 125 |
+
raise ValueError(f"unknown masking schedule {self.config.masking_schedule}")
|
| 126 |
+
|
| 127 |
+
mask_ratio = starting_mask_ratio * mask_ratio
|
| 128 |
+
|
| 129 |
+
mask_len = (seq_len * mask_ratio).floor()
|
| 130 |
+
# do not mask more than amount previously masked
|
| 131 |
+
mask_len = torch.min(unknown_map.sum(dim=-1, keepdim=True) - 1, mask_len)
|
| 132 |
+
# mask at least one
|
| 133 |
+
mask_len = torch.max(torch.tensor([1], device=model_output.device), mask_len)
|
| 134 |
+
|
| 135 |
+
selected_probs = torch.gather(probs, -1, pred_original_sample[:, :, None])[:, :, 0]
|
| 136 |
+
# Ignores the tokens given in the input by overwriting their confidence.
|
| 137 |
+
selected_probs = torch.where(unknown_map, selected_probs, torch.finfo(selected_probs.dtype).max)
|
| 138 |
+
|
| 139 |
+
masking = mask_by_random_topk(mask_len, selected_probs, self.temperatures[step_idx], generator)
|
| 140 |
+
|
| 141 |
+
# Masks tokens with lower confidence.
|
| 142 |
+
prev_sample = torch.where(masking, self.config.mask_token_id, pred_original_sample)
|
| 143 |
+
|
| 144 |
+
if two_dim_input:
|
| 145 |
+
prev_sample = prev_sample.reshape(batch_size, height, width)
|
| 146 |
+
pred_original_sample = pred_original_sample.reshape(batch_size, height, width)
|
| 147 |
+
|
| 148 |
+
if not return_dict:
|
| 149 |
+
return (prev_sample, pred_original_sample)
|
| 150 |
+
|
| 151 |
+
return SchedulerOutput(prev_sample, pred_original_sample)
|
| 152 |
+
|
| 153 |
+
def add_noise(self, sample, timesteps, generator=None):
|
| 154 |
+
step_idx = (self.timesteps == timesteps).nonzero()
|
| 155 |
+
ratio = (step_idx + 1) / len(self.timesteps)
|
| 156 |
+
|
| 157 |
+
if self.config.masking_schedule == "cosine":
|
| 158 |
+
mask_ratio = torch.cos(ratio * math.pi / 2)
|
| 159 |
+
elif self.config.masking_schedule == "linear":
|
| 160 |
+
mask_ratio = 1 - ratio
|
| 161 |
+
else:
|
| 162 |
+
raise ValueError(f"unknown masking schedule {self.config.masking_schedule}")
|
| 163 |
+
|
| 164 |
+
mask_indices = (
|
| 165 |
+
torch.rand(
|
| 166 |
+
sample.shape, device=generator.device if generator is not None else sample.device, generator=generator
|
| 167 |
+
).to(sample.device)
|
| 168 |
+
< mask_ratio
|
| 169 |
+
)
|
| 170 |
+
|
| 171 |
+
masked_sample = sample.clone()
|
| 172 |
+
|
| 173 |
+
masked_sample[mask_indices] = self.config.mask_token_id
|
| 174 |
+
|
| 175 |
+
return masked_sample
|
src/transformer.py
ADDED
|
@@ -0,0 +1,1459 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2024 Black Forest Labs, The HuggingFace Team, The InstantX Team and The MeissonFlow Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
from typing import Any, Dict, Optional, Tuple, Union, List
|
| 17 |
+
|
| 18 |
+
import numpy as np
|
| 19 |
+
import torch
|
| 20 |
+
import torch.nn as nn
|
| 21 |
+
import torch.nn.functional as F
|
| 22 |
+
|
| 23 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
| 24 |
+
from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin
|
| 25 |
+
from diffusers.models.attention import FeedForward, BasicTransformerBlock, SkipFFTransformerBlock
|
| 26 |
+
from diffusers.models.attention_processor import (
|
| 27 |
+
Attention,
|
| 28 |
+
AttentionProcessor,
|
| 29 |
+
FluxAttnProcessor2_0,
|
| 30 |
+
)
|
| 31 |
+
from diffusers.models.modeling_utils import ModelMixin
|
| 32 |
+
from diffusers.models.normalization import AdaLayerNormContinuous, AdaLayerNormZero, AdaLayerNormZeroSingle, GlobalResponseNorm, RMSNorm
|
| 33 |
+
from diffusers.utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers
|
| 34 |
+
from diffusers.utils.torch_utils import maybe_allow_in_graph
|
| 35 |
+
from diffusers.models.embeddings import CombinedTimestepGuidanceTextProjEmbeddings, CombinedTimestepTextProjEmbeddings,TimestepEmbedding, get_timestep_embedding #,FluxPosEmbed
|
| 36 |
+
from diffusers.models.modeling_outputs import Transformer2DModelOutput
|
| 37 |
+
from diffusers.models.resnet import Downsample2D, Upsample2D
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def get_3d_rotary_pos_embed(
|
| 45 |
+
embed_dim, crops_coords, grid_size, temporal_size, theta: int = 10000, use_real: bool = True
|
| 46 |
+
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
|
| 47 |
+
"""
|
| 48 |
+
RoPE for video tokens with 3D structure.
|
| 49 |
+
|
| 50 |
+
Args:
|
| 51 |
+
embed_dim: (`int`):
|
| 52 |
+
The embedding dimension size, corresponding to hidden_size_head.
|
| 53 |
+
crops_coords (`Tuple[int]`):
|
| 54 |
+
The top-left and bottom-right coordinates of the crop.
|
| 55 |
+
grid_size (`Tuple[int]`):
|
| 56 |
+
The grid size of the spatial positional embedding (height, width).
|
| 57 |
+
temporal_size (`int`):
|
| 58 |
+
The size of the temporal dimension.
|
| 59 |
+
theta (`float`):
|
| 60 |
+
Scaling factor for frequency computation.
|
| 61 |
+
use_real (`bool`):
|
| 62 |
+
If True, return real part and imaginary part separately. Otherwise, return complex numbers.
|
| 63 |
+
|
| 64 |
+
Returns:
|
| 65 |
+
`torch.Tensor`: positional embedding with shape `(temporal_size * grid_size[0] * grid_size[1], embed_dim/2)`.
|
| 66 |
+
"""
|
| 67 |
+
start, stop = crops_coords
|
| 68 |
+
grid_h = np.linspace(start[0], stop[0], grid_size[0], endpoint=False, dtype=np.float32)
|
| 69 |
+
grid_w = np.linspace(start[1], stop[1], grid_size[1], endpoint=False, dtype=np.float32)
|
| 70 |
+
grid_t = np.linspace(0, temporal_size, temporal_size, endpoint=False, dtype=np.float32)
|
| 71 |
+
|
| 72 |
+
# Compute dimensions for each axis
|
| 73 |
+
dim_t = embed_dim // 4
|
| 74 |
+
dim_h = embed_dim // 8 * 3
|
| 75 |
+
dim_w = embed_dim // 8 * 3
|
| 76 |
+
|
| 77 |
+
# Temporal frequencies
|
| 78 |
+
freqs_t = 1.0 / (theta ** (torch.arange(0, dim_t, 2).float() / dim_t))
|
| 79 |
+
grid_t = torch.from_numpy(grid_t).float()
|
| 80 |
+
freqs_t = torch.einsum("n , f -> n f", grid_t, freqs_t)
|
| 81 |
+
freqs_t = freqs_t.repeat_interleave(2, dim=-1)
|
| 82 |
+
|
| 83 |
+
# Spatial frequencies for height and width
|
| 84 |
+
freqs_h = 1.0 / (theta ** (torch.arange(0, dim_h, 2).float() / dim_h))
|
| 85 |
+
freqs_w = 1.0 / (theta ** (torch.arange(0, dim_w, 2).float() / dim_w))
|
| 86 |
+
grid_h = torch.from_numpy(grid_h).float()
|
| 87 |
+
grid_w = torch.from_numpy(grid_w).float()
|
| 88 |
+
freqs_h = torch.einsum("n , f -> n f", grid_h, freqs_h)
|
| 89 |
+
freqs_w = torch.einsum("n , f -> n f", grid_w, freqs_w)
|
| 90 |
+
freqs_h = freqs_h.repeat_interleave(2, dim=-1)
|
| 91 |
+
freqs_w = freqs_w.repeat_interleave(2, dim=-1)
|
| 92 |
+
|
| 93 |
+
# Broadcast and concatenate tensors along specified dimension
|
| 94 |
+
def broadcast(tensors, dim=-1):
|
| 95 |
+
num_tensors = len(tensors)
|
| 96 |
+
shape_lens = {len(t.shape) for t in tensors}
|
| 97 |
+
assert len(shape_lens) == 1, "tensors must all have the same number of dimensions"
|
| 98 |
+
shape_len = list(shape_lens)[0]
|
| 99 |
+
dim = (dim + shape_len) if dim < 0 else dim
|
| 100 |
+
dims = list(zip(*(list(t.shape) for t in tensors)))
|
| 101 |
+
expandable_dims = [(i, val) for i, val in enumerate(dims) if i != dim]
|
| 102 |
+
assert all(
|
| 103 |
+
[*(len(set(t[1])) <= 2 for t in expandable_dims)]
|
| 104 |
+
), "invalid dimensions for broadcastable concatenation"
|
| 105 |
+
max_dims = [(t[0], max(t[1])) for t in expandable_dims]
|
| 106 |
+
expanded_dims = [(t[0], (t[1],) * num_tensors) for t in max_dims]
|
| 107 |
+
expanded_dims.insert(dim, (dim, dims[dim]))
|
| 108 |
+
expandable_shapes = list(zip(*(t[1] for t in expanded_dims)))
|
| 109 |
+
tensors = [t[0].expand(*t[1]) for t in zip(tensors, expandable_shapes)]
|
| 110 |
+
return torch.cat(tensors, dim=dim)
|
| 111 |
+
|
| 112 |
+
freqs = broadcast((freqs_t[:, None, None, :], freqs_h[None, :, None, :], freqs_w[None, None, :, :]), dim=-1)
|
| 113 |
+
|
| 114 |
+
t, h, w, d = freqs.shape
|
| 115 |
+
freqs = freqs.view(t * h * w, d)
|
| 116 |
+
|
| 117 |
+
# Generate sine and cosine components
|
| 118 |
+
sin = freqs.sin()
|
| 119 |
+
cos = freqs.cos()
|
| 120 |
+
|
| 121 |
+
if use_real:
|
| 122 |
+
return cos, sin
|
| 123 |
+
else:
|
| 124 |
+
freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
|
| 125 |
+
return freqs_cis
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
def get_2d_rotary_pos_embed(embed_dim, crops_coords, grid_size, use_real=True):
|
| 129 |
+
"""
|
| 130 |
+
RoPE for image tokens with 2d structure.
|
| 131 |
+
|
| 132 |
+
Args:
|
| 133 |
+
embed_dim: (`int`):
|
| 134 |
+
The embedding dimension size
|
| 135 |
+
crops_coords (`Tuple[int]`)
|
| 136 |
+
The top-left and bottom-right coordinates of the crop.
|
| 137 |
+
grid_size (`Tuple[int]`):
|
| 138 |
+
The grid size of the positional embedding.
|
| 139 |
+
use_real (`bool`):
|
| 140 |
+
If True, return real part and imaginary part separately. Otherwise, return complex numbers.
|
| 141 |
+
|
| 142 |
+
Returns:
|
| 143 |
+
`torch.Tensor`: positional embedding with shape `( grid_size * grid_size, embed_dim/2)`.
|
| 144 |
+
"""
|
| 145 |
+
start, stop = crops_coords
|
| 146 |
+
grid_h = np.linspace(start[0], stop[0], grid_size[0], endpoint=False, dtype=np.float32)
|
| 147 |
+
grid_w = np.linspace(start[1], stop[1], grid_size[1], endpoint=False, dtype=np.float32)
|
| 148 |
+
grid = np.meshgrid(grid_w, grid_h) # here w goes first
|
| 149 |
+
grid = np.stack(grid, axis=0) # [2, W, H]
|
| 150 |
+
|
| 151 |
+
grid = grid.reshape([2, 1, *grid.shape[1:]])
|
| 152 |
+
pos_embed = get_2d_rotary_pos_embed_from_grid(embed_dim, grid, use_real=use_real)
|
| 153 |
+
return pos_embed
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
def get_2d_rotary_pos_embed_from_grid(embed_dim, grid, use_real=False):
|
| 157 |
+
assert embed_dim % 4 == 0
|
| 158 |
+
|
| 159 |
+
# use half of dimensions to encode grid_h
|
| 160 |
+
emb_h = get_1d_rotary_pos_embed(
|
| 161 |
+
embed_dim // 2, grid[0].reshape(-1), use_real=use_real
|
| 162 |
+
) # (H*W, D/2) if use_real else (H*W, D/4)
|
| 163 |
+
emb_w = get_1d_rotary_pos_embed(
|
| 164 |
+
embed_dim // 2, grid[1].reshape(-1), use_real=use_real
|
| 165 |
+
) # (H*W, D/2) if use_real else (H*W, D/4)
|
| 166 |
+
|
| 167 |
+
if use_real:
|
| 168 |
+
cos = torch.cat([emb_h[0], emb_w[0]], dim=1) # (H*W, D)
|
| 169 |
+
sin = torch.cat([emb_h[1], emb_w[1]], dim=1) # (H*W, D)
|
| 170 |
+
return cos, sin
|
| 171 |
+
else:
|
| 172 |
+
emb = torch.cat([emb_h, emb_w], dim=1) # (H*W, D/2)
|
| 173 |
+
return emb
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
def get_2d_rotary_pos_embed_lumina(embed_dim, len_h, len_w, linear_factor=1.0, ntk_factor=1.0):
|
| 177 |
+
assert embed_dim % 4 == 0
|
| 178 |
+
|
| 179 |
+
emb_h = get_1d_rotary_pos_embed(
|
| 180 |
+
embed_dim // 2, len_h, linear_factor=linear_factor, ntk_factor=ntk_factor
|
| 181 |
+
) # (H, D/4)
|
| 182 |
+
emb_w = get_1d_rotary_pos_embed(
|
| 183 |
+
embed_dim // 2, len_w, linear_factor=linear_factor, ntk_factor=ntk_factor
|
| 184 |
+
) # (W, D/4)
|
| 185 |
+
emb_h = emb_h.view(len_h, 1, embed_dim // 4, 1).repeat(1, len_w, 1, 1) # (H, W, D/4, 1)
|
| 186 |
+
emb_w = emb_w.view(1, len_w, embed_dim // 4, 1).repeat(len_h, 1, 1, 1) # (H, W, D/4, 1)
|
| 187 |
+
|
| 188 |
+
emb = torch.cat([emb_h, emb_w], dim=-1).flatten(2) # (H, W, D/2)
|
| 189 |
+
return emb
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
def get_1d_rotary_pos_embed(
|
| 193 |
+
dim: int,
|
| 194 |
+
pos: Union[np.ndarray, int],
|
| 195 |
+
theta: float = 10000.0,
|
| 196 |
+
use_real=False,
|
| 197 |
+
linear_factor=1.0,
|
| 198 |
+
ntk_factor=1.0,
|
| 199 |
+
repeat_interleave_real=True,
|
| 200 |
+
freqs_dtype=torch.float32, # torch.float32 (hunyuan, stable audio), torch.float64 (flux)
|
| 201 |
+
):
|
| 202 |
+
"""
|
| 203 |
+
Precompute the frequency tensor for complex exponentials (cis) with given dimensions.
|
| 204 |
+
|
| 205 |
+
This function calculates a frequency tensor with complex exponentials using the given dimension 'dim' and the end
|
| 206 |
+
index 'end'. The 'theta' parameter scales the frequencies. The returned tensor contains complex values in complex64
|
| 207 |
+
data type.
|
| 208 |
+
|
| 209 |
+
Args:
|
| 210 |
+
dim (`int`): Dimension of the frequency tensor.
|
| 211 |
+
pos (`np.ndarray` or `int`): Position indices for the frequency tensor. [S] or scalar
|
| 212 |
+
theta (`float`, *optional*, defaults to 10000.0):
|
| 213 |
+
Scaling factor for frequency computation. Defaults to 10000.0.
|
| 214 |
+
use_real (`bool`, *optional*):
|
| 215 |
+
If True, return real part and imaginary part separately. Otherwise, return complex numbers.
|
| 216 |
+
linear_factor (`float`, *optional*, defaults to 1.0):
|
| 217 |
+
Scaling factor for the context extrapolation. Defaults to 1.0.
|
| 218 |
+
ntk_factor (`float`, *optional*, defaults to 1.0):
|
| 219 |
+
Scaling factor for the NTK-Aware RoPE. Defaults to 1.0.
|
| 220 |
+
repeat_interleave_real (`bool`, *optional*, defaults to `True`):
|
| 221 |
+
If `True` and `use_real`, real part and imaginary part are each interleaved with themselves to reach `dim`.
|
| 222 |
+
Otherwise, they are concateanted with themselves.
|
| 223 |
+
freqs_dtype (`torch.float32` or `torch.float64`, *optional*, defaults to `torch.float32`):
|
| 224 |
+
the dtype of the frequency tensor.
|
| 225 |
+
Returns:
|
| 226 |
+
`torch.Tensor`: Precomputed frequency tensor with complex exponentials. [S, D/2]
|
| 227 |
+
"""
|
| 228 |
+
assert dim % 2 == 0
|
| 229 |
+
|
| 230 |
+
if isinstance(pos, int):
|
| 231 |
+
pos = np.arange(pos)
|
| 232 |
+
theta = theta * ntk_factor
|
| 233 |
+
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=freqs_dtype)[: (dim // 2)] / dim)) / linear_factor # [D/2]
|
| 234 |
+
t = torch.from_numpy(pos).to(freqs.device) # type: ignore # [S]
|
| 235 |
+
freqs = torch.outer(t, freqs) # type: ignore # [S, D/2]
|
| 236 |
+
if use_real and repeat_interleave_real:
|
| 237 |
+
freqs_cos = freqs.cos().repeat_interleave(2, dim=1).float() # [S, D]
|
| 238 |
+
freqs_sin = freqs.sin().repeat_interleave(2, dim=1).float() # [S, D]
|
| 239 |
+
return freqs_cos, freqs_sin
|
| 240 |
+
elif use_real:
|
| 241 |
+
freqs_cos = torch.cat([freqs.cos(), freqs.cos()], dim=-1).float() # [S, D]
|
| 242 |
+
freqs_sin = torch.cat([freqs.sin(), freqs.sin()], dim=-1).float() # [S, D]
|
| 243 |
+
return freqs_cos, freqs_sin
|
| 244 |
+
else:
|
| 245 |
+
freqs_cis = torch.polar(torch.ones_like(freqs), freqs).float() # complex64 # [S, D/2]
|
| 246 |
+
return freqs_cis
|
| 247 |
+
|
| 248 |
+
|
| 249 |
+
class FluxPosEmbed(nn.Module):
|
| 250 |
+
# modified from https://github.com/black-forest-labs/flux/blob/c00d7c60b085fce8058b9df845e036090873f2ce/src/flux/modules/layers.py#L11
|
| 251 |
+
def __init__(self, theta: int, axes_dim: Tuple[int]):
|
| 252 |
+
super().__init__()
|
| 253 |
+
self.theta = theta
|
| 254 |
+
self.axes_dim = axes_dim
|
| 255 |
+
|
| 256 |
+
def forward(self, ids: torch.Tensor) -> torch.Tensor:
|
| 257 |
+
n_axes = ids.shape[-1]
|
| 258 |
+
cos_out = []
|
| 259 |
+
sin_out = []
|
| 260 |
+
pos = ids.squeeze().float().cpu().numpy()
|
| 261 |
+
is_mps = ids.device.type == "mps"
|
| 262 |
+
freqs_dtype = torch.float32 if is_mps else torch.float64
|
| 263 |
+
for i in range(n_axes):
|
| 264 |
+
cos, sin = get_1d_rotary_pos_embed(
|
| 265 |
+
self.axes_dim[i], pos[:, i], repeat_interleave_real=True, use_real=True, freqs_dtype=freqs_dtype
|
| 266 |
+
)
|
| 267 |
+
cos_out.append(cos)
|
| 268 |
+
sin_out.append(sin)
|
| 269 |
+
freqs_cos = torch.cat(cos_out, dim=-1).to(ids.device)
|
| 270 |
+
freqs_sin = torch.cat(sin_out, dim=-1).to(ids.device)
|
| 271 |
+
return freqs_cos, freqs_sin
|
| 272 |
+
|
| 273 |
+
|
| 274 |
+
|
| 275 |
+
class FusedFluxAttnProcessor2_0:
|
| 276 |
+
"""Attention processor used typically in processing the SD3-like self-attention projections."""
|
| 277 |
+
|
| 278 |
+
def __init__(self):
|
| 279 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
| 280 |
+
raise ImportError(
|
| 281 |
+
"FusedFluxAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
|
| 282 |
+
)
|
| 283 |
+
|
| 284 |
+
def __call__(
|
| 285 |
+
self,
|
| 286 |
+
attn: Attention,
|
| 287 |
+
hidden_states: torch.FloatTensor,
|
| 288 |
+
encoder_hidden_states: torch.FloatTensor = None,
|
| 289 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 290 |
+
image_rotary_emb: Optional[torch.Tensor] = None,
|
| 291 |
+
) -> torch.FloatTensor:
|
| 292 |
+
batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
| 293 |
+
|
| 294 |
+
# `sample` projections.
|
| 295 |
+
qkv = attn.to_qkv(hidden_states)
|
| 296 |
+
split_size = qkv.shape[-1] // 3
|
| 297 |
+
query, key, value = torch.split(qkv, split_size, dim=-1)
|
| 298 |
+
|
| 299 |
+
inner_dim = key.shape[-1]
|
| 300 |
+
head_dim = inner_dim // attn.heads
|
| 301 |
+
|
| 302 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 303 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 304 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 305 |
+
|
| 306 |
+
if attn.norm_q is not None:
|
| 307 |
+
query = attn.norm_q(query)
|
| 308 |
+
if attn.norm_k is not None:
|
| 309 |
+
key = attn.norm_k(key)
|
| 310 |
+
|
| 311 |
+
# the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states`
|
| 312 |
+
# `context` projections.
|
| 313 |
+
if encoder_hidden_states is not None:
|
| 314 |
+
encoder_qkv = attn.to_added_qkv(encoder_hidden_states)
|
| 315 |
+
split_size = encoder_qkv.shape[-1] // 3
|
| 316 |
+
(
|
| 317 |
+
encoder_hidden_states_query_proj,
|
| 318 |
+
encoder_hidden_states_key_proj,
|
| 319 |
+
encoder_hidden_states_value_proj,
|
| 320 |
+
) = torch.split(encoder_qkv, split_size, dim=-1)
|
| 321 |
+
|
| 322 |
+
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
|
| 323 |
+
batch_size, -1, attn.heads, head_dim
|
| 324 |
+
).transpose(1, 2)
|
| 325 |
+
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
|
| 326 |
+
batch_size, -1, attn.heads, head_dim
|
| 327 |
+
).transpose(1, 2)
|
| 328 |
+
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
|
| 329 |
+
batch_size, -1, attn.heads, head_dim
|
| 330 |
+
).transpose(1, 2)
|
| 331 |
+
|
| 332 |
+
if attn.norm_added_q is not None:
|
| 333 |
+
encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
|
| 334 |
+
if attn.norm_added_k is not None:
|
| 335 |
+
encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj)
|
| 336 |
+
|
| 337 |
+
# attention
|
| 338 |
+
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
|
| 339 |
+
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
|
| 340 |
+
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
|
| 341 |
+
|
| 342 |
+
if image_rotary_emb is not None:
|
| 343 |
+
from diffusers.models.embeddings import apply_rotary_emb
|
| 344 |
+
|
| 345 |
+
query = apply_rotary_emb(query, image_rotary_emb)
|
| 346 |
+
key = apply_rotary_emb(key, image_rotary_emb)
|
| 347 |
+
|
| 348 |
+
hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False)
|
| 349 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
| 350 |
+
hidden_states = hidden_states.to(query.dtype)
|
| 351 |
+
|
| 352 |
+
if encoder_hidden_states is not None:
|
| 353 |
+
encoder_hidden_states, hidden_states = (
|
| 354 |
+
hidden_states[:, : encoder_hidden_states.shape[1]],
|
| 355 |
+
hidden_states[:, encoder_hidden_states.shape[1] :],
|
| 356 |
+
)
|
| 357 |
+
|
| 358 |
+
# linear proj
|
| 359 |
+
hidden_states = attn.to_out[0](hidden_states)
|
| 360 |
+
# dropout
|
| 361 |
+
hidden_states = attn.to_out[1](hidden_states)
|
| 362 |
+
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
|
| 363 |
+
|
| 364 |
+
return hidden_states, encoder_hidden_states
|
| 365 |
+
else:
|
| 366 |
+
return hidden_states
|
| 367 |
+
|
| 368 |
+
|
| 369 |
+
|
| 370 |
+
@maybe_allow_in_graph
|
| 371 |
+
class SingleTransformerBlock(nn.Module):
|
| 372 |
+
r"""
|
| 373 |
+
A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3.
|
| 374 |
+
|
| 375 |
+
Reference: https://arxiv.org/abs/2403.03206
|
| 376 |
+
|
| 377 |
+
Parameters:
|
| 378 |
+
dim (`int`): The number of channels in the input and output.
|
| 379 |
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
| 380 |
+
attention_head_dim (`int`): The number of channels in each head.
|
| 381 |
+
context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the
|
| 382 |
+
processing of `context` conditions.
|
| 383 |
+
"""
|
| 384 |
+
|
| 385 |
+
def __init__(self, dim, num_attention_heads, attention_head_dim, mlp_ratio=4.0):
|
| 386 |
+
super().__init__()
|
| 387 |
+
self.mlp_hidden_dim = int(dim * mlp_ratio)
|
| 388 |
+
|
| 389 |
+
self.norm = AdaLayerNormZeroSingle(dim)
|
| 390 |
+
self.proj_mlp = nn.Linear(dim, self.mlp_hidden_dim)
|
| 391 |
+
self.act_mlp = nn.GELU(approximate="tanh")
|
| 392 |
+
self.proj_out = nn.Linear(dim + self.mlp_hidden_dim, dim)
|
| 393 |
+
|
| 394 |
+
processor = FluxAttnProcessor2_0()
|
| 395 |
+
self.attn = Attention(
|
| 396 |
+
query_dim=dim,
|
| 397 |
+
cross_attention_dim=None,
|
| 398 |
+
dim_head=attention_head_dim,
|
| 399 |
+
heads=num_attention_heads,
|
| 400 |
+
out_dim=dim,
|
| 401 |
+
bias=True,
|
| 402 |
+
processor=processor,
|
| 403 |
+
qk_norm="rms_norm",
|
| 404 |
+
eps=1e-6,
|
| 405 |
+
pre_only=True,
|
| 406 |
+
)
|
| 407 |
+
|
| 408 |
+
def forward(
|
| 409 |
+
self,
|
| 410 |
+
hidden_states: torch.FloatTensor,
|
| 411 |
+
temb: torch.FloatTensor,
|
| 412 |
+
image_rotary_emb=None,
|
| 413 |
+
):
|
| 414 |
+
residual = hidden_states
|
| 415 |
+
norm_hidden_states, gate = self.norm(hidden_states, emb=temb)
|
| 416 |
+
mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states))
|
| 417 |
+
|
| 418 |
+
attn_output = self.attn(
|
| 419 |
+
hidden_states=norm_hidden_states,
|
| 420 |
+
image_rotary_emb=image_rotary_emb,
|
| 421 |
+
)
|
| 422 |
+
|
| 423 |
+
hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2)
|
| 424 |
+
gate = gate.unsqueeze(1)
|
| 425 |
+
hidden_states = gate * self.proj_out(hidden_states)
|
| 426 |
+
hidden_states = residual + hidden_states
|
| 427 |
+
if hidden_states.dtype == torch.float16:
|
| 428 |
+
hidden_states = hidden_states.clip(-65504, 65504)
|
| 429 |
+
|
| 430 |
+
return hidden_states
|
| 431 |
+
|
| 432 |
+
@maybe_allow_in_graph
|
| 433 |
+
class TransformerBlock(nn.Module):
|
| 434 |
+
r"""
|
| 435 |
+
A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3.
|
| 436 |
+
|
| 437 |
+
Reference: https://arxiv.org/abs/2403.03206
|
| 438 |
+
|
| 439 |
+
Parameters:
|
| 440 |
+
dim (`int`): The number of channels in the input and output.
|
| 441 |
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
| 442 |
+
attention_head_dim (`int`): The number of channels in each head.
|
| 443 |
+
context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the
|
| 444 |
+
processing of `context` conditions.
|
| 445 |
+
"""
|
| 446 |
+
|
| 447 |
+
def __init__(self, dim, num_attention_heads, attention_head_dim, qk_norm="rms_norm", eps=1e-6):
|
| 448 |
+
super().__init__()
|
| 449 |
+
|
| 450 |
+
self.norm1 = AdaLayerNormZero(dim)
|
| 451 |
+
|
| 452 |
+
self.norm1_context = AdaLayerNormZero(dim)
|
| 453 |
+
|
| 454 |
+
if hasattr(F, "scaled_dot_product_attention"):
|
| 455 |
+
processor = FluxAttnProcessor2_0()
|
| 456 |
+
else:
|
| 457 |
+
raise ValueError(
|
| 458 |
+
"The current PyTorch version does not support the `scaled_dot_product_attention` function."
|
| 459 |
+
)
|
| 460 |
+
self.attn = Attention(
|
| 461 |
+
query_dim=dim,
|
| 462 |
+
cross_attention_dim=None,
|
| 463 |
+
added_kv_proj_dim=dim,
|
| 464 |
+
dim_head=attention_head_dim,
|
| 465 |
+
heads=num_attention_heads,
|
| 466 |
+
out_dim=dim,
|
| 467 |
+
context_pre_only=False,
|
| 468 |
+
bias=True,
|
| 469 |
+
processor=processor,
|
| 470 |
+
qk_norm=qk_norm,
|
| 471 |
+
eps=eps,
|
| 472 |
+
)
|
| 473 |
+
|
| 474 |
+
self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
| 475 |
+
self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
|
| 476 |
+
# self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="swiglu")
|
| 477 |
+
|
| 478 |
+
self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
| 479 |
+
self.ff_context = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
|
| 480 |
+
# self.ff_context = FeedForward(dim=dim, dim_out=dim, activation_fn="swiglu")
|
| 481 |
+
|
| 482 |
+
# let chunk size default to None
|
| 483 |
+
self._chunk_size = None
|
| 484 |
+
self._chunk_dim = 0
|
| 485 |
+
|
| 486 |
+
def forward(
|
| 487 |
+
self,
|
| 488 |
+
hidden_states: torch.FloatTensor,
|
| 489 |
+
encoder_hidden_states: torch.FloatTensor,
|
| 490 |
+
temb: torch.FloatTensor,
|
| 491 |
+
image_rotary_emb=None,
|
| 492 |
+
):
|
| 493 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb)
|
| 494 |
+
|
| 495 |
+
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context(
|
| 496 |
+
encoder_hidden_states, emb=temb
|
| 497 |
+
)
|
| 498 |
+
# Attention.
|
| 499 |
+
attn_output, context_attn_output = self.attn(
|
| 500 |
+
hidden_states=norm_hidden_states,
|
| 501 |
+
encoder_hidden_states=norm_encoder_hidden_states,
|
| 502 |
+
image_rotary_emb=image_rotary_emb,
|
| 503 |
+
)
|
| 504 |
+
|
| 505 |
+
# Process attention outputs for the `hidden_states`.
|
| 506 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
| 507 |
+
hidden_states = hidden_states + attn_output
|
| 508 |
+
|
| 509 |
+
norm_hidden_states = self.norm2(hidden_states)
|
| 510 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
| 511 |
+
|
| 512 |
+
ff_output = self.ff(norm_hidden_states)
|
| 513 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
| 514 |
+
|
| 515 |
+
hidden_states = hidden_states + ff_output
|
| 516 |
+
|
| 517 |
+
# Process attention outputs for the `encoder_hidden_states`.
|
| 518 |
+
|
| 519 |
+
context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output
|
| 520 |
+
encoder_hidden_states = encoder_hidden_states + context_attn_output
|
| 521 |
+
|
| 522 |
+
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
|
| 523 |
+
norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
|
| 524 |
+
|
| 525 |
+
context_ff_output = self.ff_context(norm_encoder_hidden_states)
|
| 526 |
+
encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output
|
| 527 |
+
if encoder_hidden_states.dtype == torch.float16:
|
| 528 |
+
encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504)
|
| 529 |
+
|
| 530 |
+
return encoder_hidden_states, hidden_states
|
| 531 |
+
|
| 532 |
+
|
| 533 |
+
class UVit2DConvEmbed(nn.Module):
|
| 534 |
+
def __init__(self, in_channels, block_out_channels, vocab_size, elementwise_affine, eps, bias):
|
| 535 |
+
super().__init__()
|
| 536 |
+
self.embeddings = nn.Embedding(vocab_size, in_channels)
|
| 537 |
+
self.layer_norm = RMSNorm(in_channels, eps, elementwise_affine)
|
| 538 |
+
self.conv = nn.Conv2d(in_channels, block_out_channels, kernel_size=1, bias=bias)
|
| 539 |
+
|
| 540 |
+
def forward(self, input_ids):
|
| 541 |
+
embeddings = self.embeddings(input_ids)
|
| 542 |
+
embeddings = self.layer_norm(embeddings)
|
| 543 |
+
embeddings = embeddings.permute(0, 3, 1, 2)
|
| 544 |
+
embeddings = self.conv(embeddings)
|
| 545 |
+
return embeddings
|
| 546 |
+
|
| 547 |
+
class ConvMlmLayer(nn.Module):
|
| 548 |
+
def __init__(
|
| 549 |
+
self,
|
| 550 |
+
block_out_channels: int,
|
| 551 |
+
in_channels: int,
|
| 552 |
+
use_bias: bool,
|
| 553 |
+
ln_elementwise_affine: bool,
|
| 554 |
+
layer_norm_eps: float,
|
| 555 |
+
codebook_size: int,
|
| 556 |
+
):
|
| 557 |
+
super().__init__()
|
| 558 |
+
self.conv1 = nn.Conv2d(block_out_channels, in_channels, kernel_size=1, bias=use_bias)
|
| 559 |
+
self.layer_norm = RMSNorm(in_channels, layer_norm_eps, ln_elementwise_affine)
|
| 560 |
+
self.conv2 = nn.Conv2d(in_channels, codebook_size, kernel_size=1, bias=use_bias)
|
| 561 |
+
|
| 562 |
+
def forward(self, hidden_states):
|
| 563 |
+
hidden_states = self.conv1(hidden_states)
|
| 564 |
+
hidden_states = self.layer_norm(hidden_states.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
|
| 565 |
+
logits = self.conv2(hidden_states)
|
| 566 |
+
return logits
|
| 567 |
+
|
| 568 |
+
class SwiGLU(nn.Module):
|
| 569 |
+
r"""
|
| 570 |
+
A [variant](https://arxiv.org/abs/2002.05202) of the gated linear unit activation function. It's similar to `GEGLU`
|
| 571 |
+
but uses SiLU / Swish instead of GeLU.
|
| 572 |
+
|
| 573 |
+
Parameters:
|
| 574 |
+
dim_in (`int`): The number of channels in the input.
|
| 575 |
+
dim_out (`int`): The number of channels in the output.
|
| 576 |
+
bias (`bool`, defaults to True): Whether to use a bias in the linear layer.
|
| 577 |
+
"""
|
| 578 |
+
|
| 579 |
+
def __init__(self, dim_in: int, dim_out: int, bias: bool = True):
|
| 580 |
+
super().__init__()
|
| 581 |
+
self.proj = nn.Linear(dim_in, dim_out * 2, bias=bias)
|
| 582 |
+
self.activation = nn.SiLU()
|
| 583 |
+
|
| 584 |
+
def forward(self, hidden_states):
|
| 585 |
+
hidden_states = self.proj(hidden_states)
|
| 586 |
+
hidden_states, gate = hidden_states.chunk(2, dim=-1)
|
| 587 |
+
return hidden_states * self.activation(gate)
|
| 588 |
+
|
| 589 |
+
class ConvNextBlock(nn.Module):
|
| 590 |
+
def __init__(
|
| 591 |
+
self, channels, layer_norm_eps, ln_elementwise_affine, use_bias, hidden_dropout, hidden_size, res_ffn_factor=4
|
| 592 |
+
):
|
| 593 |
+
super().__init__()
|
| 594 |
+
self.depthwise = nn.Conv2d(
|
| 595 |
+
channels,
|
| 596 |
+
channels,
|
| 597 |
+
kernel_size=3,
|
| 598 |
+
padding=1,
|
| 599 |
+
groups=channels,
|
| 600 |
+
bias=use_bias,
|
| 601 |
+
)
|
| 602 |
+
self.norm = RMSNorm(channels, layer_norm_eps, ln_elementwise_affine)
|
| 603 |
+
self.channelwise_linear_1 = nn.Linear(channels, int(channels * res_ffn_factor), bias=use_bias)
|
| 604 |
+
self.channelwise_act = nn.GELU()
|
| 605 |
+
self.channelwise_norm = GlobalResponseNorm(int(channels * res_ffn_factor))
|
| 606 |
+
self.channelwise_linear_2 = nn.Linear(int(channels * res_ffn_factor), channels, bias=use_bias)
|
| 607 |
+
self.channelwise_dropout = nn.Dropout(hidden_dropout)
|
| 608 |
+
self.cond_embeds_mapper = nn.Linear(hidden_size, channels * 2, use_bias)
|
| 609 |
+
|
| 610 |
+
def forward(self, x, cond_embeds):
|
| 611 |
+
x_res = x
|
| 612 |
+
|
| 613 |
+
x = self.depthwise(x)
|
| 614 |
+
|
| 615 |
+
x = x.permute(0, 2, 3, 1)
|
| 616 |
+
x = self.norm(x)
|
| 617 |
+
|
| 618 |
+
x = self.channelwise_linear_1(x)
|
| 619 |
+
x = self.channelwise_act(x)
|
| 620 |
+
x = self.channelwise_norm(x)
|
| 621 |
+
x = self.channelwise_linear_2(x)
|
| 622 |
+
x = self.channelwise_dropout(x)
|
| 623 |
+
|
| 624 |
+
x = x.permute(0, 3, 1, 2)
|
| 625 |
+
|
| 626 |
+
x = x + x_res
|
| 627 |
+
|
| 628 |
+
scale, shift = self.cond_embeds_mapper(F.silu(cond_embeds)).chunk(2, dim=1)
|
| 629 |
+
x = x * (1 + scale[:, :, None, None]) + shift[:, :, None, None]
|
| 630 |
+
|
| 631 |
+
return x
|
| 632 |
+
|
| 633 |
+
class Simple_UVitBlock(nn.Module):
|
| 634 |
+
def __init__(
|
| 635 |
+
self,
|
| 636 |
+
channels,
|
| 637 |
+
ln_elementwise_affine,
|
| 638 |
+
layer_norm_eps,
|
| 639 |
+
use_bias,
|
| 640 |
+
downsample: bool,
|
| 641 |
+
upsample: bool,
|
| 642 |
+
):
|
| 643 |
+
super().__init__()
|
| 644 |
+
|
| 645 |
+
if downsample:
|
| 646 |
+
self.downsample = Downsample2D(
|
| 647 |
+
channels,
|
| 648 |
+
use_conv=True,
|
| 649 |
+
padding=0,
|
| 650 |
+
name="Conv2d_0",
|
| 651 |
+
kernel_size=2,
|
| 652 |
+
norm_type="rms_norm",
|
| 653 |
+
eps=layer_norm_eps,
|
| 654 |
+
elementwise_affine=ln_elementwise_affine,
|
| 655 |
+
bias=use_bias,
|
| 656 |
+
)
|
| 657 |
+
else:
|
| 658 |
+
self.downsample = None
|
| 659 |
+
|
| 660 |
+
if upsample:
|
| 661 |
+
self.upsample = Upsample2D(
|
| 662 |
+
channels,
|
| 663 |
+
use_conv_transpose=True,
|
| 664 |
+
kernel_size=2,
|
| 665 |
+
padding=0,
|
| 666 |
+
name="conv",
|
| 667 |
+
norm_type="rms_norm",
|
| 668 |
+
eps=layer_norm_eps,
|
| 669 |
+
elementwise_affine=ln_elementwise_affine,
|
| 670 |
+
bias=use_bias,
|
| 671 |
+
interpolate=False,
|
| 672 |
+
)
|
| 673 |
+
else:
|
| 674 |
+
self.upsample = None
|
| 675 |
+
|
| 676 |
+
def forward(self, x):
|
| 677 |
+
# print("before,", x.shape)
|
| 678 |
+
if self.downsample is not None:
|
| 679 |
+
# print('downsample')
|
| 680 |
+
x = self.downsample(x)
|
| 681 |
+
|
| 682 |
+
if self.upsample is not None:
|
| 683 |
+
# print('upsample')
|
| 684 |
+
x = self.upsample(x)
|
| 685 |
+
# print("after,", x.shape)
|
| 686 |
+
return x
|
| 687 |
+
|
| 688 |
+
class Transformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin):
|
| 689 |
+
"""
|
| 690 |
+
The Transformer model introduced in Flux.
|
| 691 |
+
|
| 692 |
+
Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
|
| 693 |
+
|
| 694 |
+
Parameters:
|
| 695 |
+
patch_size (`int`): Patch size to turn the input data into small patches.
|
| 696 |
+
in_channels (`int`, *optional*, defaults to 16): The number of channels in the input.
|
| 697 |
+
num_layers (`int`, *optional*, defaults to 18): The number of layers of MMDiT blocks to use.
|
| 698 |
+
num_single_layers (`int`, *optional*, defaults to 18): The number of layers of single DiT blocks to use.
|
| 699 |
+
attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head.
|
| 700 |
+
num_attention_heads (`int`, *optional*, defaults to 18): The number of heads to use for multi-head attention.
|
| 701 |
+
joint_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
|
| 702 |
+
pooled_projection_dim (`int`): Number of dimensions to use when projecting the `pooled_projections`.
|
| 703 |
+
guidance_embeds (`bool`, defaults to False): Whether to use guidance embeddings.
|
| 704 |
+
"""
|
| 705 |
+
|
| 706 |
+
_supports_gradient_checkpointing = False #True
|
| 707 |
+
# Due to NotImplementedError: DDPOptimizer backend: Found a higher order op in the graph. This is not supported. Please turn off DDP optimizer using torch._dynamo.config.optimize_ddp=False. Note that this can cause performance degradation because there will be one bucket for the entire Dynamo graph.
|
| 708 |
+
# Please refer to this issue - https://github.com/pytorch/pytorch/issues/104674.
|
| 709 |
+
_no_split_modules = ["TransformerBlock", "SingleTransformerBlock"]
|
| 710 |
+
|
| 711 |
+
@register_to_config
|
| 712 |
+
def __init__(
|
| 713 |
+
self,
|
| 714 |
+
patch_size: int = 1,
|
| 715 |
+
in_channels: int = 64,
|
| 716 |
+
num_layers: int = 19,
|
| 717 |
+
num_single_layers: int = 38,
|
| 718 |
+
attention_head_dim: int = 128,
|
| 719 |
+
num_attention_heads: int = 24,
|
| 720 |
+
joint_attention_dim: int = 4096,
|
| 721 |
+
pooled_projection_dim: int = 768,
|
| 722 |
+
guidance_embeds: bool = False, # unused in our implementation
|
| 723 |
+
axes_dims_rope: Tuple[int] = (16, 56, 56),
|
| 724 |
+
vocab_size: int = 8256,
|
| 725 |
+
codebook_size: int = 8192,
|
| 726 |
+
downsample: bool = False,
|
| 727 |
+
upsample: bool = False,
|
| 728 |
+
):
|
| 729 |
+
super().__init__()
|
| 730 |
+
self.out_channels = in_channels
|
| 731 |
+
self.inner_dim = self.num_attention_heads * self.attention_head_dim
|
| 732 |
+
|
| 733 |
+
self.pos_embed = FluxPosEmbed(theta=10000, axes_dim=axes_dims_rope)
|
| 734 |
+
text_time_guidance_cls = (
|
| 735 |
+
CombinedTimestepGuidanceTextProjEmbeddings if guidance_embeds else CombinedTimestepTextProjEmbeddings
|
| 736 |
+
)
|
| 737 |
+
self.time_text_embed = text_time_guidance_cls(
|
| 738 |
+
embedding_dim=self.inner_dim, pooled_projection_dim=self.pooled_projection_dim
|
| 739 |
+
)
|
| 740 |
+
|
| 741 |
+
self.context_embedder = nn.Linear(self.joint_attention_dim, self.inner_dim)
|
| 742 |
+
|
| 743 |
+
self.transformer_blocks = nn.ModuleList(
|
| 744 |
+
[
|
| 745 |
+
TransformerBlock(
|
| 746 |
+
dim=self.inner_dim,
|
| 747 |
+
num_attention_heads=self.num_attention_heads,
|
| 748 |
+
attention_head_dim=self.attention_head_dim,
|
| 749 |
+
)
|
| 750 |
+
for i in range(self.num_layers)
|
| 751 |
+
]
|
| 752 |
+
)
|
| 753 |
+
|
| 754 |
+
self.single_transformer_blocks = nn.ModuleList(
|
| 755 |
+
[
|
| 756 |
+
SingleTransformerBlock(
|
| 757 |
+
dim=self.inner_dim,
|
| 758 |
+
num_attention_heads=self.num_attention_heads,
|
| 759 |
+
attention_head_dim=self.attention_head_dim,
|
| 760 |
+
)
|
| 761 |
+
for i in range(self.num_single_layers)
|
| 762 |
+
]
|
| 763 |
+
)
|
| 764 |
+
|
| 765 |
+
|
| 766 |
+
self.gradient_checkpointing = False
|
| 767 |
+
|
| 768 |
+
in_channels_embed = self.inner_dim
|
| 769 |
+
ln_elementwise_affine = True
|
| 770 |
+
layer_norm_eps = 1e-06
|
| 771 |
+
use_bias = False
|
| 772 |
+
micro_cond_embed_dim = 1280
|
| 773 |
+
self.embed = UVit2DConvEmbed(
|
| 774 |
+
in_channels_embed, self.inner_dim, self.vocab_size, ln_elementwise_affine, layer_norm_eps, use_bias
|
| 775 |
+
)
|
| 776 |
+
self.mlm_layer = ConvMlmLayer(
|
| 777 |
+
self.inner_dim, in_channels_embed, use_bias, ln_elementwise_affine, layer_norm_eps, self.codebook_size
|
| 778 |
+
)
|
| 779 |
+
self.cond_embed = TimestepEmbedding(
|
| 780 |
+
micro_cond_embed_dim + self.pooled_projection_dim, self.inner_dim, sample_proj_bias=use_bias
|
| 781 |
+
)
|
| 782 |
+
self.encoder_proj_layer_norm = RMSNorm(self.inner_dim, layer_norm_eps, ln_elementwise_affine)
|
| 783 |
+
self.project_to_hidden_norm = RMSNorm(in_channels_embed, layer_norm_eps, ln_elementwise_affine)
|
| 784 |
+
self.project_to_hidden = nn.Linear(in_channels_embed, self.inner_dim, bias=use_bias)
|
| 785 |
+
self.project_from_hidden_norm = RMSNorm(self.inner_dim, layer_norm_eps, ln_elementwise_affine)
|
| 786 |
+
self.project_from_hidden = nn.Linear(self.inner_dim, in_channels_embed, bias=use_bias)
|
| 787 |
+
|
| 788 |
+
self.down_block = Simple_UVitBlock(
|
| 789 |
+
self.inner_dim,
|
| 790 |
+
ln_elementwise_affine,
|
| 791 |
+
layer_norm_eps,
|
| 792 |
+
use_bias,
|
| 793 |
+
downsample,
|
| 794 |
+
False,
|
| 795 |
+
)
|
| 796 |
+
self.up_block = Simple_UVitBlock(
|
| 797 |
+
self.inner_dim, #block_out_channels,
|
| 798 |
+
ln_elementwise_affine,
|
| 799 |
+
layer_norm_eps,
|
| 800 |
+
use_bias,
|
| 801 |
+
False,
|
| 802 |
+
upsample=upsample,
|
| 803 |
+
)
|
| 804 |
+
|
| 805 |
+
# self.fuse_qkv_projections()
|
| 806 |
+
|
| 807 |
+
@property
|
| 808 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
| 809 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
| 810 |
+
r"""
|
| 811 |
+
Returns:
|
| 812 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
| 813 |
+
indexed by its weight name.
|
| 814 |
+
"""
|
| 815 |
+
# set recursively
|
| 816 |
+
processors = {}
|
| 817 |
+
|
| 818 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
| 819 |
+
if hasattr(module, "get_processor"):
|
| 820 |
+
processors[f"{name}.processor"] = module.get_processor()
|
| 821 |
+
|
| 822 |
+
for sub_name, child in module.named_children():
|
| 823 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
| 824 |
+
|
| 825 |
+
return processors
|
| 826 |
+
|
| 827 |
+
for name, module in self.named_children():
|
| 828 |
+
fn_recursive_add_processors(name, module, processors)
|
| 829 |
+
|
| 830 |
+
return processors
|
| 831 |
+
|
| 832 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
| 833 |
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
| 834 |
+
r"""
|
| 835 |
+
Sets the attention processor to use to compute attention.
|
| 836 |
+
|
| 837 |
+
Parameters:
|
| 838 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
| 839 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
| 840 |
+
for **all** `Attention` layers.
|
| 841 |
+
|
| 842 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
| 843 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
| 844 |
+
|
| 845 |
+
"""
|
| 846 |
+
count = len(self.attn_processors.keys())
|
| 847 |
+
|
| 848 |
+
if isinstance(processor, dict) and len(processor) != count:
|
| 849 |
+
raise ValueError(
|
| 850 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
| 851 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
| 852 |
+
)
|
| 853 |
+
|
| 854 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
| 855 |
+
if hasattr(module, "set_processor"):
|
| 856 |
+
if not isinstance(processor, dict):
|
| 857 |
+
module.set_processor(processor)
|
| 858 |
+
else:
|
| 859 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
| 860 |
+
|
| 861 |
+
for sub_name, child in module.named_children():
|
| 862 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
| 863 |
+
|
| 864 |
+
for name, module in self.named_children():
|
| 865 |
+
fn_recursive_attn_processor(name, module, processor)
|
| 866 |
+
|
| 867 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections with FusedAttnProcessor2_0->FusedFluxAttnProcessor2_0
|
| 868 |
+
def fuse_qkv_projections(self):
|
| 869 |
+
"""
|
| 870 |
+
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
|
| 871 |
+
are fused. For cross-attention modules, key and value projection matrices are fused.
|
| 872 |
+
|
| 873 |
+
<Tip warning={true}>
|
| 874 |
+
|
| 875 |
+
This API is 🧪 experimental.
|
| 876 |
+
|
| 877 |
+
</Tip>
|
| 878 |
+
"""
|
| 879 |
+
self.original_attn_processors = None
|
| 880 |
+
|
| 881 |
+
for _, attn_processor in self.attn_processors.items():
|
| 882 |
+
if "Added" in str(attn_processor.__class__.__name__):
|
| 883 |
+
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
|
| 884 |
+
|
| 885 |
+
self.original_attn_processors = self.attn_processors
|
| 886 |
+
|
| 887 |
+
for module in self.modules():
|
| 888 |
+
if isinstance(module, Attention):
|
| 889 |
+
module.fuse_projections(fuse=True)
|
| 890 |
+
|
| 891 |
+
self.set_attn_processor(FusedFluxAttnProcessor2_0())
|
| 892 |
+
|
| 893 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
|
| 894 |
+
def unfuse_qkv_projections(self):
|
| 895 |
+
"""Disables the fused QKV projection if enabled.
|
| 896 |
+
|
| 897 |
+
<Tip warning={true}>
|
| 898 |
+
|
| 899 |
+
This API is 🧪 experimental.
|
| 900 |
+
|
| 901 |
+
</Tip>
|
| 902 |
+
|
| 903 |
+
"""
|
| 904 |
+
if self.original_attn_processors is not None:
|
| 905 |
+
self.set_attn_processor(self.original_attn_processors)
|
| 906 |
+
|
| 907 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
| 908 |
+
if hasattr(module, "gradient_checkpointing"):
|
| 909 |
+
module.gradient_checkpointing = value
|
| 910 |
+
|
| 911 |
+
def forward(
|
| 912 |
+
self,
|
| 913 |
+
hidden_states: torch.Tensor,
|
| 914 |
+
encoder_hidden_states: torch.Tensor = None,
|
| 915 |
+
pooled_projections: torch.Tensor = None,
|
| 916 |
+
timestep: torch.LongTensor = None,
|
| 917 |
+
img_ids: torch.Tensor = None,
|
| 918 |
+
txt_ids: torch.Tensor = None,
|
| 919 |
+
guidance: torch.Tensor = None,
|
| 920 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 921 |
+
controlnet_block_samples= None,
|
| 922 |
+
controlnet_single_block_samples=None,
|
| 923 |
+
return_dict: bool = True,
|
| 924 |
+
micro_conds: torch.Tensor = None,
|
| 925 |
+
) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
|
| 926 |
+
"""
|
| 927 |
+
The [`FluxTransformer2DModel`] forward method.
|
| 928 |
+
|
| 929 |
+
Args:
|
| 930 |
+
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
|
| 931 |
+
Input `hidden_states`.
|
| 932 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):
|
| 933 |
+
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
|
| 934 |
+
pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected
|
| 935 |
+
from the embeddings of input conditions.
|
| 936 |
+
timestep ( `torch.LongTensor`):
|
| 937 |
+
Used to indicate denoising step.
|
| 938 |
+
block_controlnet_hidden_states: (`list` of `torch.Tensor`):
|
| 939 |
+
A list of tensors that if specified are added to the residuals of transformer blocks.
|
| 940 |
+
joint_attention_kwargs (`dict`, *optional*):
|
| 941 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
| 942 |
+
`self.processor` in
|
| 943 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
| 944 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 945 |
+
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
|
| 946 |
+
tuple.
|
| 947 |
+
|
| 948 |
+
Returns:
|
| 949 |
+
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
| 950 |
+
`tuple` where the first element is the sample tensor.
|
| 951 |
+
"""
|
| 952 |
+
micro_cond_encode_dim = 256 # same as self.micro_cond_encode_dim = 256 from amused
|
| 953 |
+
micro_cond_embeds = get_timestep_embedding(
|
| 954 |
+
micro_conds.flatten(), micro_cond_encode_dim, flip_sin_to_cos=True, downscale_freq_shift=0
|
| 955 |
+
)
|
| 956 |
+
micro_cond_embeds = micro_cond_embeds.reshape((hidden_states.shape[0], -1))
|
| 957 |
+
|
| 958 |
+
pooled_projections = torch.cat([pooled_projections, micro_cond_embeds], dim=1)
|
| 959 |
+
pooled_projections = pooled_projections.to(dtype=self.dtype)
|
| 960 |
+
pooled_projections = self.cond_embed(pooled_projections).to(encoder_hidden_states.dtype)
|
| 961 |
+
|
| 962 |
+
|
| 963 |
+
hidden_states = self.embed(hidden_states)
|
| 964 |
+
|
| 965 |
+
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
|
| 966 |
+
encoder_hidden_states = self.encoder_proj_layer_norm(encoder_hidden_states)
|
| 967 |
+
hidden_states = self.down_block(hidden_states)
|
| 968 |
+
|
| 969 |
+
batch_size, channels, height, width = hidden_states.shape
|
| 970 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch_size, height * width, channels)
|
| 971 |
+
hidden_states = self.project_to_hidden_norm(hidden_states)
|
| 972 |
+
hidden_states = self.project_to_hidden(hidden_states)
|
| 973 |
+
|
| 974 |
+
|
| 975 |
+
if joint_attention_kwargs is not None:
|
| 976 |
+
joint_attention_kwargs = joint_attention_kwargs.copy()
|
| 977 |
+
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
|
| 978 |
+
else:
|
| 979 |
+
lora_scale = 1.0
|
| 980 |
+
|
| 981 |
+
if USE_PEFT_BACKEND:
|
| 982 |
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
| 983 |
+
scale_lora_layers(self, lora_scale)
|
| 984 |
+
else:
|
| 985 |
+
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
|
| 986 |
+
logger.warning(
|
| 987 |
+
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
|
| 988 |
+
)
|
| 989 |
+
|
| 990 |
+
timestep = timestep.to(hidden_states.dtype) * 1000
|
| 991 |
+
if guidance is not None:
|
| 992 |
+
guidance = guidance.to(hidden_states.dtype) * 1000
|
| 993 |
+
else:
|
| 994 |
+
guidance = None
|
| 995 |
+
temb = (
|
| 996 |
+
self.time_text_embed(timestep, pooled_projections)
|
| 997 |
+
if guidance is None
|
| 998 |
+
else self.time_text_embed(timestep, guidance, pooled_projections)
|
| 999 |
+
)
|
| 1000 |
+
|
| 1001 |
+
if txt_ids.ndim == 3:
|
| 1002 |
+
logger.warning(
|
| 1003 |
+
"Passing `txt_ids` 3d torch.Tensor is deprecated."
|
| 1004 |
+
"Please remove the batch dimension and pass it as a 2d torch Tensor"
|
| 1005 |
+
)
|
| 1006 |
+
txt_ids = txt_ids[0]
|
| 1007 |
+
if img_ids.ndim == 3:
|
| 1008 |
+
logger.warning(
|
| 1009 |
+
"Passing `img_ids` 3d torch.Tensor is deprecated."
|
| 1010 |
+
"Please remove the batch dimension and pass it as a 2d torch Tensor"
|
| 1011 |
+
)
|
| 1012 |
+
img_ids = img_ids[0]
|
| 1013 |
+
ids = torch.cat((txt_ids, img_ids), dim=0)
|
| 1014 |
+
|
| 1015 |
+
image_rotary_emb = self.pos_embed(ids)
|
| 1016 |
+
|
| 1017 |
+
for index_block, block in enumerate(self.transformer_blocks):
|
| 1018 |
+
if self.training and self.gradient_checkpointing:
|
| 1019 |
+
|
| 1020 |
+
def create_custom_forward(module, return_dict=None):
|
| 1021 |
+
def custom_forward(*inputs):
|
| 1022 |
+
if return_dict is not None:
|
| 1023 |
+
return module(*inputs, return_dict=return_dict)
|
| 1024 |
+
else:
|
| 1025 |
+
return module(*inputs)
|
| 1026 |
+
|
| 1027 |
+
return custom_forward
|
| 1028 |
+
|
| 1029 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
| 1030 |
+
encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint(
|
| 1031 |
+
create_custom_forward(block),
|
| 1032 |
+
hidden_states,
|
| 1033 |
+
encoder_hidden_states,
|
| 1034 |
+
temb,
|
| 1035 |
+
image_rotary_emb,
|
| 1036 |
+
**ckpt_kwargs,
|
| 1037 |
+
)
|
| 1038 |
+
|
| 1039 |
+
else:
|
| 1040 |
+
encoder_hidden_states, hidden_states = block(
|
| 1041 |
+
hidden_states=hidden_states,
|
| 1042 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 1043 |
+
temb=temb,
|
| 1044 |
+
image_rotary_emb=image_rotary_emb,
|
| 1045 |
+
)
|
| 1046 |
+
|
| 1047 |
+
|
| 1048 |
+
# controlnet residual
|
| 1049 |
+
if controlnet_block_samples is not None:
|
| 1050 |
+
interval_control = len(self.transformer_blocks) / len(controlnet_block_samples)
|
| 1051 |
+
interval_control = int(np.ceil(interval_control))
|
| 1052 |
+
hidden_states = hidden_states + controlnet_block_samples[index_block // interval_control]
|
| 1053 |
+
|
| 1054 |
+
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
| 1055 |
+
|
| 1056 |
+
for index_block, block in enumerate(self.single_transformer_blocks):
|
| 1057 |
+
if self.training and self.gradient_checkpointing:
|
| 1058 |
+
|
| 1059 |
+
def create_custom_forward(module, return_dict=None):
|
| 1060 |
+
def custom_forward(*inputs):
|
| 1061 |
+
if return_dict is not None:
|
| 1062 |
+
return module(*inputs, return_dict=return_dict)
|
| 1063 |
+
else:
|
| 1064 |
+
return module(*inputs)
|
| 1065 |
+
|
| 1066 |
+
return custom_forward
|
| 1067 |
+
|
| 1068 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
| 1069 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 1070 |
+
create_custom_forward(block),
|
| 1071 |
+
hidden_states,
|
| 1072 |
+
temb,
|
| 1073 |
+
image_rotary_emb,
|
| 1074 |
+
**ckpt_kwargs,
|
| 1075 |
+
)
|
| 1076 |
+
|
| 1077 |
+
else:
|
| 1078 |
+
hidden_states = block(
|
| 1079 |
+
hidden_states=hidden_states,
|
| 1080 |
+
temb=temb,
|
| 1081 |
+
image_rotary_emb=image_rotary_emb,
|
| 1082 |
+
)
|
| 1083 |
+
|
| 1084 |
+
# controlnet residual
|
| 1085 |
+
if controlnet_single_block_samples is not None:
|
| 1086 |
+
interval_control = len(self.single_transformer_blocks) / len(controlnet_single_block_samples)
|
| 1087 |
+
interval_control = int(np.ceil(interval_control))
|
| 1088 |
+
hidden_states[:, encoder_hidden_states.shape[1] :, ...] = (
|
| 1089 |
+
hidden_states[:, encoder_hidden_states.shape[1] :, ...]
|
| 1090 |
+
+ controlnet_single_block_samples[index_block // interval_control]
|
| 1091 |
+
)
|
| 1092 |
+
|
| 1093 |
+
hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...]
|
| 1094 |
+
|
| 1095 |
+
|
| 1096 |
+
hidden_states = self.project_from_hidden_norm(hidden_states)
|
| 1097 |
+
hidden_states = self.project_from_hidden(hidden_states)
|
| 1098 |
+
|
| 1099 |
+
|
| 1100 |
+
hidden_states = hidden_states.reshape(batch_size, height, width, channels).permute(0, 3, 1, 2)
|
| 1101 |
+
|
| 1102 |
+
hidden_states = self.up_block(hidden_states)
|
| 1103 |
+
|
| 1104 |
+
if USE_PEFT_BACKEND:
|
| 1105 |
+
# remove `lora_scale` from each PEFT layer
|
| 1106 |
+
unscale_lora_layers(self, lora_scale)
|
| 1107 |
+
|
| 1108 |
+
output = self.mlm_layer(hidden_states)
|
| 1109 |
+
# self.unfuse_qkv_projections()
|
| 1110 |
+
if not return_dict:
|
| 1111 |
+
return (output,)
|
| 1112 |
+
|
| 1113 |
+
|
| 1114 |
+
return output
|
| 1115 |
+
|
| 1116 |
+
|
| 1117 |
+
class SymmetricTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin):
|
| 1118 |
+
"""
|
| 1119 |
+
The Transformer model introduced in Flux.
|
| 1120 |
+
|
| 1121 |
+
Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
|
| 1122 |
+
|
| 1123 |
+
Parameters:
|
| 1124 |
+
patch_size (`int`): Patch size to turn the input data into small patches.
|
| 1125 |
+
in_channels (`int`, *optional*, defaults to 16): The number of channels in the input.
|
| 1126 |
+
num_layers (`int`, *optional*, defaults to 18): The number of layers of MMDiT blocks to use.
|
| 1127 |
+
num_single_layers (`int`, *optional*, defaults to 18): The number of layers of single DiT blocks to use.
|
| 1128 |
+
attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head.
|
| 1129 |
+
num_attention_heads (`int`, *optional*, defaults to 18): The number of heads to use for multi-head attention.
|
| 1130 |
+
joint_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
|
| 1131 |
+
pooled_projection_dim (`int`): Number of dimensions to use when projecting the `pooled_projections`.
|
| 1132 |
+
guidance_embeds (`bool`, defaults to False): Whether to use guidance embeddings.
|
| 1133 |
+
"""
|
| 1134 |
+
|
| 1135 |
+
_supports_gradient_checkpointing = False #True
|
| 1136 |
+
# Due to NotImplementedError: DDPOptimizer backend: Found a higher order op in the graph. This is not supported. Please turn off DDP optimizer using torch._dynamo.config.optimize_ddp=False. Note that this can cause performance degradation because there will be one bucket for the entire Dynamo graph.
|
| 1137 |
+
# Please refer to this issue - https://github.com/pytorch/pytorch/issues/104674.
|
| 1138 |
+
_no_split_modules = ["TransformerBlock", "SingleTransformerBlock"]
|
| 1139 |
+
|
| 1140 |
+
@register_to_config
|
| 1141 |
+
def __init__(
|
| 1142 |
+
self,
|
| 1143 |
+
patch_size: int = 1,
|
| 1144 |
+
in_channels: int = 64,
|
| 1145 |
+
num_layers: int = 19,
|
| 1146 |
+
num_single_layers: int = 38,
|
| 1147 |
+
attention_head_dim: int = 128,
|
| 1148 |
+
num_attention_heads: int = 24,
|
| 1149 |
+
joint_attention_dim: int = 4096,
|
| 1150 |
+
pooled_projection_dim: int = 768,
|
| 1151 |
+
guidance_embeds: bool = False, # unused in our implementation
|
| 1152 |
+
axes_dims_rope: Tuple[int] = (16, 56, 56),
|
| 1153 |
+
vocab_size: int = 8256,
|
| 1154 |
+
codebook_size: int = 8192,
|
| 1155 |
+
tokenizer_vocab_size: Optional[int] = None,
|
| 1156 |
+
t5_dim: Optional[int] = None,
|
| 1157 |
+
downsample: bool = False,
|
| 1158 |
+
upsample: bool = False,
|
| 1159 |
+
):
|
| 1160 |
+
super().__init__()
|
| 1161 |
+
self.out_channels = in_channels
|
| 1162 |
+
self.inner_dim = self.num_attention_heads * self.attention_head_dim
|
| 1163 |
+
|
| 1164 |
+
self.pos_embed = FluxPosEmbed(theta=10000, axes_dim=axes_dims_rope)
|
| 1165 |
+
text_time_guidance_cls = (
|
| 1166 |
+
CombinedTimestepGuidanceTextProjEmbeddings if guidance_embeds else CombinedTimestepTextProjEmbeddings
|
| 1167 |
+
)
|
| 1168 |
+
self.time_text_embed = text_time_guidance_cls(
|
| 1169 |
+
embedding_dim=self.inner_dim, pooled_projection_dim=self.inner_dim
|
| 1170 |
+
)
|
| 1171 |
+
|
| 1172 |
+
if t5_dim is not None:
|
| 1173 |
+
self.adapter = nn.Sequential(
|
| 1174 |
+
nn.LayerNorm(t5_dim, elementwise_affine=False, eps=1e-6),
|
| 1175 |
+
nn.Linear(t5_dim, self.joint_attention_dim, bias=False)
|
| 1176 |
+
)
|
| 1177 |
+
else:
|
| 1178 |
+
self.adapter = None
|
| 1179 |
+
|
| 1180 |
+
self.context_embedder = nn.Linear(self.joint_attention_dim, self.inner_dim)
|
| 1181 |
+
|
| 1182 |
+
self.transformer_blocks = nn.ModuleList(
|
| 1183 |
+
[
|
| 1184 |
+
TransformerBlock(
|
| 1185 |
+
dim=self.inner_dim,
|
| 1186 |
+
num_attention_heads=self.num_attention_heads,
|
| 1187 |
+
attention_head_dim=self.attention_head_dim,
|
| 1188 |
+
)
|
| 1189 |
+
for i in range(self.num_layers)
|
| 1190 |
+
]
|
| 1191 |
+
)
|
| 1192 |
+
|
| 1193 |
+
self.single_transformer_blocks = nn.ModuleList(
|
| 1194 |
+
[
|
| 1195 |
+
SingleTransformerBlock(
|
| 1196 |
+
dim=self.inner_dim,
|
| 1197 |
+
num_attention_heads=self.num_attention_heads,
|
| 1198 |
+
attention_head_dim=self.attention_head_dim,
|
| 1199 |
+
)
|
| 1200 |
+
for i in range(self.num_single_layers)
|
| 1201 |
+
]
|
| 1202 |
+
)
|
| 1203 |
+
|
| 1204 |
+
self.gradient_checkpointing = False
|
| 1205 |
+
|
| 1206 |
+
in_channels_embed = self.inner_dim
|
| 1207 |
+
ln_elementwise_affine = True
|
| 1208 |
+
layer_norm_eps = 1e-06
|
| 1209 |
+
use_bias = False
|
| 1210 |
+
micro_cond_embed_dim = 1280
|
| 1211 |
+
self.embed = UVit2DConvEmbed(
|
| 1212 |
+
in_channels_embed, self.inner_dim, self.vocab_size, ln_elementwise_affine, layer_norm_eps, use_bias
|
| 1213 |
+
)
|
| 1214 |
+
self.mlm_layer = ConvMlmLayer(
|
| 1215 |
+
self.inner_dim, in_channels_embed, use_bias, ln_elementwise_affine, layer_norm_eps, self.codebook_size
|
| 1216 |
+
)
|
| 1217 |
+
self.cond_embed = TimestepEmbedding(
|
| 1218 |
+
micro_cond_embed_dim + self.pooled_projection_dim, self.inner_dim, sample_proj_bias=use_bias
|
| 1219 |
+
)
|
| 1220 |
+
self.encoder_proj_layer_norm = RMSNorm(self.inner_dim, layer_norm_eps, ln_elementwise_affine)
|
| 1221 |
+
self.project_to_hidden_norm = RMSNorm(in_channels_embed, layer_norm_eps, ln_elementwise_affine)
|
| 1222 |
+
self.project_to_hidden = nn.Linear(in_channels_embed, self.inner_dim, bias=use_bias)
|
| 1223 |
+
self.project_from_hidden_norm = RMSNorm(self.inner_dim, layer_norm_eps, ln_elementwise_affine)
|
| 1224 |
+
self.project_from_hidden = nn.Linear(self.inner_dim, in_channels_embed, bias=use_bias)
|
| 1225 |
+
|
| 1226 |
+
self.down_block = Simple_UVitBlock(
|
| 1227 |
+
self.inner_dim,
|
| 1228 |
+
ln_elementwise_affine,
|
| 1229 |
+
layer_norm_eps,
|
| 1230 |
+
use_bias,
|
| 1231 |
+
downsample,
|
| 1232 |
+
False,
|
| 1233 |
+
)
|
| 1234 |
+
self.up_block = Simple_UVitBlock(
|
| 1235 |
+
self.inner_dim,
|
| 1236 |
+
ln_elementwise_affine,
|
| 1237 |
+
layer_norm_eps,
|
| 1238 |
+
use_bias,
|
| 1239 |
+
False,
|
| 1240 |
+
upsample=upsample,
|
| 1241 |
+
)
|
| 1242 |
+
|
| 1243 |
+
if tokenizer_vocab_size is not None:
|
| 1244 |
+
self.text_decoder = nn.Sequential(
|
| 1245 |
+
nn.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6),
|
| 1246 |
+
nn.Linear(self.inner_dim, tokenizer_vocab_size, bias=use_bias)
|
| 1247 |
+
)
|
| 1248 |
+
else:
|
| 1249 |
+
self.text_decoder = None
|
| 1250 |
+
|
| 1251 |
+
|
| 1252 |
+
def forward(
|
| 1253 |
+
self,
|
| 1254 |
+
hidden_states: torch.Tensor,
|
| 1255 |
+
encoder_hidden_states: torch.Tensor = None,
|
| 1256 |
+
pooled_projections: torch.Tensor = None,
|
| 1257 |
+
timestep: torch.LongTensor = None,
|
| 1258 |
+
img_ids: torch.Tensor = None,
|
| 1259 |
+
txt_ids: torch.Tensor = None,
|
| 1260 |
+
guidance: torch.Tensor = None,
|
| 1261 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 1262 |
+
controlnet_block_samples= None,
|
| 1263 |
+
controlnet_single_block_samples=None,
|
| 1264 |
+
return_dict: bool = True,
|
| 1265 |
+
micro_conds: torch.Tensor = None,
|
| 1266 |
+
) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
|
| 1267 |
+
"""
|
| 1268 |
+
The [`FluxTransformer2DModel`] forward method.
|
| 1269 |
+
|
| 1270 |
+
Args:
|
| 1271 |
+
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
|
| 1272 |
+
Input `hidden_states`.
|
| 1273 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):
|
| 1274 |
+
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
|
| 1275 |
+
pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected
|
| 1276 |
+
from the embeddings of input conditions.
|
| 1277 |
+
timestep ( `torch.LongTensor`):
|
| 1278 |
+
Used to indicate denoising step.
|
| 1279 |
+
block_controlnet_hidden_states: (`list` of `torch.Tensor`):
|
| 1280 |
+
A list of tensors that if specified are added to the residuals of transformer blocks.
|
| 1281 |
+
joint_attention_kwargs (`dict`, *optional*):
|
| 1282 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
| 1283 |
+
`self.processor` in
|
| 1284 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
| 1285 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 1286 |
+
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
|
| 1287 |
+
tuple.
|
| 1288 |
+
|
| 1289 |
+
Returns:
|
| 1290 |
+
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
| 1291 |
+
`tuple` where the first element is the sample tensor.
|
| 1292 |
+
"""
|
| 1293 |
+
micro_cond_encode_dim = 256 # same as self.micro_cond_encode_dim = 256 from amused
|
| 1294 |
+
micro_cond_embeds = get_timestep_embedding(
|
| 1295 |
+
micro_conds.flatten(), micro_cond_encode_dim, flip_sin_to_cos=True, downscale_freq_shift=0
|
| 1296 |
+
)
|
| 1297 |
+
micro_cond_embeds = micro_cond_embeds.reshape((hidden_states.shape[0], -1))
|
| 1298 |
+
|
| 1299 |
+
if self.adapter is not None:
|
| 1300 |
+
encoder_hidden_states = self.adapter(encoder_hidden_states)
|
| 1301 |
+
|
| 1302 |
+
pooled_projections = torch.cat([pooled_projections, micro_cond_embeds], dim=1)
|
| 1303 |
+
pooled_projections = pooled_projections.to(dtype=self.dtype)
|
| 1304 |
+
pooled_projections = self.cond_embed(pooled_projections).to(encoder_hidden_states.dtype)
|
| 1305 |
+
|
| 1306 |
+
hidden_states = self.embed(hidden_states)
|
| 1307 |
+
|
| 1308 |
+
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
|
| 1309 |
+
encoder_hidden_states = self.encoder_proj_layer_norm(encoder_hidden_states)
|
| 1310 |
+
hidden_states = self.down_block(hidden_states)
|
| 1311 |
+
|
| 1312 |
+
batch_size, channels, height, width = hidden_states.shape
|
| 1313 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch_size, height * width, channels)
|
| 1314 |
+
hidden_states = self.project_to_hidden_norm(hidden_states)
|
| 1315 |
+
hidden_states = self.project_to_hidden(hidden_states)
|
| 1316 |
+
|
| 1317 |
+
|
| 1318 |
+
if joint_attention_kwargs is not None:
|
| 1319 |
+
joint_attention_kwargs = joint_attention_kwargs.copy()
|
| 1320 |
+
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
|
| 1321 |
+
else:
|
| 1322 |
+
lora_scale = 1.0
|
| 1323 |
+
|
| 1324 |
+
if USE_PEFT_BACKEND:
|
| 1325 |
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
| 1326 |
+
scale_lora_layers(self, lora_scale)
|
| 1327 |
+
else:
|
| 1328 |
+
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
|
| 1329 |
+
logger.warning(
|
| 1330 |
+
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
|
| 1331 |
+
)
|
| 1332 |
+
|
| 1333 |
+
timestep = timestep.to(hidden_states.dtype) * 1000
|
| 1334 |
+
if guidance is not None:
|
| 1335 |
+
guidance = guidance.to(hidden_states.dtype) * 1000
|
| 1336 |
+
else:
|
| 1337 |
+
guidance = None
|
| 1338 |
+
temb = (
|
| 1339 |
+
self.time_text_embed(timestep, pooled_projections)
|
| 1340 |
+
if guidance is None
|
| 1341 |
+
else self.time_text_embed(timestep, guidance, pooled_projections)
|
| 1342 |
+
)
|
| 1343 |
+
|
| 1344 |
+
if txt_ids.ndim == 3:
|
| 1345 |
+
logger.warning(
|
| 1346 |
+
"Passing `txt_ids` 3d torch.Tensor is deprecated."
|
| 1347 |
+
"Please remove the batch dimension and pass it as a 2d torch Tensor"
|
| 1348 |
+
)
|
| 1349 |
+
txt_ids = txt_ids[0]
|
| 1350 |
+
if img_ids.ndim == 3:
|
| 1351 |
+
logger.warning(
|
| 1352 |
+
"Passing `img_ids` 3d torch.Tensor is deprecated."
|
| 1353 |
+
"Please remove the batch dimension and pass it as a 2d torch Tensor"
|
| 1354 |
+
)
|
| 1355 |
+
img_ids = img_ids[0]
|
| 1356 |
+
ids = torch.cat((txt_ids, img_ids), dim=0)
|
| 1357 |
+
|
| 1358 |
+
image_rotary_emb = self.pos_embed(ids)
|
| 1359 |
+
|
| 1360 |
+
for index_block, block in enumerate(self.transformer_blocks):
|
| 1361 |
+
if self.training and self.gradient_checkpointing:
|
| 1362 |
+
|
| 1363 |
+
def create_custom_forward(module, return_dict=None):
|
| 1364 |
+
def custom_forward(*inputs):
|
| 1365 |
+
if return_dict is not None:
|
| 1366 |
+
return module(*inputs, return_dict=return_dict)
|
| 1367 |
+
else:
|
| 1368 |
+
return module(*inputs)
|
| 1369 |
+
|
| 1370 |
+
return custom_forward
|
| 1371 |
+
|
| 1372 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
| 1373 |
+
encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint(
|
| 1374 |
+
create_custom_forward(block),
|
| 1375 |
+
hidden_states,
|
| 1376 |
+
encoder_hidden_states,
|
| 1377 |
+
temb,
|
| 1378 |
+
image_rotary_emb,
|
| 1379 |
+
**ckpt_kwargs,
|
| 1380 |
+
)
|
| 1381 |
+
|
| 1382 |
+
else:
|
| 1383 |
+
encoder_hidden_states, hidden_states = block(
|
| 1384 |
+
hidden_states=hidden_states,
|
| 1385 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 1386 |
+
temb=temb,
|
| 1387 |
+
image_rotary_emb=image_rotary_emb,
|
| 1388 |
+
)
|
| 1389 |
+
|
| 1390 |
+
|
| 1391 |
+
# controlnet residual
|
| 1392 |
+
if controlnet_block_samples is not None:
|
| 1393 |
+
interval_control = len(self.transformer_blocks) / len(controlnet_block_samples)
|
| 1394 |
+
interval_control = int(np.ceil(interval_control))
|
| 1395 |
+
hidden_states = hidden_states + controlnet_block_samples[index_block // interval_control]
|
| 1396 |
+
|
| 1397 |
+
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
| 1398 |
+
|
| 1399 |
+
for index_block, block in enumerate(self.single_transformer_blocks):
|
| 1400 |
+
if self.training and self.gradient_checkpointing:
|
| 1401 |
+
|
| 1402 |
+
def create_custom_forward(module, return_dict=None):
|
| 1403 |
+
def custom_forward(*inputs):
|
| 1404 |
+
if return_dict is not None:
|
| 1405 |
+
return module(*inputs, return_dict=return_dict)
|
| 1406 |
+
else:
|
| 1407 |
+
return module(*inputs)
|
| 1408 |
+
|
| 1409 |
+
return custom_forward
|
| 1410 |
+
|
| 1411 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
| 1412 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 1413 |
+
create_custom_forward(block),
|
| 1414 |
+
hidden_states,
|
| 1415 |
+
temb,
|
| 1416 |
+
image_rotary_emb,
|
| 1417 |
+
**ckpt_kwargs,
|
| 1418 |
+
)
|
| 1419 |
+
|
| 1420 |
+
else:
|
| 1421 |
+
hidden_states = block(
|
| 1422 |
+
hidden_states=hidden_states,
|
| 1423 |
+
temb=temb,
|
| 1424 |
+
image_rotary_emb=image_rotary_emb,
|
| 1425 |
+
)
|
| 1426 |
+
|
| 1427 |
+
# controlnet residual
|
| 1428 |
+
if controlnet_single_block_samples is not None:
|
| 1429 |
+
interval_control = len(self.single_transformer_blocks) / len(controlnet_single_block_samples)
|
| 1430 |
+
interval_control = int(np.ceil(interval_control))
|
| 1431 |
+
hidden_states[:, encoder_hidden_states.shape[1] :, ...] = (
|
| 1432 |
+
hidden_states[:, encoder_hidden_states.shape[1] :, ...]
|
| 1433 |
+
+ controlnet_single_block_samples[index_block // interval_control]
|
| 1434 |
+
)
|
| 1435 |
+
|
| 1436 |
+
encoder_hidden_states = hidden_states[:, :encoder_hidden_states.shape[1], ...]
|
| 1437 |
+
hidden_states = hidden_states[:, encoder_hidden_states.shape[1]:, ...]
|
| 1438 |
+
|
| 1439 |
+
if self.text_decoder is not None:
|
| 1440 |
+
encoder_hidden_states = self.text_decoder(encoder_hidden_states)
|
| 1441 |
+
|
| 1442 |
+
hidden_states = self.project_from_hidden_norm(hidden_states)
|
| 1443 |
+
hidden_states = self.project_from_hidden(hidden_states)
|
| 1444 |
+
|
| 1445 |
+
hidden_states = hidden_states.reshape(batch_size, height, width, channels).permute(0, 3, 1, 2)
|
| 1446 |
+
|
| 1447 |
+
hidden_states = self.up_block(hidden_states)
|
| 1448 |
+
|
| 1449 |
+
if USE_PEFT_BACKEND:
|
| 1450 |
+
# remove `lora_scale` from each PEFT layer
|
| 1451 |
+
unscale_lora_layers(self, lora_scale)
|
| 1452 |
+
|
| 1453 |
+
output = self.mlm_layer(hidden_states)
|
| 1454 |
+
# self.unfuse_qkv_projections()
|
| 1455 |
+
if not return_dict:
|
| 1456 |
+
return (output, encoder_hidden_states)
|
| 1457 |
+
|
| 1458 |
+
|
| 1459 |
+
return output, encoder_hidden_states # [b, l, tokenizer_vocab_size]
|
train/__pycache__/dataset_utils.cpython-39.pyc
ADDED
|
Binary file (12.5 kB). View file
|
|
|
train/__pycache__/trainer_utils.cpython-310.pyc
ADDED
|
Binary file (2.8 kB). View file
|
|
|
train/__pycache__/trainer_utils.cpython-39.pyc
ADDED
|
Binary file (2.81 kB). View file
|
|
|
train/dataset_utils.py
ADDED
|
@@ -0,0 +1,472 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2024 The HuggingFace Team and The MeissonFlow Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
import os
|
| 16 |
+
import torch
|
| 17 |
+
from torch.utils.data import Dataset
|
| 18 |
+
from torchvision import transforms
|
| 19 |
+
from PIL.ImageOps import exif_transpose
|
| 20 |
+
from PIL import Image
|
| 21 |
+
import io
|
| 22 |
+
import json
|
| 23 |
+
import numpy as np
|
| 24 |
+
import pyarrow.parquet as pq
|
| 25 |
+
import random
|
| 26 |
+
import bisect
|
| 27 |
+
import pyarrow.fs as fs
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
@torch.no_grad()
|
| 31 |
+
def tokenize_prompt(
|
| 32 |
+
tokenizer,
|
| 33 |
+
prompt,
|
| 34 |
+
text_encoder_architecture='open_clip',
|
| 35 |
+
padding='max_length',
|
| 36 |
+
max_length=77,
|
| 37 |
+
max_length_t5=256,
|
| 38 |
+
):
|
| 39 |
+
if text_encoder_architecture == 'CLIP' or text_encoder_architecture == 'open_clip':
|
| 40 |
+
input_ids = tokenizer(
|
| 41 |
+
prompt,
|
| 42 |
+
truncation=True,
|
| 43 |
+
padding=padding,
|
| 44 |
+
max_length=max_length,
|
| 45 |
+
return_tensors="pt",
|
| 46 |
+
).input_ids
|
| 47 |
+
return input_ids
|
| 48 |
+
elif text_encoder_architecture == 't5_clip': # we have two tokenizers, 1st for CLIP, 2nd for T5
|
| 49 |
+
input_ids = []
|
| 50 |
+
input_ids.append(tokenizer[0](
|
| 51 |
+
prompt,
|
| 52 |
+
truncation=True,
|
| 53 |
+
padding=padding,
|
| 54 |
+
max_length=max_length,
|
| 55 |
+
return_tensors="pt",
|
| 56 |
+
).input_ids)
|
| 57 |
+
input_ids.append(tokenizer[1](
|
| 58 |
+
prompt,
|
| 59 |
+
truncation=True,
|
| 60 |
+
padding=padding,
|
| 61 |
+
max_length=max_length_t5,
|
| 62 |
+
return_tensors="pt",
|
| 63 |
+
).input_ids)
|
| 64 |
+
return input_ids
|
| 65 |
+
elif text_encoder_architecture == "gemma":
|
| 66 |
+
input_ids = []
|
| 67 |
+
input_ids.append(tokenizer[0](
|
| 68 |
+
prompt,
|
| 69 |
+
truncation=True,
|
| 70 |
+
padding=padding,
|
| 71 |
+
max_length=max_length,
|
| 72 |
+
return_tensors="pt",
|
| 73 |
+
).input_ids)
|
| 74 |
+
input_ids.append(tokenizer[1](
|
| 75 |
+
prompt,
|
| 76 |
+
truncation=True,
|
| 77 |
+
padding=padding,
|
| 78 |
+
max_length=max_length_t5,
|
| 79 |
+
return_tensors="pt",
|
| 80 |
+
).input_ids)
|
| 81 |
+
return input_ids
|
| 82 |
+
else:
|
| 83 |
+
raise ValueError(f"Unknown text_encoder_architecture: {text_encoder_architecture}")
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
def encode_prompt(
|
| 87 |
+
text_encoder,
|
| 88 |
+
input_ids,
|
| 89 |
+
text_encoder_architecture='open_clip'
|
| 90 |
+
):
|
| 91 |
+
if text_encoder_architecture == 'CLIP' or text_encoder_architecture == 'open_clip':
|
| 92 |
+
outputs = text_encoder(input_ids=input_ids, return_dict=True, output_hidden_states=True)
|
| 93 |
+
encoder_hidden_states = outputs.hidden_states[-2]
|
| 94 |
+
cond_embeds = outputs[0]
|
| 95 |
+
return encoder_hidden_states, cond_embeds
|
| 96 |
+
elif text_encoder_architecture == 't5_clip':
|
| 97 |
+
outputs_clip = text_encoder[0](
|
| 98 |
+
input_ids=input_ids[0],
|
| 99 |
+
return_dict=True,
|
| 100 |
+
output_hidden_states=True
|
| 101 |
+
)
|
| 102 |
+
outputs_t5 = text_encoder[1](
|
| 103 |
+
input_ids=input_ids[1],
|
| 104 |
+
return_dict=True,
|
| 105 |
+
output_hidden_states=True
|
| 106 |
+
)
|
| 107 |
+
encoder_hidden_states = outputs_t5.last_hidden_state
|
| 108 |
+
cond_embeds = outputs_clip.text_embeds
|
| 109 |
+
return encoder_hidden_states, cond_embeds
|
| 110 |
+
elif text_encoder_architecture == "gemma":
|
| 111 |
+
outputs_clip = text_encoder[0](
|
| 112 |
+
input_ids=input_ids[0],
|
| 113 |
+
return_dict=True,
|
| 114 |
+
output_hidden_states=True
|
| 115 |
+
)
|
| 116 |
+
outputs_gemma = text_encoder[1](
|
| 117 |
+
input_ids=input_ids[1],
|
| 118 |
+
return_dict=True,
|
| 119 |
+
output_hidden_states=True
|
| 120 |
+
)
|
| 121 |
+
encoder_hidden_states = outputs_gemma.last_hidden_state
|
| 122 |
+
cond_embeds = outputs_clip.text_embeds
|
| 123 |
+
return encoder_hidden_states, cond_embeds
|
| 124 |
+
else:
|
| 125 |
+
raise ValueError(f"Unknown text_encoder_architecture: {text_encoder_architecture}")
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
def process_image(image, size, Norm=False, hps_score=6.0):
|
| 129 |
+
image = exif_transpose(image)
|
| 130 |
+
|
| 131 |
+
if not image.mode == "RGB":
|
| 132 |
+
image = image.convert("RGB")
|
| 133 |
+
|
| 134 |
+
orig_height = image.height
|
| 135 |
+
orig_width = image.width
|
| 136 |
+
|
| 137 |
+
image = transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR)(image)
|
| 138 |
+
|
| 139 |
+
c_top, c_left, _, _ = transforms.RandomCrop.get_params(image, output_size=(size, size))
|
| 140 |
+
image = transforms.functional.crop(image, c_top, c_left, size, size)
|
| 141 |
+
image = transforms.ToTensor()(image)
|
| 142 |
+
|
| 143 |
+
if Norm:
|
| 144 |
+
image = transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)(image)
|
| 145 |
+
|
| 146 |
+
micro_conds = torch.tensor(
|
| 147 |
+
[orig_width, orig_height, c_top, c_left, hps_score],
|
| 148 |
+
)
|
| 149 |
+
|
| 150 |
+
return {"image": image, "micro_conds": micro_conds}
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
class ImageCaptionLargeDataset(Dataset):
|
| 154 |
+
def __init__(
|
| 155 |
+
self,
|
| 156 |
+
root_dir,
|
| 157 |
+
tokenizer,
|
| 158 |
+
size,
|
| 159 |
+
text_encoder_architecture="CLIP",
|
| 160 |
+
norm=False
|
| 161 |
+
):
|
| 162 |
+
self.root_dir = root_dir
|
| 163 |
+
self.tokenizer = tokenizer
|
| 164 |
+
self.size = size
|
| 165 |
+
self.text_encoder_architecture = text_encoder_architecture
|
| 166 |
+
self.norm = norm
|
| 167 |
+
|
| 168 |
+
self.data_list = []
|
| 169 |
+
for root, dirnames, filenames in os.walk(root_dir):
|
| 170 |
+
for filename in filenames:
|
| 171 |
+
if filename.endswith(".jpg") or filename.endswith(".png"):
|
| 172 |
+
base_name = os.path.splitext(filename)[0]
|
| 173 |
+
txt_file = os.path.join(root, base_name + ".txt")
|
| 174 |
+
if os.path.exists(txt_file):
|
| 175 |
+
self.data_list.append((root, base_name + ".txt", filename))
|
| 176 |
+
|
| 177 |
+
def __len__(self):
|
| 178 |
+
return len(self.data_list)
|
| 179 |
+
|
| 180 |
+
def __getitem__(self, idx):
|
| 181 |
+
try:
|
| 182 |
+
sub_dir, txtfilename, imgfilename = self.data_list[idx]
|
| 183 |
+
img_path = os.path.join(sub_dir, imgfilename)
|
| 184 |
+
caption_path = os.path.join(sub_dir, txtfilename)
|
| 185 |
+
|
| 186 |
+
image = Image.open(img_path).convert("RGB")
|
| 187 |
+
ret = process_image(image, self.size, self.norm)
|
| 188 |
+
|
| 189 |
+
with open(caption_path, "r", encoding="utf-8") as f:
|
| 190 |
+
caption = f.read().strip()
|
| 191 |
+
|
| 192 |
+
ret["prompt_input_ids"] = tokenize_prompt(
|
| 193 |
+
self.tokenizer, caption, self.text_encoder_architecture
|
| 194 |
+
)
|
| 195 |
+
|
| 196 |
+
return ret
|
| 197 |
+
|
| 198 |
+
except Exception as e:
|
| 199 |
+
print("===========================================")
|
| 200 |
+
print(f"[Warning] Error at index {idx}: {img_path}")
|
| 201 |
+
print("===========================================")
|
| 202 |
+
if idx + 1 < len(self.data_list):
|
| 203 |
+
return self.__getitem__(idx + 1)
|
| 204 |
+
else:
|
| 205 |
+
return self.__getitem__(len(self.data_list) - 1)
|
| 206 |
+
|
| 207 |
+
|
| 208 |
+
class MultiSourceVLDataset(Dataset):
|
| 209 |
+
"""
|
| 210 |
+
A unified dataloader for
|
| 211 |
+
• LLaVA-Instruct-150K
|
| 212 |
+
• MMMU (multiple-choice QA)
|
| 213 |
+
• VQAv2
|
| 214 |
+
• Local caption files under `pdd3/`
|
| 215 |
+
"""
|
| 216 |
+
|
| 217 |
+
def __init__(
|
| 218 |
+
self,
|
| 219 |
+
tokenizer,
|
| 220 |
+
size: int,
|
| 221 |
+
text_encoder_architecture: str = "CLIP",
|
| 222 |
+
norm: bool = False,
|
| 223 |
+
# ----- paths -----
|
| 224 |
+
llava_json: str = None, llava_img_root: str = None,
|
| 225 |
+
mmmu_json: str = None, mmmu_img_root: str = None,
|
| 226 |
+
vqa_ann_json: str = None, vqa_img_root: str = None,
|
| 227 |
+
gqa_json: str = None, gqa_img_root: str = None,
|
| 228 |
+
coco_json: str = None, coco_img_root: str = None,
|
| 229 |
+
coco_qa_json: str = None,
|
| 230 |
+
mg_llava_json: str = None, mg_llava_root: str = None,
|
| 231 |
+
pdd3_dir: str = None, caption_dir: str = None,
|
| 232 |
+
):
|
| 233 |
+
self.tokenizer = tokenizer
|
| 234 |
+
self.size = size
|
| 235 |
+
self.arch = text_encoder_architecture
|
| 236 |
+
self.norm = norm
|
| 237 |
+
|
| 238 |
+
self.gen_samples = [] # [(img_path, prompt), ...]
|
| 239 |
+
self.mmu_samples = [] # [(img_path, question, answer), ...]
|
| 240 |
+
|
| 241 |
+
if llava_json:
|
| 242 |
+
self._load_llava(llava_json, llava_img_root)
|
| 243 |
+
if mmmu_json:
|
| 244 |
+
self._load_mmmu(mmmu_json, mmmu_img_root)
|
| 245 |
+
if vqa_ann_json:
|
| 246 |
+
self._load_vqav2(vqa_ann_json, vqa_img_root)
|
| 247 |
+
if coco_json:
|
| 248 |
+
self._load_coco2014_captions(coco_json, coco_img_root)
|
| 249 |
+
if coco_qa_json:
|
| 250 |
+
self._load_coco2014_qa(coco_qa_json, coco_img_root)
|
| 251 |
+
if gqa_json:
|
| 252 |
+
self._load_gqa(gqa_json, gqa_img_root)
|
| 253 |
+
if mg_llava_json:
|
| 254 |
+
self._load_mg_llava(mg_llava_json, mg_llava_root)
|
| 255 |
+
if caption_dir:
|
| 256 |
+
self._load_caption(caption_dir)
|
| 257 |
+
if pdd3_dir:
|
| 258 |
+
self._load_pdd3(pdd3_dir)
|
| 259 |
+
|
| 260 |
+
self.len_mmu = len(self.mmu_samples)
|
| 261 |
+
self.len_gen = len(self.gen_samples)
|
| 262 |
+
|
| 263 |
+
# ------------------------------------------------------------------ #
|
| 264 |
+
# dataset parsers #
|
| 265 |
+
# ------------------------------------------------------------------ #
|
| 266 |
+
def _load_llava(self, json_path, img_root):
|
| 267 |
+
with open(json_path, "r", encoding="utf-8") as f:
|
| 268 |
+
data = json.load(f)
|
| 269 |
+
|
| 270 |
+
for ex in data:
|
| 271 |
+
img_file = os.path.join(img_root, ex["image"])
|
| 272 |
+
|
| 273 |
+
human_msg = next(m["value"] for m in ex["conversations"] if m["from"] == "human")
|
| 274 |
+
gpt_msg = next(m["value"] for m in ex["conversations"] if m["from"] == "gpt")
|
| 275 |
+
|
| 276 |
+
self.mmu_samples.append((img_file, human_msg.strip(), gpt_msg.strip()))
|
| 277 |
+
|
| 278 |
+
def _load_mmmu(self, json_path, img_root):
|
| 279 |
+
with open(json_path, "r", encoding="utf-8") as f:
|
| 280 |
+
data = json.load(f)
|
| 281 |
+
|
| 282 |
+
for ex in data:
|
| 283 |
+
img_file = os.path.join(img_root, ex["image"])
|
| 284 |
+
choices = "\n".join([f"{chr(65+i)}. {c}" for i, c in enumerate(ex["choices"])])
|
| 285 |
+
|
| 286 |
+
question = f"{ex['question'].strip()}\n{choices}"
|
| 287 |
+
answer = f"{ex['answer']}"
|
| 288 |
+
|
| 289 |
+
self.mmu_samples.append((img_file, question, answer))
|
| 290 |
+
|
| 291 |
+
def _load_coco2014_qa(self, ann_jsonl, img_root):
|
| 292 |
+
with open(ann_jsonl, "r", encoding="utf-8") as file:
|
| 293 |
+
data = [json.loads(line) for line in file if line.strip()]
|
| 294 |
+
|
| 295 |
+
for ann in data:
|
| 296 |
+
image = ann["image"]
|
| 297 |
+
question = ann["question"]
|
| 298 |
+
answer = ann["label"]
|
| 299 |
+
|
| 300 |
+
image_path = os.path.join(img_root, image)
|
| 301 |
+
self.mmu_samples.append((image_path, question, answer))
|
| 302 |
+
|
| 303 |
+
|
| 304 |
+
def _load_coco2014_captions(self, ann_json, img_root):
|
| 305 |
+
"""
|
| 306 |
+
Load COCO 2014 image-caption pairs from caption annotation file.
|
| 307 |
+
|
| 308 |
+
Args:
|
| 309 |
+
ann_json (str): Path to COCO-style captions JSON (e.g., captions_train2014.json)
|
| 310 |
+
img_root (str): Directory containing COCO images (should include 'train2014/' and 'val2014/' subdirs)
|
| 311 |
+
"""
|
| 312 |
+
with open(ann_json, "r") as f:
|
| 313 |
+
data = json.load(f)
|
| 314 |
+
|
| 315 |
+
is_train = "train" in os.path.basename(ann_json).lower()
|
| 316 |
+
img_subdir = "train2014" if is_train else "val2014"
|
| 317 |
+
prefix = "COCO_train2014_" if is_train else "COCO_val2014_"
|
| 318 |
+
|
| 319 |
+
for ann in data["annotations"]:
|
| 320 |
+
image_id = ann["image_id"]
|
| 321 |
+
caption = ann["caption"]
|
| 322 |
+
|
| 323 |
+
image_filename = f"{prefix}{image_id:012d}.jpg"
|
| 324 |
+
image_path = os.path.join(img_root, img_subdir, image_filename)
|
| 325 |
+
|
| 326 |
+
question = "Please describe this image concisely."
|
| 327 |
+
self.mmu_samples.append((image_path, question, caption))
|
| 328 |
+
|
| 329 |
+
def _load_vqav2(self, ann_json, img_root):
|
| 330 |
+
with open(ann_json, "r") as file:
|
| 331 |
+
annos = json.load(file)
|
| 332 |
+
|
| 333 |
+
for ann in annos:
|
| 334 |
+
q = ann["question"]
|
| 335 |
+
answer = ann["answer"]
|
| 336 |
+
img_path = ann["image"]
|
| 337 |
+
img_file = os.path.join(
|
| 338 |
+
img_root,
|
| 339 |
+
img_path # if val, modify to val2014
|
| 340 |
+
)
|
| 341 |
+
|
| 342 |
+
self.mmu_samples.append((img_file, q, answer))
|
| 343 |
+
|
| 344 |
+
def _load_gqa(self, ann_json_root, img_root):
|
| 345 |
+
annos = {}
|
| 346 |
+
|
| 347 |
+
for jsonfile in os.listdir(ann_json_root):
|
| 348 |
+
jsonpath = os.path.join(ann_json_root, jsonfile)
|
| 349 |
+
with open(jsonpath, "r") as file:
|
| 350 |
+
anno = json.load(file)
|
| 351 |
+
annos.update(anno)
|
| 352 |
+
|
| 353 |
+
for ann in annos.values():
|
| 354 |
+
q = ann["question"]
|
| 355 |
+
answer = ann["fullAnswer"]
|
| 356 |
+
img_name = ann["imageId"] + ".jpg"
|
| 357 |
+
img_path = os.path.join(
|
| 358 |
+
img_root,
|
| 359 |
+
img_name
|
| 360 |
+
)
|
| 361 |
+
|
| 362 |
+
self.mmu_samples.append((img_path, q, answer))
|
| 363 |
+
|
| 364 |
+
def _load_mg_llava(self, json_path, img_root):
|
| 365 |
+
with open(json_path, "r", encoding="utf-8") as f:
|
| 366 |
+
data = json.load(f)
|
| 367 |
+
|
| 368 |
+
for ex in data:
|
| 369 |
+
image = ex.get("image", None)
|
| 370 |
+
if image is not None:
|
| 371 |
+
img_file = os.path.join(img_root, ex["image"])
|
| 372 |
+
if os.path.exists(img_file):
|
| 373 |
+
human_msg = next(m["value"] for m in ex["conversations"] if m["from"] == "human")
|
| 374 |
+
gpt_msg = next(m["value"] for m in ex["conversations"] if m["from"] == "gpt")
|
| 375 |
+
|
| 376 |
+
self.mmu_samples.append((img_file, human_msg.strip(), gpt_msg.strip()))
|
| 377 |
+
|
| 378 |
+
def _load_caption(self, root_dir):
|
| 379 |
+
for root, _, files in os.walk(root_dir):
|
| 380 |
+
for f in files:
|
| 381 |
+
if f.lower().endswith((".jpg", ".png")):
|
| 382 |
+
base = os.path.splitext(f)[0]
|
| 383 |
+
txt_path = os.path.join(root, base + ".txt")
|
| 384 |
+
if os.path.exists(txt_path):
|
| 385 |
+
with open(txt_path, "r") as file:
|
| 386 |
+
caption = file.read().strip()
|
| 387 |
+
q = "Please describe this image."
|
| 388 |
+
self.mmu_samples.append((os.path.join(root, f), q, caption))
|
| 389 |
+
|
| 390 |
+
def _load_pdd3(self, root_dir):
|
| 391 |
+
for root, _, files in os.walk(root_dir):
|
| 392 |
+
for f in files:
|
| 393 |
+
if f.lower().endswith((".jpg", ".png")):
|
| 394 |
+
base = os.path.splitext(f)[0]
|
| 395 |
+
txt_path = os.path.join(root, base + ".txt")
|
| 396 |
+
if os.path.exists(txt_path):
|
| 397 |
+
with open(txt_path, "r") as file:
|
| 398 |
+
caption = file.read().strip()
|
| 399 |
+
self.gen_samples.append((os.path.join(root, f), caption))
|
| 400 |
+
|
| 401 |
+
# ------------------------------------------------------------------ #
|
| 402 |
+
# PyTorch Dataset API #
|
| 403 |
+
# ------------------------------------------------------------------ #
|
| 404 |
+
def __len__(self):
|
| 405 |
+
return max(self.len_gen, self.len_mmu)
|
| 406 |
+
|
| 407 |
+
def __getitem__(self, idx):
|
| 408 |
+
get_mmu_data = False
|
| 409 |
+
get_gen_data = False
|
| 410 |
+
|
| 411 |
+
while not get_mmu_data:
|
| 412 |
+
try:
|
| 413 |
+
mmu_img_path, question, answer = self.mmu_samples[idx]
|
| 414 |
+
get_mmu_data = True
|
| 415 |
+
except:
|
| 416 |
+
idx = random.randint(0, self.len_mmu - 1)
|
| 417 |
+
|
| 418 |
+
while not get_gen_data:
|
| 419 |
+
try:
|
| 420 |
+
gen_img_path, prompt = self.gen_samples[idx]
|
| 421 |
+
get_gen_data = True
|
| 422 |
+
except:
|
| 423 |
+
idx = random.randint(0, self.len_gen - 1)
|
| 424 |
+
|
| 425 |
+
try:
|
| 426 |
+
# ---- image ----
|
| 427 |
+
mmu_image = Image.open(mmu_img_path).convert("RGB")
|
| 428 |
+
mmu_ret = process_image(mmu_image, self.size, self.norm)
|
| 429 |
+
|
| 430 |
+
gen_image = Image.open(gen_img_path).convert("RGB")
|
| 431 |
+
gen_ret = process_image(gen_image, self.size, self.norm)
|
| 432 |
+
|
| 433 |
+
ret = dict(
|
| 434 |
+
gen_image=gen_ret["image"],
|
| 435 |
+
gen_micro_conds=gen_ret["micro_conds"],
|
| 436 |
+
mmu_image=mmu_ret["image"],
|
| 437 |
+
mmu_micro_conds=mmu_ret["micro_conds"]
|
| 438 |
+
)
|
| 439 |
+
|
| 440 |
+
# ---- text ----
|
| 441 |
+
question = question.replace("<image>", "").replace("\n", "")
|
| 442 |
+
question_ids = tokenize_prompt(
|
| 443 |
+
self.tokenizer,
|
| 444 |
+
question,
|
| 445 |
+
self.arch,
|
| 446 |
+
padding=False,
|
| 447 |
+
)
|
| 448 |
+
question_ids = question_ids[:, :-1]
|
| 449 |
+
q_len = len(question_ids[0])
|
| 450 |
+
if answer:
|
| 451 |
+
full_prompt = question + " " + answer
|
| 452 |
+
else:
|
| 453 |
+
full_prompt = question
|
| 454 |
+
mmu_input_ids = tokenize_prompt(self.tokenizer, full_prompt, self.arch)
|
| 455 |
+
|
| 456 |
+
gen_input_ids = tokenize_prompt(self.tokenizer, prompt, self.arch)
|
| 457 |
+
|
| 458 |
+
ret.update({
|
| 459 |
+
"gen_input_ids": gen_input_ids,
|
| 460 |
+
"mmu_input_ids": mmu_input_ids,
|
| 461 |
+
"question_len": torch.LongTensor([q_len])
|
| 462 |
+
})
|
| 463 |
+
return ret
|
| 464 |
+
except:
|
| 465 |
+
print("================================================================")
|
| 466 |
+
print(f"There is something wrong with {mmu_img_path} or {gen_img_path}.")
|
| 467 |
+
print("================================================================")
|
| 468 |
+
if idx < self.len_gen - 1 or idx < self.len_mmu - 1:
|
| 469 |
+
return self.__getitem__(idx + 1)
|
| 470 |
+
else:
|
| 471 |
+
idx = random.randint(0, self.len_gen - 1)
|
| 472 |
+
return self.__getitem__(idx)
|
train/instruction_tuning.py
ADDED
|
@@ -0,0 +1,1246 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2024 The HuggingFace Team and The MeissonFlow Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
import argparse
|
| 16 |
+
import copy
|
| 17 |
+
import logging
|
| 18 |
+
import math
|
| 19 |
+
import os
|
| 20 |
+
from pathlib import Path
|
| 21 |
+
import sys
|
| 22 |
+
sys.path.append(os.getcwd())
|
| 23 |
+
import json
|
| 24 |
+
import gc
|
| 25 |
+
|
| 26 |
+
import torch
|
| 27 |
+
import torch.nn.functional as F
|
| 28 |
+
from torch import nn
|
| 29 |
+
|
| 30 |
+
from accelerate import Accelerator
|
| 31 |
+
from accelerate.logging import get_logger
|
| 32 |
+
from accelerate.utils import ProjectConfiguration, set_seed
|
| 33 |
+
from peft import LoraConfig
|
| 34 |
+
from peft.utils import get_peft_model_state_dict
|
| 35 |
+
from torch.utils.data import DataLoader
|
| 36 |
+
from torchvision import transforms
|
| 37 |
+
|
| 38 |
+
from transformers import (
|
| 39 |
+
CLIPTextModelWithProjection,
|
| 40 |
+
CLIPTokenizer,
|
| 41 |
+
T5EncoderModel,
|
| 42 |
+
T5Tokenizer,
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
import diffusers.optimization
|
| 46 |
+
from diffusers import VQModel
|
| 47 |
+
|
| 48 |
+
from src.scheduler import Scheduler
|
| 49 |
+
from diffusers.loaders import LoraLoaderMixin
|
| 50 |
+
from diffusers.utils import is_wandb_available
|
| 51 |
+
from src.pipeline import UnifiedPipeline
|
| 52 |
+
from torchvision.utils import save_image, make_grid
|
| 53 |
+
from train.trainer_utils import save_checkpoint
|
| 54 |
+
from train.dataset_utils import ImageCaptionLargeDataset, MultiSourceVLDataset
|
| 55 |
+
from train.dataset_utils import tokenize_prompt, encode_prompt
|
| 56 |
+
from src.transformer import SymmetricTransformer2DModel
|
| 57 |
+
from train.trainer_utils import load_images_to_tensor
|
| 58 |
+
|
| 59 |
+
if is_wandb_available():
|
| 60 |
+
import wandb
|
| 61 |
+
# wandb.login(key="")
|
| 62 |
+
|
| 63 |
+
logger = get_logger(__name__, log_level="INFO")
|
| 64 |
+
|
| 65 |
+
import torch._dynamo
|
| 66 |
+
torch._dynamo.config.verbose = True
|
| 67 |
+
|
| 68 |
+
# Optionally suppress errors to fall back to eager execution
|
| 69 |
+
torch._dynamo.config.suppress_errors = True
|
| 70 |
+
|
| 71 |
+
def parse_args():
|
| 72 |
+
parser = argparse.ArgumentParser()
|
| 73 |
+
parser.add_argument(
|
| 74 |
+
"--pretrained_model_name_or_path",
|
| 75 |
+
type=str,
|
| 76 |
+
default=None,
|
| 77 |
+
required=True,
|
| 78 |
+
help="Path to pretrained model or model identifier from huggingface.co/models.",
|
| 79 |
+
)
|
| 80 |
+
parser.add_argument(
|
| 81 |
+
"--pretrained_transformer_path",
|
| 82 |
+
type=str,
|
| 83 |
+
default=None,
|
| 84 |
+
required=True,
|
| 85 |
+
help="Path to pretrained transformer.",
|
| 86 |
+
)
|
| 87 |
+
parser.add_argument(
|
| 88 |
+
"--text_encoder_architecture",
|
| 89 |
+
type=str,
|
| 90 |
+
default="open_clip",
|
| 91 |
+
required=False,
|
| 92 |
+
help="The architecture of the text encoder. One of ['CLIP', 'open_clip', 'flan-t5-base','Qwen2-0.5B','gemini-2b',long_t5_clip','t5_clip']",
|
| 93 |
+
)
|
| 94 |
+
parser.add_argument(
|
| 95 |
+
"--dataset_type",
|
| 96 |
+
type=str,
|
| 97 |
+
default=None,
|
| 98 |
+
required=False,
|
| 99 |
+
help="The type of the dataset.",
|
| 100 |
+
)
|
| 101 |
+
parser.add_argument(
|
| 102 |
+
"--instance_data_dir",
|
| 103 |
+
type=str,
|
| 104 |
+
default=None,
|
| 105 |
+
required=False,
|
| 106 |
+
help="A folder containing the training data of instance images.",
|
| 107 |
+
)
|
| 108 |
+
parser.add_argument(
|
| 109 |
+
"--caption_dir",
|
| 110 |
+
type=str,
|
| 111 |
+
default=None,
|
| 112 |
+
required=False,
|
| 113 |
+
help="A folder containing the training data of instance images.",
|
| 114 |
+
)
|
| 115 |
+
parser.add_argument(
|
| 116 |
+
"--llava_json_path",
|
| 117 |
+
type=str,
|
| 118 |
+
default=None,
|
| 119 |
+
required=False,
|
| 120 |
+
help="A folder containing the training data of instance images.",
|
| 121 |
+
)
|
| 122 |
+
parser.add_argument(
|
| 123 |
+
"--llava_image_root",
|
| 124 |
+
type=str,
|
| 125 |
+
default=None,
|
| 126 |
+
required=False,
|
| 127 |
+
help="A folder containing the training data of instance images.",
|
| 128 |
+
)
|
| 129 |
+
parser.add_argument(
|
| 130 |
+
"--mmmu_json_path",
|
| 131 |
+
type=str,
|
| 132 |
+
default=None,
|
| 133 |
+
required=False,
|
| 134 |
+
help="A folder containing the training data of instance images.",
|
| 135 |
+
)
|
| 136 |
+
parser.add_argument(
|
| 137 |
+
"--mmmu_image_root",
|
| 138 |
+
type=str,
|
| 139 |
+
default=None,
|
| 140 |
+
required=False,
|
| 141 |
+
help="A folder containing the training data of instance images.",
|
| 142 |
+
)
|
| 143 |
+
parser.add_argument(
|
| 144 |
+
"--vqa_ann_json_path",
|
| 145 |
+
type=str,
|
| 146 |
+
default=None,
|
| 147 |
+
required=False,
|
| 148 |
+
help="A folder containing the training data of instance images.",
|
| 149 |
+
)
|
| 150 |
+
parser.add_argument(
|
| 151 |
+
"--vqa_image_root",
|
| 152 |
+
type=str,
|
| 153 |
+
default=None,
|
| 154 |
+
required=False,
|
| 155 |
+
help="A folder containing the training data of instance images.",
|
| 156 |
+
)
|
| 157 |
+
parser.add_argument(
|
| 158 |
+
"--coco_json",
|
| 159 |
+
type=str,
|
| 160 |
+
default=None,
|
| 161 |
+
required=False,
|
| 162 |
+
help="A folder containing the training data of instance images.",
|
| 163 |
+
)
|
| 164 |
+
parser.add_argument(
|
| 165 |
+
"--coco_qa_json",
|
| 166 |
+
type=str,
|
| 167 |
+
default=None,
|
| 168 |
+
required=False,
|
| 169 |
+
help="A folder containing the training data of instance images.",
|
| 170 |
+
)
|
| 171 |
+
parser.add_argument(
|
| 172 |
+
"--coco_img_root",
|
| 173 |
+
type=str,
|
| 174 |
+
default=None,
|
| 175 |
+
required=False,
|
| 176 |
+
help="A folder containing the training data of instance images.",
|
| 177 |
+
)
|
| 178 |
+
parser.add_argument(
|
| 179 |
+
"--gqa_json_root",
|
| 180 |
+
type=str,
|
| 181 |
+
default=None,
|
| 182 |
+
required=False,
|
| 183 |
+
help="A folder containing the training data of instance images.",
|
| 184 |
+
)
|
| 185 |
+
parser.add_argument(
|
| 186 |
+
"--gqa_image_root",
|
| 187 |
+
type=str,
|
| 188 |
+
default=None,
|
| 189 |
+
required=False,
|
| 190 |
+
help="A folder containing the training data of instance images.",
|
| 191 |
+
)
|
| 192 |
+
parser.add_argument(
|
| 193 |
+
"--mg_llava_json",
|
| 194 |
+
type=str,
|
| 195 |
+
default=None,
|
| 196 |
+
required=False,
|
| 197 |
+
help="A folder containing the training data of instance images.",
|
| 198 |
+
)
|
| 199 |
+
parser.add_argument(
|
| 200 |
+
"--mg_llava_root",
|
| 201 |
+
type=str,
|
| 202 |
+
default=None,
|
| 203 |
+
required=False,
|
| 204 |
+
help="A folder containing the training data of instance images.",
|
| 205 |
+
)
|
| 206 |
+
parser.add_argument(
|
| 207 |
+
"--training_from_scratch",
|
| 208 |
+
type=bool,
|
| 209 |
+
default=False,
|
| 210 |
+
required=False
|
| 211 |
+
)
|
| 212 |
+
parser.add_argument(
|
| 213 |
+
"--revision",
|
| 214 |
+
type=str,
|
| 215 |
+
default=None,
|
| 216 |
+
required=False,
|
| 217 |
+
help="Revision of pretrained model identifier from huggingface.co/models.",
|
| 218 |
+
)
|
| 219 |
+
parser.add_argument(
|
| 220 |
+
"--variant",
|
| 221 |
+
type=str,
|
| 222 |
+
default=None,
|
| 223 |
+
help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16",
|
| 224 |
+
)
|
| 225 |
+
parser.add_argument(
|
| 226 |
+
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
|
| 227 |
+
)
|
| 228 |
+
parser.add_argument(
|
| 229 |
+
"--dataloader_num_workers",
|
| 230 |
+
type=int,
|
| 231 |
+
default=0,
|
| 232 |
+
help=(
|
| 233 |
+
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
|
| 234 |
+
),
|
| 235 |
+
)
|
| 236 |
+
parser.add_argument(
|
| 237 |
+
"--allow_tf32",
|
| 238 |
+
action="store_true",
|
| 239 |
+
help=(
|
| 240 |
+
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
|
| 241 |
+
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
|
| 242 |
+
),
|
| 243 |
+
)
|
| 244 |
+
parser.add_argument("--use_ema", action="store_true", help="Whether to use EMA model.")
|
| 245 |
+
parser.add_argument("--ema_decay", type=float, default=0.9999)
|
| 246 |
+
parser.add_argument("--ema_update_after_step", type=int, default=0)
|
| 247 |
+
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
|
| 248 |
+
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
|
| 249 |
+
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
|
| 250 |
+
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
|
| 251 |
+
parser.add_argument(
|
| 252 |
+
"--output_dir",
|
| 253 |
+
type=str,
|
| 254 |
+
default="muse_training",
|
| 255 |
+
help="The output directory where the model predictions and checkpoints will be written.",
|
| 256 |
+
)
|
| 257 |
+
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
|
| 258 |
+
parser.add_argument(
|
| 259 |
+
"--logging_dir",
|
| 260 |
+
type=str,
|
| 261 |
+
default="logs",
|
| 262 |
+
help=(
|
| 263 |
+
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
|
| 264 |
+
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
|
| 265 |
+
),
|
| 266 |
+
)
|
| 267 |
+
parser.add_argument(
|
| 268 |
+
"--max_train_steps",
|
| 269 |
+
type=int,
|
| 270 |
+
default=None,
|
| 271 |
+
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
|
| 272 |
+
)
|
| 273 |
+
parser.add_argument(
|
| 274 |
+
"--checkpointing_steps",
|
| 275 |
+
type=int,
|
| 276 |
+
default=500,
|
| 277 |
+
help=(
|
| 278 |
+
"Save a checkpoint of the training state every X updates. Checkpoints can be used for resuming training via `--resume_from_checkpoint`. "
|
| 279 |
+
"In the case that the checkpoint is better than the final trained model, the checkpoint can also be used for inference."
|
| 280 |
+
"Using a checkpoint for inference requires separate loading of the original pipeline and the individual checkpointed model components."
|
| 281 |
+
"See https://huggingface.co/docs/diffusers/main/en/training/dreambooth#performing-inference-using-a-saved-checkpoint for step by step"
|
| 282 |
+
"instructions."
|
| 283 |
+
),
|
| 284 |
+
)
|
| 285 |
+
parser.add_argument(
|
| 286 |
+
"--logging_steps",
|
| 287 |
+
type=int,
|
| 288 |
+
default=50,
|
| 289 |
+
)
|
| 290 |
+
parser.add_argument(
|
| 291 |
+
"--checkpoints_total_limit",
|
| 292 |
+
type=int,
|
| 293 |
+
default=None,
|
| 294 |
+
help=(
|
| 295 |
+
"Max number of checkpoints to store. Passed as `total_limit` to the `Accelerator` `ProjectConfiguration`."
|
| 296 |
+
" See Accelerator::save_state https://huggingface.co/docs/accelerate/package_reference/accelerator#accelerate.Accelerator.save_state"
|
| 297 |
+
" for more details"
|
| 298 |
+
),
|
| 299 |
+
)
|
| 300 |
+
parser.add_argument(
|
| 301 |
+
"--resume_from_checkpoint",
|
| 302 |
+
type=str,
|
| 303 |
+
default=None,
|
| 304 |
+
help=(
|
| 305 |
+
"Whether training should be resumed from a previous checkpoint. Use a path saved by"
|
| 306 |
+
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
|
| 307 |
+
),
|
| 308 |
+
)
|
| 309 |
+
parser.add_argument(
|
| 310 |
+
"--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader."
|
| 311 |
+
)
|
| 312 |
+
parser.add_argument(
|
| 313 |
+
"--gradient_accumulation_steps",
|
| 314 |
+
type=int,
|
| 315 |
+
default=1,
|
| 316 |
+
help="Number of updates steps to accumulate before performing a backward/update pass.",
|
| 317 |
+
)
|
| 318 |
+
parser.add_argument(
|
| 319 |
+
"--text_loss_weight",
|
| 320 |
+
type=float,
|
| 321 |
+
default=0.2,
|
| 322 |
+
)
|
| 323 |
+
parser.add_argument(
|
| 324 |
+
"--learning_rate",
|
| 325 |
+
type=float,
|
| 326 |
+
default=0.0003,
|
| 327 |
+
help="Initial learning rate (after the potential warmup period) to use.",
|
| 328 |
+
)
|
| 329 |
+
parser.add_argument(
|
| 330 |
+
"--scale_lr",
|
| 331 |
+
action="store_true",
|
| 332 |
+
default=False,
|
| 333 |
+
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
|
| 334 |
+
)
|
| 335 |
+
parser.add_argument(
|
| 336 |
+
"--lr_scheduler",
|
| 337 |
+
type=str,
|
| 338 |
+
default="constant",
|
| 339 |
+
help=(
|
| 340 |
+
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
|
| 341 |
+
' "constant", "constant_with_warmup"]'
|
| 342 |
+
),
|
| 343 |
+
)
|
| 344 |
+
parser.add_argument(
|
| 345 |
+
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
|
| 346 |
+
)
|
| 347 |
+
parser.add_argument(
|
| 348 |
+
"--validation_steps",
|
| 349 |
+
type=int,
|
| 350 |
+
default=100,
|
| 351 |
+
help=(
|
| 352 |
+
"Run validation every X steps. Validation consists of running the prompt"
|
| 353 |
+
" `args.validation_prompt` multiple times: `args.num_validation_images`"
|
| 354 |
+
" and logging the images."
|
| 355 |
+
),
|
| 356 |
+
)
|
| 357 |
+
parser.add_argument(
|
| 358 |
+
"--mixed_precision",
|
| 359 |
+
type=str,
|
| 360 |
+
default=None,
|
| 361 |
+
choices=["no", "fp16", "bf16"],
|
| 362 |
+
help=(
|
| 363 |
+
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
|
| 364 |
+
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
|
| 365 |
+
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
|
| 366 |
+
),
|
| 367 |
+
)
|
| 368 |
+
parser.add_argument(
|
| 369 |
+
"--report_to",
|
| 370 |
+
type=str,
|
| 371 |
+
default="wandb",
|
| 372 |
+
help=(
|
| 373 |
+
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
|
| 374 |
+
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
|
| 375 |
+
),
|
| 376 |
+
)
|
| 377 |
+
parser.add_argument("--validation_prompts", type=str, nargs="*")
|
| 378 |
+
parser.add_argument("--validation_vqa_prompts", type=str, default=None)
|
| 379 |
+
parser.add_argument("--validation_images", type=str, default=None)
|
| 380 |
+
parser.add_argument(
|
| 381 |
+
"--resolution",
|
| 382 |
+
type=int,
|
| 383 |
+
default=512,
|
| 384 |
+
help=(
|
| 385 |
+
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
|
| 386 |
+
" resolution"
|
| 387 |
+
),
|
| 388 |
+
)
|
| 389 |
+
parser.add_argument("--split_vae_encode", type=int, required=False, default=None)
|
| 390 |
+
parser.add_argument("--min_masking_rate", type=float, default=0.0)
|
| 391 |
+
parser.add_argument("--cond_dropout_prob", type=float, default=0.0)
|
| 392 |
+
parser.add_argument("--max_grad_norm", default=50.0, type=float, help="Max gradient norm.", required=False)
|
| 393 |
+
parser.add_argument("--use_lora", action="store_true", help="Fine tune the model using LoRa")
|
| 394 |
+
parser.add_argument("--text_encoder_use_lora", action="store_true", help="Fine tune the model using LoRa")
|
| 395 |
+
parser.add_argument("--lora_r", default=16, type=int)
|
| 396 |
+
parser.add_argument("--lora_alpha", default=32, type=int)
|
| 397 |
+
parser.add_argument("--lora_target_modules", default=["to_q", "to_k", "to_v"], type=str, nargs="+")
|
| 398 |
+
parser.add_argument("--text_encoder_lora_r", default=16, type=int)
|
| 399 |
+
parser.add_argument("--text_encoder_lora_alpha", default=32, type=int)
|
| 400 |
+
parser.add_argument("--text_encoder_lora_target_modules", default=["to_q", "to_k", "to_v"], type=str, nargs="+")
|
| 401 |
+
parser.add_argument("--train_text_encoder", action="store_true")
|
| 402 |
+
parser.add_argument("--image_to_text_only", action="store_true")
|
| 403 |
+
parser.add_argument("--image_key", type=str, required=False)
|
| 404 |
+
parser.add_argument("--prompt_key", type=str, required=False)
|
| 405 |
+
parser.add_argument(
|
| 406 |
+
"--gradient_checkpointing",
|
| 407 |
+
action="store_true",
|
| 408 |
+
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
|
| 409 |
+
)
|
| 410 |
+
parser.add_argument("--prompt_prefix", type=str, required=False, default=None)
|
| 411 |
+
|
| 412 |
+
args = parser.parse_args()
|
| 413 |
+
|
| 414 |
+
if args.report_to == "wandb":
|
| 415 |
+
if not is_wandb_available():
|
| 416 |
+
raise ImportError("Make sure to install wandb if you want to use it for logging during training.")
|
| 417 |
+
|
| 418 |
+
if args.instance_data_dir is not None:
|
| 419 |
+
if not os.path.exists(args.instance_data_dir):
|
| 420 |
+
raise ValueError(f"Does not exist: `--args.instance_data_dir` {args.instance_data_dir}")
|
| 421 |
+
|
| 422 |
+
return args
|
| 423 |
+
|
| 424 |
+
def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
|
| 425 |
+
latent_image_ids = torch.zeros(height // 2, width // 2, 3)
|
| 426 |
+
latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2)[:, None]
|
| 427 |
+
latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2)[None, :]
|
| 428 |
+
|
| 429 |
+
latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
|
| 430 |
+
|
| 431 |
+
latent_image_ids = latent_image_ids.reshape(
|
| 432 |
+
latent_image_id_height * latent_image_id_width, latent_image_id_channels
|
| 433 |
+
)
|
| 434 |
+
|
| 435 |
+
return latent_image_ids.to(device=device, dtype=dtype)
|
| 436 |
+
|
| 437 |
+
def main(args):
|
| 438 |
+
if args.allow_tf32:
|
| 439 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 440 |
+
|
| 441 |
+
logging_dir = Path(args.output_dir, args.logging_dir)
|
| 442 |
+
|
| 443 |
+
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
|
| 444 |
+
|
| 445 |
+
accelerator = Accelerator(
|
| 446 |
+
gradient_accumulation_steps=args.gradient_accumulation_steps,
|
| 447 |
+
mixed_precision=args.mixed_precision,
|
| 448 |
+
log_with=args.report_to,
|
| 449 |
+
project_config=accelerator_project_config,
|
| 450 |
+
)
|
| 451 |
+
|
| 452 |
+
if accelerator.is_main_process:
|
| 453 |
+
os.makedirs(args.output_dir, exist_ok=True)
|
| 454 |
+
|
| 455 |
+
# Make one log on every process with the configuration for debugging.
|
| 456 |
+
logging.basicConfig(
|
| 457 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
| 458 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
| 459 |
+
level=logging.INFO,
|
| 460 |
+
)
|
| 461 |
+
logger.info(accelerator.state, main_process_only=False)
|
| 462 |
+
|
| 463 |
+
if accelerator.is_main_process:
|
| 464 |
+
accelerator.init_trackers("meissonic", config=vars(copy.deepcopy(args)))
|
| 465 |
+
|
| 466 |
+
if args.seed is not None:
|
| 467 |
+
set_seed(args.seed)
|
| 468 |
+
|
| 469 |
+
if args.text_encoder_architecture == "open_clip":
|
| 470 |
+
text_encoder = CLIPTextModelWithProjection.from_pretrained(
|
| 471 |
+
args.pretrained_model_name_or_path, subfolder="text_encoder", variant=args.variant
|
| 472 |
+
)
|
| 473 |
+
tokenizer = CLIPTokenizer.from_pretrained(
|
| 474 |
+
args.pretrained_model_name_or_path, subfolder="tokenizer", variant=args.variant
|
| 475 |
+
)
|
| 476 |
+
tokenizer_2 = None
|
| 477 |
+
text_encoder_2 = None
|
| 478 |
+
|
| 479 |
+
text_encoder.requires_grad_(False)
|
| 480 |
+
elif args.text_encoder_architecture == "t5_clip":
|
| 481 |
+
tokenizer = CLIPTokenizer.from_pretrained(
|
| 482 |
+
args.pretrained_model_name_or_path, subfolder="tokenizer", variant=args.variant
|
| 483 |
+
)
|
| 484 |
+
text_encoder = CLIPTextModelWithProjection.from_pretrained(
|
| 485 |
+
args.pretrained_model_name_or_path, subfolder="text_encoder", variant=args.variant
|
| 486 |
+
)
|
| 487 |
+
|
| 488 |
+
tokenizer_2 = T5Tokenizer.from_pretrained(
|
| 489 |
+
args.pretrained_model_name_or_path, subfolder="tokenizer_2", variant=args.variant,
|
| 490 |
+
)
|
| 491 |
+
text_encoder_2 = T5EncoderModel.from_pretrained(
|
| 492 |
+
args.pretrained_model_name_or_path, subfolder="text_encoder_2", variant=args.variant,
|
| 493 |
+
)
|
| 494 |
+
|
| 495 |
+
text_encoder.requires_grad_(False)
|
| 496 |
+
text_encoder_2.requires_grad_(False)
|
| 497 |
+
else:
|
| 498 |
+
raise ValueError(f"Unknown text encoder architecture: {args.text_encoder_architecture}")
|
| 499 |
+
|
| 500 |
+
vq_model = VQModel.from_pretrained(
|
| 501 |
+
args.pretrained_model_name_or_path, subfolder="vqvae", revision=args.revision, variant=args.variant
|
| 502 |
+
)
|
| 503 |
+
vq_model.requires_grad_(False)
|
| 504 |
+
|
| 505 |
+
model = SymmetricTransformer2DModel.from_pretrained(
|
| 506 |
+
args.pretrained_transformer_path,
|
| 507 |
+
subfolder="transformer",
|
| 508 |
+
low_cpu_mem_usage=False,
|
| 509 |
+
device_map=None
|
| 510 |
+
)
|
| 511 |
+
|
| 512 |
+
if model.config.tokenizer_vocab_size is None:
|
| 513 |
+
if args.text_encoder_architecture == "open_clip":
|
| 514 |
+
model.register_to_config(tokenizer_vocab_size=len(tokenizer))
|
| 515 |
+
# model.config.tokenizer_vocab_size = len(tokenizer) # We exclude the mask token in the predicted logits
|
| 516 |
+
elif args.text_encoder_architecture == "t5_clip":
|
| 517 |
+
model.register_to_config(tokenizer_vocab_size=len(tokenizer_2))
|
| 518 |
+
# model.config.tokenizer_vocab_size = len(tokenizer_2) # We don't need to add new token
|
| 519 |
+
if model.adapter is None:
|
| 520 |
+
raise ValueError(f"The MMDiT must has adapter if you want to use t5_clip mode!!!")
|
| 521 |
+
else:
|
| 522 |
+
raise ValueError(f"Unknown text encoder architecture!")
|
| 523 |
+
|
| 524 |
+
print(f"model's tokenizer vocab size is {model.config.tokenizer_vocab_size}")
|
| 525 |
+
model.text_decoder = nn.Sequential(
|
| 526 |
+
nn.LayerNorm(model.inner_dim, elementwise_affine=False, eps=1e-6),
|
| 527 |
+
nn.Linear(model.inner_dim, model.config.tokenizer_vocab_size, bias=False)
|
| 528 |
+
)
|
| 529 |
+
|
| 530 |
+
model = torch.compile(model)
|
| 531 |
+
|
| 532 |
+
if args.use_lora:
|
| 533 |
+
lora_config = LoraConfig(
|
| 534 |
+
r=args.lora_r,
|
| 535 |
+
lora_alpha=args.lora_alpha,
|
| 536 |
+
target_modules=args.lora_target_modules,
|
| 537 |
+
)
|
| 538 |
+
model.add_adapter(lora_config)
|
| 539 |
+
|
| 540 |
+
model.train()
|
| 541 |
+
|
| 542 |
+
if args.image_to_text_only:
|
| 543 |
+
frozen_keys = ["project_from_hidden", "up_block", "mlm_layer"]
|
| 544 |
+
for n, p in model.named_parameters():
|
| 545 |
+
if any([frozen_key in n for frozen_key in frozen_keys]):
|
| 546 |
+
p.requires_grad_(False)
|
| 547 |
+
else:
|
| 548 |
+
p.requires_grad_(True)
|
| 549 |
+
else:
|
| 550 |
+
model.requires_grad_(True)
|
| 551 |
+
|
| 552 |
+
if args.gradient_checkpointing:
|
| 553 |
+
model.enable_gradient_checkpointing()
|
| 554 |
+
|
| 555 |
+
def save_model_hook(models, weights, output_dir):
|
| 556 |
+
if accelerator.is_main_process:
|
| 557 |
+
transformer_lora_layers_to_save = None
|
| 558 |
+
text_encoder_lora_layers_to_save = None
|
| 559 |
+
|
| 560 |
+
for model_ in models:
|
| 561 |
+
if isinstance(model_, type(accelerator.unwrap_model(model))):
|
| 562 |
+
if args.use_lora:
|
| 563 |
+
transformer_lora_layers_to_save = get_peft_model_state_dict(model_)
|
| 564 |
+
else:
|
| 565 |
+
model_.save_pretrained(os.path.join(output_dir, "transformer"))
|
| 566 |
+
elif isinstance(model_, type(accelerator.unwrap_model(text_encoder))):
|
| 567 |
+
if args.text_encoder_use_lora:
|
| 568 |
+
text_encoder_lora_layers_to_save = get_peft_model_state_dict(model_)
|
| 569 |
+
else:
|
| 570 |
+
model_.save_pretrained(os.path.join(output_dir, "text_encoder"))
|
| 571 |
+
else:
|
| 572 |
+
raise ValueError(f"unexpected save model: {model_.__class__}")
|
| 573 |
+
|
| 574 |
+
# make sure to pop weight so that corresponding model is not saved again
|
| 575 |
+
weights.pop()
|
| 576 |
+
|
| 577 |
+
if transformer_lora_layers_to_save is not None or text_encoder_lora_layers_to_save is not None:
|
| 578 |
+
LoraLoaderMixin.save_lora_weights(
|
| 579 |
+
output_dir,
|
| 580 |
+
unet_lora_layers=transformer_lora_layers_to_save,
|
| 581 |
+
text_encoder_lora_layers=text_encoder_lora_layers_to_save,
|
| 582 |
+
)
|
| 583 |
+
|
| 584 |
+
|
| 585 |
+
def load_model_hook(models, input_dir):
|
| 586 |
+
transformer = None
|
| 587 |
+
text_encoder_ = None
|
| 588 |
+
|
| 589 |
+
# this part is added for keep consistency when add model.compile() in the model
|
| 590 |
+
def adap_compile(ori_dict):#add '_orig_mod.' to each key
|
| 591 |
+
new_dict = {}
|
| 592 |
+
for k,v in ori_dict.items():
|
| 593 |
+
new_dict['_orig_mod.' + k] = v
|
| 594 |
+
return new_dict
|
| 595 |
+
|
| 596 |
+
while len(models) > 0:
|
| 597 |
+
model_ = models.pop()
|
| 598 |
+
|
| 599 |
+
if isinstance(model_, type(accelerator.unwrap_model(model))):
|
| 600 |
+
if args.use_lora:
|
| 601 |
+
transformer = model_
|
| 602 |
+
else:
|
| 603 |
+
load_model = SymmetricTransformer2DModel.from_pretrained(os.path.join(input_dir, "transformer"), low_cpu_mem_usage=False, device_map=None)
|
| 604 |
+
model_.load_state_dict(adap_compile(load_model.state_dict()))
|
| 605 |
+
del load_model
|
| 606 |
+
elif isinstance(model_, type(accelerator.unwrap_model(text_encoder))):
|
| 607 |
+
if args.text_encoder_use_lora:
|
| 608 |
+
text_encoder_ = model_
|
| 609 |
+
else:
|
| 610 |
+
try:
|
| 611 |
+
load_model = CLIPTextModelWithProjection.from_pretrained(os.path.join(input_dir, "text_encoder"))
|
| 612 |
+
model_.load_state_dict(load_model.state_dict())
|
| 613 |
+
# print('finished loading text encoder!')
|
| 614 |
+
except:
|
| 615 |
+
print('Not found text-encoder model in current folder. So we download one text encoder from Internet.')
|
| 616 |
+
load_model = CLIPTextModelWithProjection.from_pretrained("laion/CLIP-ViT-H-14-laion2B-s32B-b79K")
|
| 617 |
+
model_.load_state_dict(load_model.state_dict())
|
| 618 |
+
del load_model
|
| 619 |
+
else:
|
| 620 |
+
raise ValueError(f"unexpected save model: {model.__class__}")
|
| 621 |
+
|
| 622 |
+
if transformer is not None or text_encoder_ is not None:
|
| 623 |
+
lora_state_dict, network_alphas = LoraLoaderMixin.lora_state_dict(input_dir)
|
| 624 |
+
LoraLoaderMixin.load_lora_into_text_encoder(
|
| 625 |
+
lora_state_dict, network_alphas=network_alphas, text_encoder=text_encoder_
|
| 626 |
+
)
|
| 627 |
+
LoraLoaderMixin.load_lora_into_transformer(
|
| 628 |
+
lora_state_dict, network_alphas=network_alphas, transformer=transformer
|
| 629 |
+
)
|
| 630 |
+
|
| 631 |
+
accelerator.register_load_state_pre_hook(load_model_hook)
|
| 632 |
+
accelerator.register_save_state_pre_hook(save_model_hook)
|
| 633 |
+
|
| 634 |
+
if args.scale_lr:
|
| 635 |
+
args.learning_rate = (
|
| 636 |
+
args.learning_rate * args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
|
| 637 |
+
)
|
| 638 |
+
|
| 639 |
+
if args.use_8bit_adam:
|
| 640 |
+
try:
|
| 641 |
+
import bitsandbytes as bnb
|
| 642 |
+
except ImportError:
|
| 643 |
+
raise ImportError(
|
| 644 |
+
"Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`"
|
| 645 |
+
)
|
| 646 |
+
|
| 647 |
+
optimizer_cls = bnb.optim.AdamW8bit
|
| 648 |
+
else:
|
| 649 |
+
optimizer_cls = torch.optim.AdamW
|
| 650 |
+
|
| 651 |
+
optimizer_grouped_parameters = [
|
| 652 |
+
{
|
| 653 |
+
"params": [p for p in model.parameters() if p.requires_grad],
|
| 654 |
+
"weight_decay": args.adam_weight_decay,
|
| 655 |
+
}
|
| 656 |
+
]
|
| 657 |
+
optimizer = optimizer_cls(
|
| 658 |
+
optimizer_grouped_parameters,
|
| 659 |
+
lr=args.learning_rate,
|
| 660 |
+
betas=(args.adam_beta1, args.adam_beta2),
|
| 661 |
+
weight_decay=args.adam_weight_decay,
|
| 662 |
+
eps=args.adam_epsilon,
|
| 663 |
+
)
|
| 664 |
+
|
| 665 |
+
logger.info("Creating dataloaders and lr_scheduler")
|
| 666 |
+
|
| 667 |
+
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
|
| 668 |
+
|
| 669 |
+
if args.text_encoder_architecture == "t5_clip":
|
| 670 |
+
tokenizer_for_dataset = [tokenizer, tokenizer_2]
|
| 671 |
+
else:
|
| 672 |
+
tokenizer_for_dataset = tokenizer
|
| 673 |
+
|
| 674 |
+
if args.dataset_type == "ImageCaptionLargeDataset":
|
| 675 |
+
dataset = ImageCaptionLargeDataset(
|
| 676 |
+
root_dir=args.instance_data_dir,
|
| 677 |
+
tokenizer=tokenizer_for_dataset,
|
| 678 |
+
size=args.resolution,
|
| 679 |
+
text_encoder_architecture=args.text_encoder_architecture
|
| 680 |
+
)
|
| 681 |
+
elif args.dataset_type == "MultiSourceVLDataset":
|
| 682 |
+
dataset = MultiSourceVLDataset(
|
| 683 |
+
tokenizer=tokenizer_for_dataset,
|
| 684 |
+
size=args.resolution,
|
| 685 |
+
text_encoder_architecture=args.text_encoder_architecture,
|
| 686 |
+
norm=False,
|
| 687 |
+
llava_json=args.llava_json_path,
|
| 688 |
+
llava_img_root=args.llava_image_root,
|
| 689 |
+
mmmu_json=args.mmmu_json_path,
|
| 690 |
+
mmmu_img_root=args.mmmu_image_root,
|
| 691 |
+
vqa_ann_json=args.vqa_ann_json_path,
|
| 692 |
+
vqa_img_root=args.vqa_image_root,
|
| 693 |
+
coco_json=args.coco_json,
|
| 694 |
+
coco_qa_json=args.coco_qa_json,
|
| 695 |
+
coco_img_root=args.coco_img_root,
|
| 696 |
+
gqa_json=args.gqa_json_root,
|
| 697 |
+
gqa_img_root=args.gqa_image_root,
|
| 698 |
+
mg_llava_json=args.mg_llava_json,
|
| 699 |
+
mg_llava_root=args.mg_llava_root,
|
| 700 |
+
caption_dir=args.caption_dir,
|
| 701 |
+
pdd3_dir=args.instance_data_dir,
|
| 702 |
+
)
|
| 703 |
+
elif args.dataset_type == "DATA_TYPE":
|
| 704 |
+
raise NotImplementedError("DATA_TYPE is not yet supported")
|
| 705 |
+
else:
|
| 706 |
+
assert False
|
| 707 |
+
|
| 708 |
+
def collate_fn(samples):
|
| 709 |
+
gen_images = [sample["gen_image"] for sample in samples]
|
| 710 |
+
mmu_images = [sample["mmu_image"] for sample in samples]
|
| 711 |
+
|
| 712 |
+
gen_micro_conds = [sample["gen_micro_conds"] for sample in samples]
|
| 713 |
+
mmu_micro_conds = [sample["mmu_micro_conds"] for sample in samples]
|
| 714 |
+
|
| 715 |
+
gen_images = torch.stack(gen_images, dim=0)
|
| 716 |
+
mmu_images = torch.stack(mmu_images, dim=0)
|
| 717 |
+
|
| 718 |
+
gen_micro_conds = torch.stack(gen_micro_conds, dim=0)
|
| 719 |
+
mmu_micro_conds = torch.stack(mmu_micro_conds, dim=0)
|
| 720 |
+
|
| 721 |
+
if isinstance(samples[0]["gen_input_ids"], list):
|
| 722 |
+
gen_input_ids = [sample["gen_input_ids"][0] for sample in samples]
|
| 723 |
+
gen_input_ids_2 = [sample["gen_input_ids"][1] for sample in samples]
|
| 724 |
+
|
| 725 |
+
gen_input_ids = torch.cat(gen_input_ids, dim=0)
|
| 726 |
+
gen_input_ids_2 = torch.cat(gen_input_ids_2, dim=0)
|
| 727 |
+
gen_input_ids = [gen_input_ids, gen_input_ids_2]
|
| 728 |
+
else:
|
| 729 |
+
gen_input_ids = [sample["gen_input_ids"] for sample in samples]
|
| 730 |
+
mmu_input_ids = [sample["mmu_input_ids"] for sample in samples]
|
| 731 |
+
|
| 732 |
+
gen_input_ids = torch.cat(gen_input_ids, dim=0)
|
| 733 |
+
mmu_input_ids = torch.cat(mmu_input_ids, dim=0)
|
| 734 |
+
|
| 735 |
+
if samples[0].get("question_len", None) is not None:
|
| 736 |
+
question_len = [sample["question_len"] for sample in samples]
|
| 737 |
+
|
| 738 |
+
question_len = torch.cat(question_len, dim=0) # [B, ]
|
| 739 |
+
else:
|
| 740 |
+
question_len = None
|
| 741 |
+
|
| 742 |
+
ret = dict(
|
| 743 |
+
gen_images=gen_images,
|
| 744 |
+
mmu_images=mmu_images,
|
| 745 |
+
gen_micro_conds=gen_micro_conds,
|
| 746 |
+
mmu_micro_conds=mmu_micro_conds,
|
| 747 |
+
gen_input_ids=gen_input_ids,
|
| 748 |
+
mmu_input_ids=mmu_input_ids,
|
| 749 |
+
question_len=question_len
|
| 750 |
+
)
|
| 751 |
+
|
| 752 |
+
return ret
|
| 753 |
+
|
| 754 |
+
train_dataloader = DataLoader(
|
| 755 |
+
dataset,
|
| 756 |
+
batch_size=args.train_batch_size,
|
| 757 |
+
shuffle=True,
|
| 758 |
+
num_workers=args.dataloader_num_workers,
|
| 759 |
+
collate_fn=collate_fn,
|
| 760 |
+
pin_memory=True,
|
| 761 |
+
)
|
| 762 |
+
train_dataloader.num_batches = len(train_dataloader)
|
| 763 |
+
|
| 764 |
+
lr_scheduler = diffusers.optimization.get_scheduler(
|
| 765 |
+
args.lr_scheduler,
|
| 766 |
+
optimizer=optimizer,
|
| 767 |
+
num_training_steps=args.max_train_steps * accelerator.num_processes,
|
| 768 |
+
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
|
| 769 |
+
)
|
| 770 |
+
|
| 771 |
+
logger.info("Preparing model, optimizer and dataloaders")
|
| 772 |
+
|
| 773 |
+
model, optimizer, lr_scheduler, train_dataloader = accelerator.prepare(
|
| 774 |
+
model, optimizer, lr_scheduler, train_dataloader
|
| 775 |
+
)
|
| 776 |
+
|
| 777 |
+
train_dataloader.num_batches = len(train_dataloader)
|
| 778 |
+
|
| 779 |
+
weight_dtype = torch.float32
|
| 780 |
+
if accelerator.mixed_precision == "fp16":
|
| 781 |
+
weight_dtype = torch.float16
|
| 782 |
+
elif accelerator.mixed_precision == "bf16":
|
| 783 |
+
weight_dtype = torch.bfloat16
|
| 784 |
+
|
| 785 |
+
if args.text_encoder_architecture == "t5_clip":
|
| 786 |
+
text_encoder.to(device=accelerator.device, dtype=weight_dtype)
|
| 787 |
+
text_encoder_2.to(device=accelerator.device, dtype=weight_dtype)
|
| 788 |
+
else:
|
| 789 |
+
text_encoder.to(device=accelerator.device, dtype=weight_dtype)
|
| 790 |
+
|
| 791 |
+
vq_model.to(device=accelerator.device)
|
| 792 |
+
|
| 793 |
+
with torch.no_grad():
|
| 794 |
+
if args.text_encoder_architecture == "t5_clip":
|
| 795 |
+
_input_ids_tmp_ = tokenize_prompt([tokenizer, tokenizer_2], "", args.text_encoder_architecture)
|
| 796 |
+
_input_ids_tmp_[0] = _input_ids_tmp_[0].to(accelerator.device)
|
| 797 |
+
_input_ids_tmp_[1] = _input_ids_tmp_[1].to(accelerator.device)
|
| 798 |
+
empty_embeds, empty_clip_embeds = encode_prompt(
|
| 799 |
+
[text_encoder, text_encoder_2],
|
| 800 |
+
_input_ids_tmp_,
|
| 801 |
+
args.text_encoder_architecture
|
| 802 |
+
)
|
| 803 |
+
else:
|
| 804 |
+
_input_ids_tmp_ = tokenize_prompt(tokenizer, "", args.text_encoder_architecture)
|
| 805 |
+
_input_ids_tmp_ = _input_ids_tmp_.to(accelerator.device)
|
| 806 |
+
empty_embeds, empty_clip_embeds = encode_prompt(
|
| 807 |
+
text_encoder,
|
| 808 |
+
_input_ids_tmp_,
|
| 809 |
+
args.text_encoder_architecture
|
| 810 |
+
)
|
| 811 |
+
|
| 812 |
+
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
|
| 813 |
+
num_update_steps_per_epoch = math.ceil(train_dataloader.num_batches / args.gradient_accumulation_steps)
|
| 814 |
+
# Afterwards we recalculate our number of training epochs.
|
| 815 |
+
# Note: We are not doing epoch based training here, but just using this for book keeping and being able to
|
| 816 |
+
# reuse the same training loop with other datasets/loaders.
|
| 817 |
+
num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
|
| 818 |
+
|
| 819 |
+
# Train!
|
| 820 |
+
logger.info("***** Running training *****")
|
| 821 |
+
logger.info(f" Num training steps = {args.max_train_steps}")
|
| 822 |
+
logger.info(f" Instantaneous batch size per device = { args.train_batch_size}")
|
| 823 |
+
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
|
| 824 |
+
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
|
| 825 |
+
|
| 826 |
+
resume_from_checkpoint = args.resume_from_checkpoint
|
| 827 |
+
if resume_from_checkpoint:
|
| 828 |
+
if resume_from_checkpoint == "latest":
|
| 829 |
+
# Get the most recent checkpoint
|
| 830 |
+
dirs = os.listdir(args.output_dir)
|
| 831 |
+
dirs = [d for d in dirs if d.startswith("checkpoint")]
|
| 832 |
+
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
|
| 833 |
+
if len(dirs) > 0:
|
| 834 |
+
resume_from_checkpoint = os.path.join(args.output_dir, dirs[-1])
|
| 835 |
+
else:
|
| 836 |
+
resume_from_checkpoint = None
|
| 837 |
+
|
| 838 |
+
if resume_from_checkpoint is None:
|
| 839 |
+
accelerator.print(
|
| 840 |
+
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
|
| 841 |
+
)
|
| 842 |
+
else:
|
| 843 |
+
accelerator.print(f"Resuming from checkpoint {resume_from_checkpoint}")
|
| 844 |
+
|
| 845 |
+
if resume_from_checkpoint is None:
|
| 846 |
+
global_step = 0
|
| 847 |
+
first_epoch = 0
|
| 848 |
+
else:
|
| 849 |
+
accelerator.load_state(resume_from_checkpoint)
|
| 850 |
+
global_step = int(os.path.basename(resume_from_checkpoint).split("-")[1])
|
| 851 |
+
first_epoch = global_step // num_update_steps_per_epoch
|
| 852 |
+
|
| 853 |
+
# As stated above, we are not doing epoch based training here, but just using this for book keeping and being able to
|
| 854 |
+
# reuse the same training loop with other datasets/loaders.
|
| 855 |
+
for epoch in range(first_epoch, num_train_epochs):
|
| 856 |
+
for batch in train_dataloader:
|
| 857 |
+
torch.cuda.empty_cache()
|
| 858 |
+
with torch.no_grad():
|
| 859 |
+
gen_pixel_values = batch["gen_images"].to(accelerator.device, non_blocking=True)
|
| 860 |
+
mmu_pixel_values = batch["mmu_images"].to(accelerator.device, non_blocking=True)
|
| 861 |
+
|
| 862 |
+
gen_micro_conds = batch["gen_micro_conds"].to(accelerator.device, non_blocking=True)
|
| 863 |
+
mmu_micro_conds = batch["mmu_micro_conds"].to(accelerator.device, non_blocking=True)
|
| 864 |
+
|
| 865 |
+
# ====================== tokenize images ======================
|
| 866 |
+
pixel_values = torch.cat([gen_pixel_values, mmu_pixel_values], dim=0)
|
| 867 |
+
batch_size = pixel_values.shape[0]
|
| 868 |
+
|
| 869 |
+
split_batch_size = args.split_vae_encode if args.split_vae_encode is not None else batch_size
|
| 870 |
+
num_splits = math.ceil(batch_size / split_batch_size)
|
| 871 |
+
image_tokens = []
|
| 872 |
+
for i in range(num_splits):
|
| 873 |
+
start_idx = i * split_batch_size
|
| 874 |
+
end_idx = min((i + 1) * split_batch_size, batch_size)
|
| 875 |
+
image_tokens.append(
|
| 876 |
+
vq_model.quantize(
|
| 877 |
+
vq_model.encode(pixel_values[start_idx:end_idx]).latents
|
| 878 |
+
)[2][2].reshape(split_batch_size, -1)
|
| 879 |
+
)
|
| 880 |
+
image_tokens = torch.cat(image_tokens, dim=0)
|
| 881 |
+
gen_image_tokens, mmu_image_tokens = image_tokens.chunk(2, dim=0)
|
| 882 |
+
# ====================== tokenize images ======================
|
| 883 |
+
|
| 884 |
+
|
| 885 |
+
# ====================== encode clean text prompts ======================
|
| 886 |
+
if args.text_encoder_architecture == "t5_clip":
|
| 887 |
+
gen_input_ids_clip = batch["gen_input_ids"][0].to(accelerator.device, non_blocking=True)
|
| 888 |
+
gen_input_ids_t5 = batch["gen_input_ids"][1].to(accelerator.device, non_blocking=True)
|
| 889 |
+
encoder_hidden_states, cond_embeds = encode_prompt(
|
| 890 |
+
[text_encoder, text_encoder_2],
|
| 891 |
+
[gen_input_ids_clip, gen_input_ids_t5],
|
| 892 |
+
args.text_encoder_architecture
|
| 893 |
+
)
|
| 894 |
+
else:
|
| 895 |
+
gen_input_ids = batch["gen_input_ids"].to(accelerator.device, non_blocking=True)
|
| 896 |
+
gen_encoder_hidden_states, gen_cond_embeds = encode_prompt(
|
| 897 |
+
text_encoder,
|
| 898 |
+
gen_input_ids,
|
| 899 |
+
args.text_encoder_architecture
|
| 900 |
+
)
|
| 901 |
+
gen_encoder_hidden_states = gen_encoder_hidden_states.to(accelerator.device, dtype=accelerator.unwrap_model(model).dtype)
|
| 902 |
+
gen_cond_embeds = gen_cond_embeds.to(accelerator.device, dtype=accelerator.unwrap_model(model).dtype)
|
| 903 |
+
# ====================== encode clean text prompts ======================
|
| 904 |
+
|
| 905 |
+
|
| 906 |
+
# ====================== image perturbation ======================
|
| 907 |
+
half_batch_size, seq_len = gen_image_tokens.shape
|
| 908 |
+
sigma = torch.rand(half_batch_size, device=gen_image_tokens.device)
|
| 909 |
+
image_mask_prob = torch.cos(sigma * math.pi * 0.5)
|
| 910 |
+
image_mask_prob = image_mask_prob.clip(args.min_masking_rate)
|
| 911 |
+
|
| 912 |
+
num_token_masked = (seq_len * image_mask_prob).round().clamp(min=1)
|
| 913 |
+
batch_randperm = torch.rand(half_batch_size, seq_len, device=gen_image_tokens.device).argsort(dim=-1)
|
| 914 |
+
mask = batch_randperm < num_token_masked.unsqueeze(-1)
|
| 915 |
+
|
| 916 |
+
mask_id = accelerator.unwrap_model(model).config.vocab_size - 1
|
| 917 |
+
gen_image_ids = torch.where(mask, mask_id, gen_image_tokens)
|
| 918 |
+
image_labels = torch.where(mask, gen_image_tokens, -100)
|
| 919 |
+
# ====================== image perturbation ======================
|
| 920 |
+
|
| 921 |
+
|
| 922 |
+
# ====================== text perturbation ======================
|
| 923 |
+
if args.text_encoder_architecture == "t5_clip":
|
| 924 |
+
mmu_input_ids_clip = batch["mmu_input_ids"][0].to(accelerator.device, non_blocking=True)
|
| 925 |
+
mmu_input_ids_t5 = batch["mmu_input_ids"][1].to(accelerator.device, non_blocking=True)
|
| 926 |
+
half_batch_size, seq_len = mmu_input_ids_t5.shape
|
| 927 |
+
sigma = torch.rand(half_batch_size, device=mmu_image_tokens.device)
|
| 928 |
+
text_mask_prob = torch.cos(sigma * math.pi * 0.5)
|
| 929 |
+
text_mask_prob = text_mask_prob.clip(args.min_masking_rate)
|
| 930 |
+
text_timestep = text_mask_prob.clone().clamp(min=1e-3)
|
| 931 |
+
|
| 932 |
+
num_token_masked = (seq_len * text_mask_prob).round().clamp(min=1)
|
| 933 |
+
batch_randperm = torch.rand(half_batch_size, seq_len, device=mmu_image_tokens.device).argsort(dim=-1)
|
| 934 |
+
mask = batch_randperm < num_token_masked.unsqueeze(-1)
|
| 935 |
+
|
| 936 |
+
extra_id_0_token = "<extra_id_0>"
|
| 937 |
+
t5_mask_id = tokenizer_2.convert_tokens_to_ids(extra_id_0_token)
|
| 938 |
+
masked_prompt_input_ids_t5 = torch.where(mask, t5_mask_id, mmu_input_ids_t5)
|
| 939 |
+
text_labels = torch.where(mask, mmu_input_ids_t5, -100)
|
| 940 |
+
|
| 941 |
+
# prepare input_ids for clip model
|
| 942 |
+
batch_prompt_2 = []
|
| 943 |
+
for i in range(masked_prompt_input_ids_t5.size(0)):
|
| 944 |
+
masked_prompt_input_id = masked_prompt_input_ids_t5[i].tolist()
|
| 945 |
+
prompt_2 = tokenizer_2.decode(masked_prompt_input_id, skip_special_tokens=True)
|
| 946 |
+
batch_prompt_2.append(prompt_2)
|
| 947 |
+
|
| 948 |
+
masked_prompt_input_ids_clip = tokenizer(
|
| 949 |
+
batch_prompt_2,
|
| 950 |
+
truncation=True,
|
| 951 |
+
padding="max_length",
|
| 952 |
+
max_length=77,
|
| 953 |
+
return_tensors="pt"
|
| 954 |
+
).input_ids
|
| 955 |
+
masked_prompt_input_ids_clip = masked_prompt_input_ids_clip.to(accelerator.device)
|
| 956 |
+
else:
|
| 957 |
+
extra_id_0_token = "<extra_id_0>"
|
| 958 |
+
num_new_tokens = tokenizer.add_tokens(extra_id_0_token)
|
| 959 |
+
clip_mask_id = tokenizer.convert_tokens_to_ids(extra_id_0_token)
|
| 960 |
+
if num_new_tokens > 0:
|
| 961 |
+
text_encoder.resize_token_embeddings(len(tokenizer))
|
| 962 |
+
mask_token_embedding = text_encoder.get_input_embeddings().weight[clip_mask_id]
|
| 963 |
+
mask_token_embedding = mask_token_embedding.clone().detach().cpu().float()
|
| 964 |
+
if accelerator.is_main_process:
|
| 965 |
+
print("Saving masked token embedding...")
|
| 966 |
+
torch.save(mask_token_embedding, os.path.join(args.output_dir, "mask_token_embedding.pth"))
|
| 967 |
+
|
| 968 |
+
|
| 969 |
+
mmu_input_ids = batch["mmu_input_ids"].to(accelerator.device, non_blocking=True) # [B, L]
|
| 970 |
+
question_len = batch["question_len"] # [B, ]
|
| 971 |
+
if question_len is not None:
|
| 972 |
+
question_len = question_len.to(accelerator.device, non_blocking=True)
|
| 973 |
+
|
| 974 |
+
half_batch_size, seq_len = mmu_input_ids.shape
|
| 975 |
+
answer_len = seq_len - question_len
|
| 976 |
+
|
| 977 |
+
sigma = torch.rand(half_batch_size, device=mmu_image_tokens.device)
|
| 978 |
+
text_mask_prob = torch.cos(sigma * math.pi * 0.5)
|
| 979 |
+
text_mask_prob = text_mask_prob.clip(args.min_masking_rate)
|
| 980 |
+
text_timestep = text_mask_prob.clone().clamp(min=1e-3)
|
| 981 |
+
|
| 982 |
+
num_token_masked = ((seq_len - question_len) * text_mask_prob).round().clamp(min=1) # [B, ]
|
| 983 |
+
num_token_masked = torch.minimum(num_token_masked, answer_len)
|
| 984 |
+
|
| 985 |
+
seq_idx = torch.arange(seq_len, device=mmu_image_tokens.device).unsqueeze(0).repeat(half_batch_size, 1)
|
| 986 |
+
answer_region = seq_idx >= question_len.unsqueeze(1)
|
| 987 |
+
|
| 988 |
+
rand_value = torch.rand(half_batch_size, seq_len, device=mmu_image_tokens.device)
|
| 989 |
+
rand_value = rand_value.masked_fill(~answer_region, float("inf"))
|
| 990 |
+
|
| 991 |
+
order = rand_value.argsort(dim=-1)
|
| 992 |
+
order = order.argsort(dim=-1)
|
| 993 |
+
mask = order < num_token_masked.unsqueeze(-1)
|
| 994 |
+
|
| 995 |
+
# mask = torch.zeros_like(mmu_input_ids)
|
| 996 |
+
# for b in range(half_batch_size):
|
| 997 |
+
# ans_len = seq_len - question_len[b]
|
| 998 |
+
# batch_randperm = torch.rand(1, ans_len, device=mmu_image_tokens.device).argsort(dim=-1)
|
| 999 |
+
# mask[b, question_len[b]:] = batch_randperm < num_token_masked[b].unsqueeze(-1)
|
| 1000 |
+
|
| 1001 |
+
mmu_input_ids_clip = torch.where(mask, clip_mask_id, mmu_input_ids)
|
| 1002 |
+
text_labels = torch.where(mask, mmu_input_ids, -100)
|
| 1003 |
+
# ====================== text perturbation ======================
|
| 1004 |
+
|
| 1005 |
+
|
| 1006 |
+
# ====================== encode masked text prompts ======================
|
| 1007 |
+
if args.text_encoder_architecture == "t5_clip":
|
| 1008 |
+
masked_encoder_hidden_states, masked_cond_embeds = encode_prompt(
|
| 1009 |
+
[text_encoder, text_encoder_2],
|
| 1010 |
+
[masked_prompt_input_ids_clip, masked_prompt_input_ids_t5],
|
| 1011 |
+
args.text_encoder_architecture
|
| 1012 |
+
)
|
| 1013 |
+
else:
|
| 1014 |
+
mmu_encoder_hidden_states, mmu_cond_embeds = encode_prompt(
|
| 1015 |
+
text_encoder,
|
| 1016 |
+
mmu_input_ids_clip,
|
| 1017 |
+
args.text_encoder_architecture
|
| 1018 |
+
)
|
| 1019 |
+
mmu_encoder_hidden_states = mmu_encoder_hidden_states.to(accelerator.device, dtype=accelerator.unwrap_model(model).dtype)
|
| 1020 |
+
mmu_cond_embeds = mmu_cond_embeds.to(accelerator.device, dtype=accelerator.unwrap_model(model).dtype)
|
| 1021 |
+
# ====================== encode masked text prompts ======================
|
| 1022 |
+
|
| 1023 |
+
|
| 1024 |
+
# for CFG
|
| 1025 |
+
if args.cond_dropout_prob > 0.0:
|
| 1026 |
+
assert encoder_hidden_states is not None
|
| 1027 |
+
|
| 1028 |
+
batch_size = encoder_hidden_states.shape[0]
|
| 1029 |
+
|
| 1030 |
+
mask = (
|
| 1031 |
+
torch.zeros((batch_size, 1, 1), device=encoder_hidden_states.device).float().uniform_(0, 1)
|
| 1032 |
+
< args.cond_dropout_prob
|
| 1033 |
+
)
|
| 1034 |
+
|
| 1035 |
+
empty_embeds_ = empty_embeds.expand(batch_size, -1, -1)
|
| 1036 |
+
encoder_hidden_states = torch.where(
|
| 1037 |
+
(encoder_hidden_states * mask).bool(), encoder_hidden_states, empty_embeds_
|
| 1038 |
+
)
|
| 1039 |
+
|
| 1040 |
+
empty_clip_embeds_ = empty_clip_embeds.expand(batch_size, -1)
|
| 1041 |
+
cond_embeds = torch.where((cond_embeds * mask.squeeze(-1)).bool(), cond_embeds, empty_clip_embeds_)
|
| 1042 |
+
|
| 1043 |
+
vae_scale_factor = 2 ** (len(vq_model.config.block_out_channels) - 1)
|
| 1044 |
+
resolution = args.resolution // vae_scale_factor
|
| 1045 |
+
gen_image_ids = gen_image_ids.reshape(half_batch_size, resolution, resolution)
|
| 1046 |
+
mmu_image_ids = mmu_image_tokens.reshape(half_batch_size, resolution, resolution)
|
| 1047 |
+
|
| 1048 |
+
|
| 1049 |
+
# Train Step
|
| 1050 |
+
with accelerator.accumulate(model):
|
| 1051 |
+
codebook_size = accelerator.unwrap_model(model).config.codebook_size
|
| 1052 |
+
if args.resolution == 1024: # only stage 3 and stage 4 do not apply 2*
|
| 1053 |
+
img_ids = _prepare_latent_image_ids(
|
| 1054 |
+
gen_image_ids.shape[0],
|
| 1055 |
+
gen_image_ids.shape[-2],
|
| 1056 |
+
gen_image_ids.shape[-1],
|
| 1057 |
+
gen_image_ids.device,
|
| 1058 |
+
gen_image_ids.dtype
|
| 1059 |
+
)
|
| 1060 |
+
else:
|
| 1061 |
+
img_ids = _prepare_latent_image_ids(
|
| 1062 |
+
gen_image_ids.shape[0],
|
| 1063 |
+
gen_image_ids.shape[-2],
|
| 1064 |
+
gen_image_ids.shape[-1],
|
| 1065 |
+
gen_image_ids.device,
|
| 1066 |
+
gen_image_ids.dtype
|
| 1067 |
+
)
|
| 1068 |
+
|
| 1069 |
+
txt_ids = torch.zeros(gen_encoder_hidden_states.shape[1], 3).to(device=gen_image_ids.device, dtype=gen_image_ids.dtype)
|
| 1070 |
+
|
| 1071 |
+
image_logits = model(
|
| 1072 |
+
hidden_states=gen_image_ids, # should be (batch size, channel, height, width)
|
| 1073 |
+
encoder_hidden_states=gen_encoder_hidden_states, # should be (batch size, sequence_len, embed_dims)
|
| 1074 |
+
micro_conds=gen_micro_conds,
|
| 1075 |
+
pooled_projections=gen_cond_embeds, # should be (batch_size, projection_dim)
|
| 1076 |
+
img_ids=img_ids,
|
| 1077 |
+
txt_ids=txt_ids,
|
| 1078 |
+
timestep=image_mask_prob * 1000,
|
| 1079 |
+
)[0]
|
| 1080 |
+
image_logits = image_logits.reshape(half_batch_size, codebook_size, -1)
|
| 1081 |
+
image_logits = image_logits.permute(0, 2, 1)
|
| 1082 |
+
image_logits = image_logits.reshape(-1, codebook_size)
|
| 1083 |
+
|
| 1084 |
+
image_loss = F.cross_entropy(
|
| 1085 |
+
image_logits,
|
| 1086 |
+
image_labels.view(-1),
|
| 1087 |
+
ignore_index=-100,
|
| 1088 |
+
reduction="mean",
|
| 1089 |
+
)
|
| 1090 |
+
|
| 1091 |
+
text_logits = model(
|
| 1092 |
+
hidden_states=mmu_image_ids, # should be (batch size, channel, height, width)
|
| 1093 |
+
encoder_hidden_states=mmu_encoder_hidden_states, # should be (batch size, sequence_len, embed_dims)
|
| 1094 |
+
micro_conds=mmu_micro_conds,
|
| 1095 |
+
pooled_projections=mmu_cond_embeds, # should be (batch_size, projection_dim)
|
| 1096 |
+
img_ids=img_ids,
|
| 1097 |
+
txt_ids=txt_ids,
|
| 1098 |
+
timestep=text_timestep * 1000,
|
| 1099 |
+
)[1]
|
| 1100 |
+
text_logits = text_logits.reshape(-1, accelerator.unwrap_model(model).config.tokenizer_vocab_size)
|
| 1101 |
+
|
| 1102 |
+
text_loss = F.cross_entropy(
|
| 1103 |
+
text_logits,
|
| 1104 |
+
text_labels.view(-1),
|
| 1105 |
+
ignore_index=-100,
|
| 1106 |
+
reduction="none",
|
| 1107 |
+
)
|
| 1108 |
+
text_loss = text_loss.reshape(half_batch_size, -1).mean(-1)
|
| 1109 |
+
text_loss = text_loss / text_timestep
|
| 1110 |
+
text_loss = text_loss.mean()
|
| 1111 |
+
|
| 1112 |
+
loss = image_loss + args.text_loss_weight * text_loss
|
| 1113 |
+
|
| 1114 |
+
# Gather the losses across all processes for logging (if we use distributed training).
|
| 1115 |
+
avg_loss = accelerator.gather(loss.repeat(args.train_batch_size)).mean()
|
| 1116 |
+
avg_masking_rate = accelerator.gather(text_mask_prob.repeat(args.train_batch_size)).mean()
|
| 1117 |
+
|
| 1118 |
+
accelerator.backward(loss)
|
| 1119 |
+
|
| 1120 |
+
# Temporarily add this to identify unused parameters
|
| 1121 |
+
# for name, param in accelerator.unwrap_model(model).named_parameters():
|
| 1122 |
+
# if param.grad is None:
|
| 1123 |
+
# print(f"Unused parameter: {name}")
|
| 1124 |
+
|
| 1125 |
+
if args.max_grad_norm is not None and accelerator.sync_gradients:
|
| 1126 |
+
accelerator.clip_grad_norm_(model.parameters(), args.max_grad_norm)
|
| 1127 |
+
|
| 1128 |
+
optimizer.step()
|
| 1129 |
+
lr_scheduler.step()
|
| 1130 |
+
|
| 1131 |
+
optimizer.zero_grad(set_to_none=True)
|
| 1132 |
+
|
| 1133 |
+
# Checks if the accelerator has performed an optimization step behind the scenes
|
| 1134 |
+
if accelerator.sync_gradients:
|
| 1135 |
+
if (global_step + 1) % args.logging_steps == 0:
|
| 1136 |
+
logs = {
|
| 1137 |
+
"step_loss": avg_loss.item(),
|
| 1138 |
+
"lr": lr_scheduler.get_last_lr()[0],
|
| 1139 |
+
"avg_masking_rate": avg_masking_rate.item(),
|
| 1140 |
+
}
|
| 1141 |
+
accelerator.log(logs, step=global_step + 1)
|
| 1142 |
+
|
| 1143 |
+
logger.info(
|
| 1144 |
+
f"Step: {global_step + 1} "
|
| 1145 |
+
f"Loss: {avg_loss.item():0.4f} "
|
| 1146 |
+
f"LR: {lr_scheduler.get_last_lr()[0]:0.6f}"
|
| 1147 |
+
)
|
| 1148 |
+
|
| 1149 |
+
if (global_step + 1) % args.checkpointing_steps == 0:
|
| 1150 |
+
save_checkpoint(args, accelerator, global_step + 1, logger)
|
| 1151 |
+
|
| 1152 |
+
if (global_step + 1) % args.validation_steps == 0 and accelerator.is_main_process:
|
| 1153 |
+
|
| 1154 |
+
with torch.no_grad():
|
| 1155 |
+
logger.info("Generating images...")
|
| 1156 |
+
|
| 1157 |
+
model.eval()
|
| 1158 |
+
|
| 1159 |
+
scheduler = Scheduler.from_pretrained(
|
| 1160 |
+
args.pretrained_model_name_or_path,
|
| 1161 |
+
subfolder="scheduler",
|
| 1162 |
+
revision=args.revision,
|
| 1163 |
+
variant=args.variant,
|
| 1164 |
+
)
|
| 1165 |
+
|
| 1166 |
+
pipe = UnifiedPipeline(
|
| 1167 |
+
transformer=accelerator.unwrap_model(model),
|
| 1168 |
+
tokenizer=tokenizer,
|
| 1169 |
+
text_encoder=text_encoder,
|
| 1170 |
+
vqvae=vq_model,
|
| 1171 |
+
scheduler=scheduler,
|
| 1172 |
+
tokenizer_2=tokenizer_2,
|
| 1173 |
+
text_encoder_2=text_encoder_2,
|
| 1174 |
+
)
|
| 1175 |
+
|
| 1176 |
+
if not args.image_to_text_only:
|
| 1177 |
+
output = pipe(
|
| 1178 |
+
prompt=args.validation_prompts,
|
| 1179 |
+
height=args.resolution,
|
| 1180 |
+
width=args.resolution,
|
| 1181 |
+
guidance_scale=9,
|
| 1182 |
+
num_inference_steps=64,
|
| 1183 |
+
)
|
| 1184 |
+
pil_images = output.images
|
| 1185 |
+
|
| 1186 |
+
result=[]
|
| 1187 |
+
for img in pil_images:
|
| 1188 |
+
if not isinstance(img, torch.Tensor):
|
| 1189 |
+
img = transforms.ToTensor()(img)
|
| 1190 |
+
result.append(img.unsqueeze(0))
|
| 1191 |
+
result = torch.cat(result,dim=0)
|
| 1192 |
+
result = make_grid(result, nrow=3)
|
| 1193 |
+
save_image(result,os.path.join(args.output_dir, str(global_step)+'_text2image_1024_CFG-9.png'))
|
| 1194 |
+
|
| 1195 |
+
output_data = {
|
| 1196 |
+
"step": global_step,
|
| 1197 |
+
"prompts": args.validation_prompts,
|
| 1198 |
+
"images": [f"{global_step}_text2image_1024_CFG-9_{i}.png" for i in range(len(pil_images))]
|
| 1199 |
+
}
|
| 1200 |
+
|
| 1201 |
+
with open(os.path.join(args.output_dir, f"text2image_{global_step}.json"), "w") as f:
|
| 1202 |
+
json.dump(output_data, f, indent=2)
|
| 1203 |
+
|
| 1204 |
+
image = load_images_to_tensor(args.validation_images, target_size=(args.resolution, args.resolution))
|
| 1205 |
+
output = pipe(
|
| 1206 |
+
prompt=args.validation_vqa_prompts,
|
| 1207 |
+
height=args.resolution,
|
| 1208 |
+
width=args.resolution,
|
| 1209 |
+
guidance_scale=9,
|
| 1210 |
+
image=image,
|
| 1211 |
+
num_inference_steps=64
|
| 1212 |
+
)
|
| 1213 |
+
prompts = output.prompts
|
| 1214 |
+
|
| 1215 |
+
output_data = {
|
| 1216 |
+
"step": global_step,
|
| 1217 |
+
"prompts": prompts,
|
| 1218 |
+
}
|
| 1219 |
+
|
| 1220 |
+
with open(os.path.join(args.output_dir, f"image2text_{global_step}.json"), "w") as f:
|
| 1221 |
+
json.dump(output_data, f, indent=2)
|
| 1222 |
+
|
| 1223 |
+
model.train()
|
| 1224 |
+
|
| 1225 |
+
global_step += 1
|
| 1226 |
+
|
| 1227 |
+
# Stop training if max steps is reached
|
| 1228 |
+
if global_step >= args.max_train_steps:
|
| 1229 |
+
break
|
| 1230 |
+
# End for
|
| 1231 |
+
|
| 1232 |
+
accelerator.wait_for_everyone()
|
| 1233 |
+
|
| 1234 |
+
# Evaluate and save checkpoint at the end of training
|
| 1235 |
+
save_checkpoint(args, accelerator, global_step, logger)
|
| 1236 |
+
|
| 1237 |
+
# Save the final trained checkpoint
|
| 1238 |
+
if accelerator.is_main_process:
|
| 1239 |
+
model = accelerator.unwrap_model(model)
|
| 1240 |
+
model.save_pretrained(args.output_dir)
|
| 1241 |
+
|
| 1242 |
+
accelerator.end_training()
|
| 1243 |
+
|
| 1244 |
+
|
| 1245 |
+
if __name__ == "__main__":
|
| 1246 |
+
main(parse_args())
|
train/instruction_tuning.sh
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# bash it in root path
|
| 2 |
+
PYTHON_PATH='./' accelerate launch --multi_gpu --gpu_ids '0,1,2,3,4,5,6,7,8' --main_process_port 25000 --num_processes 8 train/instruction_tuning.py \
|
| 3 |
+
--output_dir "/path/to/output/dir" \
|
| 4 |
+
--train_batch_size 8 \
|
| 5 |
+
--gradient_accumulation_steps 8 \
|
| 6 |
+
--learning_rate 1e-4 \
|
| 7 |
+
--text_loss_weight 0.2 \
|
| 8 |
+
--max_grad_norm 10 \
|
| 9 |
+
--pretrained_model_name_or_path "MeissonFlow/Meissonic" \
|
| 10 |
+
--pretrained_transformer_path "MeissonFlow/Meissonic" \
|
| 11 |
+
--text_encoder_architecture 'open_clip' \
|
| 12 |
+
--dataset_type 'MultiSourceVLDataset' \
|
| 13 |
+
--instance_data_dir '/path/to/data' \
|
| 14 |
+
--llava_json_path '/path/to/llava_instruct_150k.json' \
|
| 15 |
+
--llava_image_root '/path/to/coco/train2017' \
|
| 16 |
+
--resolution 512 \
|
| 17 |
+
--mixed_precision fp16 \
|
| 18 |
+
--lr_scheduler constant \
|
| 19 |
+
--use_8bit_adam \
|
| 20 |
+
--dataloader_num_workers 4 \
|
| 21 |
+
--validation_prompts \
|
| 22 |
+
'a boy' \
|
| 23 |
+
'A serene mountain landscape with towering snow-capped peaks, a crystal-clear blue lake reflecting the mountains, dense pine forests, and a vibrant orange sunrise illuminating the sky.' \
|
| 24 |
+
'A playful golden retriever puppy with a shiny coat, bounding through a meadow filled with colorful wildflowers, under a bright, clear blue sky.' \
|
| 25 |
+
'A bustling city street at night, illuminated by vibrant neon signs in various colors, with busy pedestrians, street vendors, and a light rain creating reflective puddles on the pavement.' \
|
| 26 |
+
'A majestic, medieval castle perched on a rugged cliffside, overlooking a vast, calm ocean at sunset, with the sky painted in hues of pink, orange, and purple.' \
|
| 27 |
+
'An elegant ballerina in a white tutu, dancing gracefully on a grand stage with ornate, gold-trimmed curtains, under a spotlight that casts a soft glow.' \
|
| 28 |
+
'A cozy, rustic log cabin nestled in a snow-covered forest, with smoke rising from the stone chimney, warm lights glowing from the windows, and a path of footprints leading to the front door.'\
|
| 29 |
+
'A Cute Cat' \
|
| 30 |
+
'A Snow Mountain'\
|
| 31 |
+
--validation_images '/path/to/validation/images/dir' \
|
| 32 |
+
--validation_vqa_prompts 'Please describe this image.' \
|
| 33 |
+
--max_train_steps 100000 \
|
| 34 |
+
--checkpointing_steps 100 \
|
| 35 |
+
--validation_steps 100 \
|
| 36 |
+
--report_to 'wandb' \
|
| 37 |
+
--logging_steps 10
|
train/train_text_decoder.py
ADDED
|
@@ -0,0 +1,1017 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2024 The HuggingFace Team and The MeissonFlow Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
import argparse
|
| 16 |
+
import copy
|
| 17 |
+
import logging
|
| 18 |
+
import math
|
| 19 |
+
import os
|
| 20 |
+
import json
|
| 21 |
+
from contextlib import nullcontext
|
| 22 |
+
from pathlib import Path
|
| 23 |
+
import sys
|
| 24 |
+
sys.path.append(os.getcwd())
|
| 25 |
+
import gc
|
| 26 |
+
import torch
|
| 27 |
+
import torch.nn.functional as F
|
| 28 |
+
from accelerate import Accelerator
|
| 29 |
+
from accelerate.logging import get_logger
|
| 30 |
+
from accelerate.utils import ProjectConfiguration, set_seed
|
| 31 |
+
from peft import LoraConfig
|
| 32 |
+
from peft.utils import get_peft_model_state_dict
|
| 33 |
+
from torch.utils.data import DataLoader, default_collate
|
| 34 |
+
from torchvision import transforms
|
| 35 |
+
from transformers import (
|
| 36 |
+
CLIPTextModelWithProjection,
|
| 37 |
+
CLIPTokenizer,
|
| 38 |
+
)
|
| 39 |
+
import diffusers.optimization
|
| 40 |
+
from diffusers import EMAModel, VQModel
|
| 41 |
+
from src.scheduler import Scheduler
|
| 42 |
+
from diffusers.loaders import LoraLoaderMixin
|
| 43 |
+
from diffusers.utils import is_wandb_available
|
| 44 |
+
from src.pipeline import UnifiedPipeline
|
| 45 |
+
from torchvision.utils import save_image,make_grid
|
| 46 |
+
from datasets import load_dataset
|
| 47 |
+
from train.trainer_utils import save_checkpoint
|
| 48 |
+
from train.dataset_utils import ImageCaptionDataset, HuggingFaceDataset
|
| 49 |
+
from train.dataset_utils import tokenize_prompt, encode_prompt
|
| 50 |
+
from src.transformer import SymmetricTransformer2DModel, Transformer2DModel
|
| 51 |
+
|
| 52 |
+
if is_wandb_available():
|
| 53 |
+
import wandb
|
| 54 |
+
# wandb.login(key="")
|
| 55 |
+
|
| 56 |
+
logger = get_logger(__name__, log_level="INFO")
|
| 57 |
+
|
| 58 |
+
import torch._dynamo
|
| 59 |
+
torch._dynamo.config.verbose = True
|
| 60 |
+
|
| 61 |
+
# Optionally suppress errors to fall back to eager execution
|
| 62 |
+
torch._dynamo.config.suppress_errors = True
|
| 63 |
+
|
| 64 |
+
def parse_args():
|
| 65 |
+
parser = argparse.ArgumentParser()
|
| 66 |
+
parser.add_argument(
|
| 67 |
+
"--pretrained_model_architecture",
|
| 68 |
+
type=str,
|
| 69 |
+
default="Meissonic",
|
| 70 |
+
required=False
|
| 71 |
+
)
|
| 72 |
+
parser.add_argument(
|
| 73 |
+
"--text_encoder_architecture",
|
| 74 |
+
type=str,
|
| 75 |
+
default="open_clip",
|
| 76 |
+
required=False,
|
| 77 |
+
help="The architecture of the text encoder. One of ['CLIP', 'open_clip', 'flan-t5-base','Qwen2-0.5B','gemini-2b',long_CLIP_T5_base','CLIP_T5_base']",
|
| 78 |
+
)
|
| 79 |
+
parser.add_argument(
|
| 80 |
+
"--instance_dataset",
|
| 81 |
+
type=str,
|
| 82 |
+
default=None,
|
| 83 |
+
required=False,
|
| 84 |
+
help="The dataset to use for training. One of ['MSCOCO600K', 'PickaPicV2']",
|
| 85 |
+
)
|
| 86 |
+
parser.add_argument(
|
| 87 |
+
"--training_from_scratch",
|
| 88 |
+
type=bool,
|
| 89 |
+
default=False,
|
| 90 |
+
required=False
|
| 91 |
+
)
|
| 92 |
+
parser.add_argument(
|
| 93 |
+
"--pretrained_model_name_or_path",
|
| 94 |
+
type=str,
|
| 95 |
+
default=None,
|
| 96 |
+
required=True,
|
| 97 |
+
help="Path to pretrained model or model identifier from huggingface.co/models.",
|
| 98 |
+
)
|
| 99 |
+
parser.add_argument(
|
| 100 |
+
"--revision",
|
| 101 |
+
type=str,
|
| 102 |
+
default=None,
|
| 103 |
+
required=False,
|
| 104 |
+
help="Revision of pretrained model identifier from huggingface.co/models.",
|
| 105 |
+
)
|
| 106 |
+
parser.add_argument(
|
| 107 |
+
"--variant",
|
| 108 |
+
type=str,
|
| 109 |
+
default=None,
|
| 110 |
+
help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16",
|
| 111 |
+
)
|
| 112 |
+
parser.add_argument(
|
| 113 |
+
"--instance_data_dataset",
|
| 114 |
+
type=str,
|
| 115 |
+
default=None,
|
| 116 |
+
required=False,
|
| 117 |
+
help="A Hugging Face dataset containing the training images",
|
| 118 |
+
)
|
| 119 |
+
parser.add_argument(
|
| 120 |
+
"--instance_data_dir",
|
| 121 |
+
type=str,
|
| 122 |
+
default=None,
|
| 123 |
+
required=False,
|
| 124 |
+
help="A folder containing the training data of instance images.",
|
| 125 |
+
)
|
| 126 |
+
parser.add_argument(
|
| 127 |
+
"--instance_data_image", type=str, default=None, required=False, help="A single training image"
|
| 128 |
+
)
|
| 129 |
+
parser.add_argument(
|
| 130 |
+
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
|
| 131 |
+
)
|
| 132 |
+
parser.add_argument(
|
| 133 |
+
"--dataloader_num_workers",
|
| 134 |
+
type=int,
|
| 135 |
+
default=0,
|
| 136 |
+
help=(
|
| 137 |
+
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
|
| 138 |
+
),
|
| 139 |
+
)
|
| 140 |
+
parser.add_argument(
|
| 141 |
+
"--allow_tf32",
|
| 142 |
+
action="store_true",
|
| 143 |
+
help=(
|
| 144 |
+
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
|
| 145 |
+
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
|
| 146 |
+
),
|
| 147 |
+
)
|
| 148 |
+
parser.add_argument("--use_ema", action="store_true", help="Whether to use EMA model.")
|
| 149 |
+
parser.add_argument("--ema_decay", type=float, default=0.9999)
|
| 150 |
+
parser.add_argument("--ema_update_after_step", type=int, default=0)
|
| 151 |
+
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
|
| 152 |
+
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
|
| 153 |
+
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
|
| 154 |
+
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
|
| 155 |
+
parser.add_argument(
|
| 156 |
+
"--output_dir",
|
| 157 |
+
type=str,
|
| 158 |
+
default="muse_training",
|
| 159 |
+
help="The output directory where the model predictions and checkpoints will be written.",
|
| 160 |
+
)
|
| 161 |
+
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
|
| 162 |
+
parser.add_argument(
|
| 163 |
+
"--logging_dir",
|
| 164 |
+
type=str,
|
| 165 |
+
default="logs",
|
| 166 |
+
help=(
|
| 167 |
+
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
|
| 168 |
+
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
|
| 169 |
+
),
|
| 170 |
+
)
|
| 171 |
+
parser.add_argument(
|
| 172 |
+
"--max_train_steps",
|
| 173 |
+
type=int,
|
| 174 |
+
default=None,
|
| 175 |
+
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
|
| 176 |
+
)
|
| 177 |
+
parser.add_argument(
|
| 178 |
+
"--checkpointing_steps",
|
| 179 |
+
type=int,
|
| 180 |
+
default=500,
|
| 181 |
+
help=(
|
| 182 |
+
"Save a checkpoint of the training state every X updates. Checkpoints can be used for resuming training via `--resume_from_checkpoint`. "
|
| 183 |
+
"In the case that the checkpoint is better than the final trained model, the checkpoint can also be used for inference."
|
| 184 |
+
"Using a checkpoint for inference requires separate loading of the original pipeline and the individual checkpointed model components."
|
| 185 |
+
"See https://huggingface.co/docs/diffusers/main/en/training/dreambooth#performing-inference-using-a-saved-checkpoint for step by step"
|
| 186 |
+
"instructions."
|
| 187 |
+
),
|
| 188 |
+
)
|
| 189 |
+
parser.add_argument(
|
| 190 |
+
"--logging_steps",
|
| 191 |
+
type=int,
|
| 192 |
+
default=50,
|
| 193 |
+
)
|
| 194 |
+
parser.add_argument(
|
| 195 |
+
"--checkpoints_total_limit",
|
| 196 |
+
type=int,
|
| 197 |
+
default=None,
|
| 198 |
+
help=(
|
| 199 |
+
"Max number of checkpoints to store. Passed as `total_limit` to the `Accelerator` `ProjectConfiguration`."
|
| 200 |
+
" See Accelerator::save_state https://huggingface.co/docs/accelerate/package_reference/accelerator#accelerate.Accelerator.save_state"
|
| 201 |
+
" for more details"
|
| 202 |
+
),
|
| 203 |
+
)
|
| 204 |
+
parser.add_argument(
|
| 205 |
+
"--resume_from_checkpoint",
|
| 206 |
+
type=str,
|
| 207 |
+
default=None,
|
| 208 |
+
help=(
|
| 209 |
+
"Whether training should be resumed from a previous checkpoint. Use a path saved by"
|
| 210 |
+
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
|
| 211 |
+
),
|
| 212 |
+
)
|
| 213 |
+
parser.add_argument(
|
| 214 |
+
"--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader."
|
| 215 |
+
)
|
| 216 |
+
parser.add_argument(
|
| 217 |
+
"--gradient_accumulation_steps",
|
| 218 |
+
type=int,
|
| 219 |
+
default=1,
|
| 220 |
+
help="Number of updates steps to accumulate before performing a backward/update pass.",
|
| 221 |
+
)
|
| 222 |
+
parser.add_argument(
|
| 223 |
+
"--learning_rate",
|
| 224 |
+
type=float,
|
| 225 |
+
default=0.0003,
|
| 226 |
+
help="Initial learning rate (after the potential warmup period) to use.",
|
| 227 |
+
)
|
| 228 |
+
parser.add_argument(
|
| 229 |
+
"--scale_lr",
|
| 230 |
+
action="store_true",
|
| 231 |
+
default=False,
|
| 232 |
+
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
|
| 233 |
+
)
|
| 234 |
+
parser.add_argument(
|
| 235 |
+
"--lr_scheduler",
|
| 236 |
+
type=str,
|
| 237 |
+
default="constant",
|
| 238 |
+
help=(
|
| 239 |
+
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
|
| 240 |
+
' "constant", "constant_with_warmup"]'
|
| 241 |
+
),
|
| 242 |
+
)
|
| 243 |
+
parser.add_argument(
|
| 244 |
+
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
|
| 245 |
+
)
|
| 246 |
+
parser.add_argument(
|
| 247 |
+
"--validation_steps",
|
| 248 |
+
type=int,
|
| 249 |
+
default=100,
|
| 250 |
+
help=(
|
| 251 |
+
"Run validation every X steps. Validation consists of running the prompt"
|
| 252 |
+
" `args.validation_prompt` multiple times: `args.num_validation_images`"
|
| 253 |
+
" and logging the images."
|
| 254 |
+
),
|
| 255 |
+
)
|
| 256 |
+
parser.add_argument(
|
| 257 |
+
"--mixed_precision",
|
| 258 |
+
type=str,
|
| 259 |
+
default=None,
|
| 260 |
+
choices=["no", "fp16", "bf16"],
|
| 261 |
+
help=(
|
| 262 |
+
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
|
| 263 |
+
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
|
| 264 |
+
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
|
| 265 |
+
),
|
| 266 |
+
)
|
| 267 |
+
parser.add_argument(
|
| 268 |
+
"--report_to",
|
| 269 |
+
type=str,
|
| 270 |
+
default="wandb",
|
| 271 |
+
help=(
|
| 272 |
+
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
|
| 273 |
+
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
|
| 274 |
+
),
|
| 275 |
+
)
|
| 276 |
+
parser.add_argument("--validation_prompts", type=str, nargs="*")
|
| 277 |
+
parser.add_argument(
|
| 278 |
+
"--resolution",
|
| 279 |
+
type=int,
|
| 280 |
+
default=512,
|
| 281 |
+
help=(
|
| 282 |
+
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
|
| 283 |
+
" resolution"
|
| 284 |
+
),
|
| 285 |
+
)
|
| 286 |
+
parser.add_argument("--split_vae_encode", type=int, required=False, default=None)
|
| 287 |
+
parser.add_argument("--min_masking_rate", type=float, default=0.0)
|
| 288 |
+
parser.add_argument("--cond_dropout_prob", type=float, default=0.0)
|
| 289 |
+
parser.add_argument("--max_grad_norm", default=50.0, type=float, help="Max gradient norm.", required=False)
|
| 290 |
+
parser.add_argument("--use_lora", action="store_true", help="Fine tune the model using LoRa")
|
| 291 |
+
parser.add_argument("--text_encoder_use_lora", action="store_true", help="Fine tune the model using LoRa")
|
| 292 |
+
parser.add_argument("--lora_r", default=16, type=int)
|
| 293 |
+
parser.add_argument("--lora_alpha", default=32, type=int)
|
| 294 |
+
parser.add_argument("--lora_target_modules", default=["to_q", "to_k", "to_v"], type=str, nargs="+")
|
| 295 |
+
parser.add_argument("--text_encoder_lora_r", default=16, type=int)
|
| 296 |
+
parser.add_argument("--text_encoder_lora_alpha", default=32, type=int)
|
| 297 |
+
parser.add_argument("--text_encoder_lora_target_modules", default=["to_q", "to_k", "to_v"], type=str, nargs="+")
|
| 298 |
+
parser.add_argument("--train_text_encoder", action="store_true")
|
| 299 |
+
parser.add_argument("--image_key", type=str, required=False)
|
| 300 |
+
parser.add_argument("--prompt_key", type=str, required=False)
|
| 301 |
+
parser.add_argument(
|
| 302 |
+
"--gradient_checkpointing",
|
| 303 |
+
action="store_true",
|
| 304 |
+
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
|
| 305 |
+
)
|
| 306 |
+
parser.add_argument("--prompt_prefix", type=str, required=False, default=None)
|
| 307 |
+
|
| 308 |
+
args = parser.parse_args()
|
| 309 |
+
|
| 310 |
+
if args.report_to == "wandb":
|
| 311 |
+
if not is_wandb_available():
|
| 312 |
+
raise ImportError("Make sure to install wandb if you want to use it for logging during training.")
|
| 313 |
+
|
| 314 |
+
num_datasources = sum(
|
| 315 |
+
[x is not None for x in [args.instance_data_dir, args.instance_data_image, args.instance_data_dataset]]
|
| 316 |
+
)
|
| 317 |
+
|
| 318 |
+
if num_datasources != 1:
|
| 319 |
+
raise ValueError(
|
| 320 |
+
"provide one and only one of `--instance_data_dir`, `--instance_data_image`, or `--instance_data_dataset`"
|
| 321 |
+
)
|
| 322 |
+
|
| 323 |
+
if args.instance_data_dir is not None:
|
| 324 |
+
if not os.path.exists(args.instance_data_dir):
|
| 325 |
+
raise ValueError(f"Does not exist: `--args.instance_data_dir` {args.instance_data_dir}")
|
| 326 |
+
|
| 327 |
+
if args.instance_data_image is not None:
|
| 328 |
+
if not os.path.exists(args.instance_data_image):
|
| 329 |
+
raise ValueError(f"Does not exist: `--args.instance_data_image` {args.instance_data_image}")
|
| 330 |
+
|
| 331 |
+
if args.instance_data_dataset is not None and (args.image_key is None or args.prompt_key is None):
|
| 332 |
+
raise ValueError("`--instance_data_dataset` requires setting `--image_key` and `--prompt_key`")
|
| 333 |
+
|
| 334 |
+
return args
|
| 335 |
+
|
| 336 |
+
def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
|
| 337 |
+
latent_image_ids = torch.zeros(height // 2, width // 2, 3)
|
| 338 |
+
latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2)[:, None]
|
| 339 |
+
latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2)[None, :]
|
| 340 |
+
|
| 341 |
+
latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
|
| 342 |
+
|
| 343 |
+
latent_image_ids = latent_image_ids.reshape(
|
| 344 |
+
latent_image_id_height * latent_image_id_width, latent_image_id_channels
|
| 345 |
+
)
|
| 346 |
+
# latent_image_ids = latent_image_ids.unsqueeze(0).repeat(batch_size, 1, 1)
|
| 347 |
+
|
| 348 |
+
return latent_image_ids.to(device=device, dtype=dtype)
|
| 349 |
+
|
| 350 |
+
def main(args):
|
| 351 |
+
if args.allow_tf32:
|
| 352 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 353 |
+
|
| 354 |
+
# if args.pretrained_model_architecture == "Meissonic":
|
| 355 |
+
# from src.pipeline import Pipeline
|
| 356 |
+
# else:
|
| 357 |
+
# raise ValueError(f"Unknown model architecture: {args.pretrained_model_architecture}")
|
| 358 |
+
|
| 359 |
+
|
| 360 |
+
logging_dir = Path(args.output_dir, args.logging_dir)
|
| 361 |
+
|
| 362 |
+
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
|
| 363 |
+
|
| 364 |
+
accelerator = Accelerator(
|
| 365 |
+
gradient_accumulation_steps=args.gradient_accumulation_steps,
|
| 366 |
+
mixed_precision=args.mixed_precision,
|
| 367 |
+
log_with=args.report_to,
|
| 368 |
+
project_config=accelerator_project_config,
|
| 369 |
+
)
|
| 370 |
+
|
| 371 |
+
if accelerator.is_main_process:
|
| 372 |
+
os.makedirs(args.output_dir, exist_ok=True)
|
| 373 |
+
|
| 374 |
+
# Make one log on every process with the configuration for debugging.
|
| 375 |
+
logging.basicConfig(
|
| 376 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
| 377 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
| 378 |
+
level=logging.INFO,
|
| 379 |
+
)
|
| 380 |
+
logger.info(accelerator.state, main_process_only=False)
|
| 381 |
+
|
| 382 |
+
if accelerator.is_main_process:
|
| 383 |
+
accelerator.init_trackers("meissonic", config=vars(copy.deepcopy(args)))
|
| 384 |
+
|
| 385 |
+
if args.seed is not None:
|
| 386 |
+
set_seed(args.seed)
|
| 387 |
+
|
| 388 |
+
if args.text_encoder_architecture == "open_clip":
|
| 389 |
+
if args.resume_from_checkpoint:
|
| 390 |
+
text_encoder = CLIPTextModelWithProjection.from_pretrained(
|
| 391 |
+
args.resume_from_checkpoint, subfolder="text_encoder", variant=args.variant
|
| 392 |
+
)
|
| 393 |
+
tokenizer = CLIPTokenizer.from_pretrained(
|
| 394 |
+
args.resume_from_checkpoint, subfolder="tokenizer", variant=args.variant
|
| 395 |
+
)
|
| 396 |
+
else:
|
| 397 |
+
text_encoder = CLIPTextModelWithProjection.from_pretrained(
|
| 398 |
+
args.pretrained_model_name_or_path, subfolder="text_encoder", variant=args.variant
|
| 399 |
+
)
|
| 400 |
+
tokenizer = CLIPTokenizer.from_pretrained(
|
| 401 |
+
args.pretrained_model_name_or_path, subfolder="tokenizer", variant=args.variant
|
| 402 |
+
)
|
| 403 |
+
else:
|
| 404 |
+
raise ValueError(f"Unknown text encoder architecture: {args.text_encoder_architecture}")
|
| 405 |
+
|
| 406 |
+
vq_model = VQModel.from_pretrained(
|
| 407 |
+
args.pretrained_model_name_or_path, subfolder="vqvae", revision=args.revision, variant=args.variant
|
| 408 |
+
)
|
| 409 |
+
|
| 410 |
+
if args.train_text_encoder:
|
| 411 |
+
if args.text_encoder_use_lora:
|
| 412 |
+
lora_config = LoraConfig(
|
| 413 |
+
r=args.text_encoder_lora_r,
|
| 414 |
+
lora_alpha=args.text_encoder_lora_alpha,
|
| 415 |
+
target_modules=args.text_encoder_lora_target_modules,
|
| 416 |
+
)
|
| 417 |
+
text_encoder.add_adapter(lora_config)
|
| 418 |
+
if args.text_encoder_architecture == "CLIP_T5_base": # Not support yet. Only support open_clip
|
| 419 |
+
text_encoder[0].train()
|
| 420 |
+
text_encoder[0].requires_grad_(True)
|
| 421 |
+
text_encoder[1].train()
|
| 422 |
+
text_encoder[1].requires_grad_(True)
|
| 423 |
+
else:
|
| 424 |
+
text_encoder.train()
|
| 425 |
+
text_encoder.requires_grad_(True)
|
| 426 |
+
else:
|
| 427 |
+
if args.text_encoder_architecture == "CLIP_T5_base": # Not support yet. Only support open_clip
|
| 428 |
+
text_encoder[0].eval()
|
| 429 |
+
text_encoder[0].requires_grad_(False)
|
| 430 |
+
text_encoder[1].eval()
|
| 431 |
+
text_encoder[1].requires_grad_(False)
|
| 432 |
+
else:
|
| 433 |
+
text_encoder.eval()
|
| 434 |
+
text_encoder.requires_grad_(False)
|
| 435 |
+
|
| 436 |
+
vq_model.requires_grad_(False)
|
| 437 |
+
|
| 438 |
+
if args.pretrained_model_architecture == "Meissonic":
|
| 439 |
+
if args.training_from_scratch:
|
| 440 |
+
model = SymmetricTransformer2DModel(
|
| 441 |
+
patch_size = 1,
|
| 442 |
+
in_channels = 64,
|
| 443 |
+
num_layers = 14,
|
| 444 |
+
num_single_layers = 28,
|
| 445 |
+
attention_head_dim = 128,
|
| 446 |
+
num_attention_heads = 8,
|
| 447 |
+
joint_attention_dim = 1024,
|
| 448 |
+
pooled_projection_dim = 1024,
|
| 449 |
+
guidance_embeds = False,
|
| 450 |
+
axes_dims_rope = (16, 56, 56),
|
| 451 |
+
downsample= True,
|
| 452 |
+
upsample= True,
|
| 453 |
+
)
|
| 454 |
+
else:
|
| 455 |
+
orig_model = Transformer2DModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="transformer", low_cpu_mem_usage=False, device_map=None)
|
| 456 |
+
orig_config = orig_model.config
|
| 457 |
+
config = {}
|
| 458 |
+
for k, v in orig_config.items():
|
| 459 |
+
if k.startswith("_"):
|
| 460 |
+
continue
|
| 461 |
+
config[k] = v
|
| 462 |
+
config["tokenizer_vocab_size"] = tokenizer.vocab_size
|
| 463 |
+
|
| 464 |
+
model = SymmetricTransformer2DModel(**config)
|
| 465 |
+
model.load_state_dict(orig_model.state_dict(), strict=False)
|
| 466 |
+
|
| 467 |
+
del orig_model
|
| 468 |
+
gc.collect()
|
| 469 |
+
torch.cuda.empty_cache()
|
| 470 |
+
else:
|
| 471 |
+
raise ValueError(f"Unknown model architecture: {args.pretrained_model_architecture}")
|
| 472 |
+
|
| 473 |
+
model = torch.compile(model)
|
| 474 |
+
|
| 475 |
+
if args.use_lora:
|
| 476 |
+
lora_config = LoraConfig(
|
| 477 |
+
r=args.lora_r,
|
| 478 |
+
lora_alpha=args.lora_alpha,
|
| 479 |
+
target_modules=args.lora_target_modules,
|
| 480 |
+
)
|
| 481 |
+
model.add_adapter(lora_config)
|
| 482 |
+
|
| 483 |
+
model.train()
|
| 484 |
+
for n, p in model.named_parameters():
|
| 485 |
+
if "text_decoder" in n:
|
| 486 |
+
p.requires_grad_(True)
|
| 487 |
+
else:
|
| 488 |
+
p.requires_grad_(False)
|
| 489 |
+
|
| 490 |
+
if args.gradient_checkpointing:
|
| 491 |
+
model.enable_gradient_checkpointing()
|
| 492 |
+
if args.train_text_encoder:
|
| 493 |
+
if args.text_encoder_architecture == "CLIP_T5_base": # Not support yet. Only support open_clip
|
| 494 |
+
text_encoder[0].gradient_checkpointing_enable()
|
| 495 |
+
text_encoder[1].gradient_checkpointing_enable()
|
| 496 |
+
else:
|
| 497 |
+
text_encoder.gradient_checkpointing_enable()
|
| 498 |
+
|
| 499 |
+
if args.use_ema: # Not verify the robostness of this part
|
| 500 |
+
ema = EMAModel(
|
| 501 |
+
model.parameters(),
|
| 502 |
+
decay=args.ema_decay,
|
| 503 |
+
update_after_step=args.ema_update_after_step,
|
| 504 |
+
model_cls= Transformer2DModel,
|
| 505 |
+
model_config=model.config,
|
| 506 |
+
)
|
| 507 |
+
|
| 508 |
+
def save_model_hook(models, weights, output_dir):
|
| 509 |
+
if accelerator.is_main_process:
|
| 510 |
+
transformer_lora_layers_to_save = None
|
| 511 |
+
text_encoder_lora_layers_to_save = None
|
| 512 |
+
|
| 513 |
+
for model_ in models:
|
| 514 |
+
if isinstance(model_, type(accelerator.unwrap_model(model))):
|
| 515 |
+
if args.use_lora:
|
| 516 |
+
transformer_lora_layers_to_save = get_peft_model_state_dict(model_)
|
| 517 |
+
else:
|
| 518 |
+
model_.save_pretrained(os.path.join(output_dir, "transformer"))
|
| 519 |
+
elif isinstance(model_, type(accelerator.unwrap_model(text_encoder))):
|
| 520 |
+
if args.text_encoder_use_lora:
|
| 521 |
+
text_encoder_lora_layers_to_save = get_peft_model_state_dict(model_)
|
| 522 |
+
else:
|
| 523 |
+
model_.save_pretrained(os.path.join(output_dir, "text_encoder"))
|
| 524 |
+
else:
|
| 525 |
+
raise ValueError(f"unexpected save model: {model_.__class__}")
|
| 526 |
+
|
| 527 |
+
# make sure to pop weight so that corresponding model is not saved again
|
| 528 |
+
weights.pop()
|
| 529 |
+
|
| 530 |
+
if transformer_lora_layers_to_save is not None or text_encoder_lora_layers_to_save is not None:
|
| 531 |
+
LoraLoaderMixin.save_lora_weights(
|
| 532 |
+
output_dir,
|
| 533 |
+
unet_lora_layers=transformer_lora_layers_to_save,
|
| 534 |
+
text_encoder_lora_layers=text_encoder_lora_layers_to_save,
|
| 535 |
+
)
|
| 536 |
+
|
| 537 |
+
if args.use_ema:
|
| 538 |
+
ema.save_pretrained(os.path.join(output_dir, "ema_model"))
|
| 539 |
+
|
| 540 |
+
def load_model_hook(models, input_dir):
|
| 541 |
+
transformer = None
|
| 542 |
+
text_encoder_ = None
|
| 543 |
+
|
| 544 |
+
# this part is added for keep consistency when add model.compile() in the model
|
| 545 |
+
def adap_compile(ori_dict):#add '_orig_mod.' to each key
|
| 546 |
+
new_dict = {}
|
| 547 |
+
for k,v in ori_dict.items():
|
| 548 |
+
new_dict['_orig_mod.'+k] = v
|
| 549 |
+
return new_dict
|
| 550 |
+
|
| 551 |
+
while len(models) > 0:
|
| 552 |
+
model_ = models.pop()
|
| 553 |
+
|
| 554 |
+
if isinstance(model_, type(accelerator.unwrap_model(model))):
|
| 555 |
+
if args.use_lora:
|
| 556 |
+
transformer = model_
|
| 557 |
+
else:
|
| 558 |
+
if args.pretrained_model_architecture == "Meissonic":
|
| 559 |
+
load_model = SymmetricTransformer2DModel.from_pretrained(os.path.join(input_dir, "transformer"), low_cpu_mem_usage=False, device_map=None)
|
| 560 |
+
else:
|
| 561 |
+
raise ValueError(f"Unknown model architecture: {args.pretrained_model_architecture}")
|
| 562 |
+
model_.load_state_dict(adap_compile(load_model.state_dict()))
|
| 563 |
+
del load_model
|
| 564 |
+
elif isinstance(model_, type(accelerator.unwrap_model(text_encoder))):
|
| 565 |
+
if args.text_encoder_use_lora:
|
| 566 |
+
text_encoder_ = model_
|
| 567 |
+
else:
|
| 568 |
+
try:
|
| 569 |
+
load_model = CLIPTextModelWithProjection.from_pretrained(os.path.join(input_dir, "text_encoder"))
|
| 570 |
+
model_.load_state_dict(load_model.state_dict())
|
| 571 |
+
# print('finished loading text encoder!')
|
| 572 |
+
except:
|
| 573 |
+
print('Not found text-encoder model in current folder. So we download one text encoder from Internet.')
|
| 574 |
+
load_model = CLIPTextModelWithProjection.from_pretrained("laion/CLIP-ViT-H-14-laion2B-s32B-b79K")
|
| 575 |
+
model_.load_state_dict(load_model.state_dict())
|
| 576 |
+
del load_model
|
| 577 |
+
else:
|
| 578 |
+
raise ValueError(f"unexpected save model: {model.__class__}")
|
| 579 |
+
|
| 580 |
+
if transformer is not None or text_encoder_ is not None:
|
| 581 |
+
lora_state_dict, network_alphas = LoraLoaderMixin.lora_state_dict(input_dir)
|
| 582 |
+
LoraLoaderMixin.load_lora_into_text_encoder(
|
| 583 |
+
lora_state_dict, network_alphas=network_alphas, text_encoder=text_encoder_
|
| 584 |
+
)
|
| 585 |
+
LoraLoaderMixin.load_lora_into_transformer(
|
| 586 |
+
lora_state_dict, network_alphas=network_alphas, transformer=transformer
|
| 587 |
+
)
|
| 588 |
+
|
| 589 |
+
if args.use_ema:
|
| 590 |
+
load_from = EMAModel.from_pretrained(os.path.join(input_dir, "ema_model"), model_cls=Transformer2DModel)
|
| 591 |
+
ema.load_state_dict(adap_compile(load_from.state_dict()))
|
| 592 |
+
del load_from
|
| 593 |
+
|
| 594 |
+
accelerator.register_load_state_pre_hook(load_model_hook)
|
| 595 |
+
accelerator.register_save_state_pre_hook(save_model_hook)
|
| 596 |
+
|
| 597 |
+
if args.scale_lr:
|
| 598 |
+
args.learning_rate = (
|
| 599 |
+
args.learning_rate * args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
|
| 600 |
+
)
|
| 601 |
+
|
| 602 |
+
if args.use_8bit_adam:
|
| 603 |
+
try:
|
| 604 |
+
import bitsandbytes as bnb
|
| 605 |
+
except ImportError:
|
| 606 |
+
raise ImportError(
|
| 607 |
+
"Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`"
|
| 608 |
+
)
|
| 609 |
+
|
| 610 |
+
optimizer_cls = bnb.optim.AdamW8bit
|
| 611 |
+
else:
|
| 612 |
+
optimizer_cls = torch.optim.AdamW
|
| 613 |
+
|
| 614 |
+
|
| 615 |
+
optimizer_parameters = [p for p in model.parameters() if p.requires_grad]
|
| 616 |
+
|
| 617 |
+
optimizer = optimizer_cls(
|
| 618 |
+
optimizer_parameters,
|
| 619 |
+
lr=args.learning_rate,
|
| 620 |
+
betas=(args.adam_beta1, args.adam_beta2),
|
| 621 |
+
weight_decay=args.adam_weight_decay,
|
| 622 |
+
eps=args.adam_epsilon,
|
| 623 |
+
)
|
| 624 |
+
|
| 625 |
+
logger.info("Creating dataloaders and lr_scheduler")
|
| 626 |
+
|
| 627 |
+
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
|
| 628 |
+
|
| 629 |
+
if args.instance_dataset == "MyParquetDataset":
|
| 630 |
+
dataset = ImageCaptionDataset(
|
| 631 |
+
root_dir=args.instance_data_dir, # something like '../parquets_father_dir/'
|
| 632 |
+
tokenizer=tokenizer,
|
| 633 |
+
size=args.resolution,
|
| 634 |
+
text_encoder_architecture=args.text_encoder_architecture
|
| 635 |
+
)
|
| 636 |
+
elif args.instance_dataset == 'HuggingFaceDataset': # you can try this first, just download dataset from huggingface
|
| 637 |
+
dataset = HuggingFaceDataset(
|
| 638 |
+
hf_dataset=load_dataset(args.instance_data_dir, split="train"), # something like './parquets_father_dir/'
|
| 639 |
+
tokenizer=tokenizer,
|
| 640 |
+
image_key='image',
|
| 641 |
+
prompt_key='caption',
|
| 642 |
+
prompt_prefix=args.prompt_prefix,
|
| 643 |
+
size=args.resolution,
|
| 644 |
+
text_encoder_architecture=args.text_encoder_architecture
|
| 645 |
+
)
|
| 646 |
+
elif args.instance_dataset == "DATA_TYPE":
|
| 647 |
+
raise NotImplementedError("DATA_TYPE is not yet supported")
|
| 648 |
+
else:
|
| 649 |
+
assert False
|
| 650 |
+
|
| 651 |
+
train_dataloader = DataLoader(
|
| 652 |
+
dataset,
|
| 653 |
+
batch_size=args.train_batch_size,
|
| 654 |
+
shuffle=True,
|
| 655 |
+
num_workers=args.dataloader_num_workers,
|
| 656 |
+
collate_fn=default_collate,
|
| 657 |
+
pin_memory=True,
|
| 658 |
+
)
|
| 659 |
+
train_dataloader.num_batches = len(train_dataloader)
|
| 660 |
+
|
| 661 |
+
lr_scheduler = diffusers.optimization.get_scheduler(
|
| 662 |
+
args.lr_scheduler,
|
| 663 |
+
optimizer=optimizer,
|
| 664 |
+
num_training_steps=args.max_train_steps * accelerator.num_processes,
|
| 665 |
+
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
|
| 666 |
+
)
|
| 667 |
+
|
| 668 |
+
logger.info("Preparing model, optimizer and dataloaders")
|
| 669 |
+
|
| 670 |
+
if args.train_text_encoder:
|
| 671 |
+
if args.text_encoder_architecture == "CLIP_T5_base": # Not support yet. Only support open_clip
|
| 672 |
+
model, optimizer, lr_scheduler, train_dataloader, text_encoder[0], text_encoder[1] = accelerator.prepare(
|
| 673 |
+
model, optimizer, lr_scheduler, train_dataloader, text_encoder[0], text_encoder[1]
|
| 674 |
+
)
|
| 675 |
+
else:
|
| 676 |
+
model, optimizer, lr_scheduler, train_dataloader, text_encoder = accelerator.prepare(
|
| 677 |
+
model, optimizer, lr_scheduler, train_dataloader, text_encoder
|
| 678 |
+
)
|
| 679 |
+
else:
|
| 680 |
+
model, optimizer, lr_scheduler, train_dataloader = accelerator.prepare(
|
| 681 |
+
model, optimizer, lr_scheduler, train_dataloader
|
| 682 |
+
)
|
| 683 |
+
|
| 684 |
+
train_dataloader.num_batches = len(train_dataloader)
|
| 685 |
+
|
| 686 |
+
weight_dtype = torch.float32
|
| 687 |
+
if accelerator.mixed_precision == "fp16":
|
| 688 |
+
weight_dtype = torch.float16
|
| 689 |
+
elif accelerator.mixed_precision == "bf16":
|
| 690 |
+
weight_dtype = torch.bfloat16
|
| 691 |
+
|
| 692 |
+
if not args.train_text_encoder:
|
| 693 |
+
if args.text_encoder_architecture == "CLIP_T5_base": # Not support yet. Only support open_clip
|
| 694 |
+
text_encoder[0].to(device=accelerator.device, dtype=weight_dtype)
|
| 695 |
+
text_encoder[1].to(device=accelerator.device, dtype=weight_dtype)
|
| 696 |
+
else:
|
| 697 |
+
text_encoder.to(device=accelerator.device, dtype=weight_dtype)
|
| 698 |
+
|
| 699 |
+
vq_model.to(device=accelerator.device)
|
| 700 |
+
|
| 701 |
+
if args.use_ema:
|
| 702 |
+
ema.to(accelerator.device)
|
| 703 |
+
|
| 704 |
+
with nullcontext() if args.train_text_encoder else torch.no_grad():
|
| 705 |
+
if args.text_encoder_architecture == "CLIP_T5_base": # Not support yet. Only support open_clip
|
| 706 |
+
_input_ids_tmp_ = tokenize_prompt(tokenizer, "", args.text_encoder_architecture)
|
| 707 |
+
_input_ids_tmp_[0] = _input_ids_tmp_[0].to(accelerator.device, non_blocking=True)
|
| 708 |
+
_input_ids_tmp_[1] = _input_ids_tmp_[1].to(accelerator.device, non_blocking=True)
|
| 709 |
+
empty_embeds, empty_clip_embeds = encode_prompt(
|
| 710 |
+
text_encoder, _input_ids_tmp_, args.text_encoder_architecture
|
| 711 |
+
)
|
| 712 |
+
else:
|
| 713 |
+
empty_embeds, empty_clip_embeds = encode_prompt(
|
| 714 |
+
text_encoder, tokenize_prompt(tokenizer, "", args.text_encoder_architecture).to(accelerator.device, non_blocking=True), args.text_encoder_architecture
|
| 715 |
+
)
|
| 716 |
+
|
| 717 |
+
# There is a single image, we can just pre-encode the single prompt
|
| 718 |
+
if args.instance_data_image is not None:
|
| 719 |
+
prompt = os.path.splitext(os.path.basename(args.instance_data_image))[0]
|
| 720 |
+
if args.text_encoder_architecture == "CLIP_T5_base": # Not support yet. Only support open_clip
|
| 721 |
+
_input_ids_tmp_ = tokenize_prompt(tokenizer, prompt, args.text_encoder_architecture)
|
| 722 |
+
_input_ids_tmp_[0] = _input_ids_tmp_[0].to(accelerator.device, non_blocking=True)
|
| 723 |
+
_input_ids_tmp_[1] = _input_ids_tmp_[1].to(accelerator.device, non_blocking=True)
|
| 724 |
+
empty_embeds, empty_clip_embeds = encode_prompt(
|
| 725 |
+
text_encoder, _input_ids_tmp_, args.text_encoder_architecture
|
| 726 |
+
)
|
| 727 |
+
else:
|
| 728 |
+
encoder_hidden_states, cond_embeds = encode_prompt(
|
| 729 |
+
text_encoder, tokenize_prompt(tokenizer, prompt, args.text_encoder_architecture).to(accelerator.device, non_blocking=True), args.text_encoder_architecture
|
| 730 |
+
)
|
| 731 |
+
encoder_hidden_states = encoder_hidden_states.repeat(args.train_batch_size, 1, 1)
|
| 732 |
+
cond_embeds = cond_embeds.repeat(args.train_batch_size, 1)
|
| 733 |
+
|
| 734 |
+
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
|
| 735 |
+
num_update_steps_per_epoch = math.ceil(train_dataloader.num_batches / args.gradient_accumulation_steps)
|
| 736 |
+
# Afterwards we recalculate our number of training epochs.
|
| 737 |
+
# Note: We are not doing epoch based training here, but just using this for book keeping and being able to
|
| 738 |
+
# reuse the same training loop with other datasets/loaders.
|
| 739 |
+
num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
|
| 740 |
+
|
| 741 |
+
# Train!
|
| 742 |
+
logger.info("***** Running training *****")
|
| 743 |
+
logger.info(f" Num training steps = {args.max_train_steps}")
|
| 744 |
+
logger.info(f" Instantaneous batch size per device = { args.train_batch_size}")
|
| 745 |
+
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
|
| 746 |
+
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
|
| 747 |
+
|
| 748 |
+
resume_from_checkpoint = args.resume_from_checkpoint
|
| 749 |
+
if resume_from_checkpoint:
|
| 750 |
+
if resume_from_checkpoint == "latest":
|
| 751 |
+
# Get the most recent checkpoint
|
| 752 |
+
dirs = os.listdir(args.output_dir)
|
| 753 |
+
dirs = [d for d in dirs if d.startswith("checkpoint")]
|
| 754 |
+
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
|
| 755 |
+
if len(dirs) > 0:
|
| 756 |
+
resume_from_checkpoint = os.path.join(args.output_dir, dirs[-1])
|
| 757 |
+
else:
|
| 758 |
+
resume_from_checkpoint = None
|
| 759 |
+
|
| 760 |
+
if resume_from_checkpoint is None:
|
| 761 |
+
accelerator.print(
|
| 762 |
+
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
|
| 763 |
+
)
|
| 764 |
+
else:
|
| 765 |
+
accelerator.print(f"Resuming from checkpoint {resume_from_checkpoint}")
|
| 766 |
+
|
| 767 |
+
if resume_from_checkpoint is None:
|
| 768 |
+
global_step = 0
|
| 769 |
+
first_epoch = 0
|
| 770 |
+
else:
|
| 771 |
+
accelerator.load_state(resume_from_checkpoint)
|
| 772 |
+
global_step = int(os.path.basename(resume_from_checkpoint).split("-")[1])
|
| 773 |
+
first_epoch = global_step // num_update_steps_per_epoch
|
| 774 |
+
|
| 775 |
+
# This is to solve the inconsistent tensor device issue
|
| 776 |
+
if args.use_ema:
|
| 777 |
+
ema.shadow_params = [p.to(accelerator.device) for p in ema.shadow_params]
|
| 778 |
+
|
| 779 |
+
# As stated above, we are not doing epoch based training here, but just using this for book keeping and being able to
|
| 780 |
+
# reuse the same training loop with other datasets/loaders.
|
| 781 |
+
for epoch in range(first_epoch, num_train_epochs):
|
| 782 |
+
for batch in train_dataloader:
|
| 783 |
+
torch.cuda.empty_cache()
|
| 784 |
+
with torch.no_grad():
|
| 785 |
+
micro_conds = batch["micro_conds"].to(accelerator.device, non_blocking=True)
|
| 786 |
+
pixel_values = batch["image"].to(accelerator.device, non_blocking=True)
|
| 787 |
+
|
| 788 |
+
batch_size = pixel_values.shape[0]
|
| 789 |
+
|
| 790 |
+
split_batch_size = args.split_vae_encode if args.split_vae_encode is not None else batch_size
|
| 791 |
+
num_splits = math.ceil(batch_size / split_batch_size)
|
| 792 |
+
image_tokens = []
|
| 793 |
+
for i in range(num_splits):
|
| 794 |
+
start_idx = i * split_batch_size
|
| 795 |
+
end_idx = min((i + 1) * split_batch_size, batch_size)
|
| 796 |
+
bs = pixel_values.shape[0]
|
| 797 |
+
image_tokens.append(
|
| 798 |
+
vq_model.quantize(
|
| 799 |
+
vq_model.encode(
|
| 800 |
+
pixel_values[start_idx: end_idx]
|
| 801 |
+
).latents
|
| 802 |
+
)[2][2].reshape(split_batch_size, -1)
|
| 803 |
+
)
|
| 804 |
+
image_tokens = torch.cat(image_tokens, dim=0)
|
| 805 |
+
|
| 806 |
+
batch_size, seq_len = image_tokens.shape
|
| 807 |
+
|
| 808 |
+
timesteps = torch.ones(batch_size, device=image_tokens.device)
|
| 809 |
+
mask_prob = torch.cos(timesteps * math.pi * 0.5)
|
| 810 |
+
mask_prob = mask_prob.clip(args.min_masking_rate)
|
| 811 |
+
|
| 812 |
+
num_token_masked = (seq_len * mask_prob).round().clamp(min=1)
|
| 813 |
+
batch_randperm = torch.rand(batch_size, seq_len, device=image_tokens.device).argsort(dim=-1)
|
| 814 |
+
mask = batch_randperm < num_token_masked.unsqueeze(-1)
|
| 815 |
+
|
| 816 |
+
mask_id = accelerator.unwrap_model(model).config.vocab_size - 1
|
| 817 |
+
input_ids = torch.where(mask, mask_id, image_tokens)
|
| 818 |
+
# labels = torch.where(mask, image_tokens, -100)
|
| 819 |
+
|
| 820 |
+
if "prompt_input_ids" in batch:
|
| 821 |
+
prompt_input_ids = batch["prompt_input_ids"]
|
| 822 |
+
labels = prompt_input_ids
|
| 823 |
+
with nullcontext() if args.train_text_encoder else torch.no_grad():
|
| 824 |
+
if args.text_encoder_architecture == "CLIP_T5_base": # Not support yet. Only support open_clip
|
| 825 |
+
batch["prompt_input_ids"][0] = batch["prompt_input_ids"][0].to(accelerator.device, non_blocking=True)
|
| 826 |
+
batch["prompt_input_ids"][1] = batch["prompt_input_ids"][1].to(accelerator.device, non_blocking=True)
|
| 827 |
+
encoder_hidden_states, cond_embeds = encode_prompt(
|
| 828 |
+
text_encoder, batch["prompt_input_ids"], args.text_encoder_architecture
|
| 829 |
+
)
|
| 830 |
+
else:
|
| 831 |
+
encoder_hidden_states, cond_embeds = encode_prompt(
|
| 832 |
+
text_encoder, batch["prompt_input_ids"].to(accelerator.device, non_blocking=True), args.text_encoder_architecture
|
| 833 |
+
)
|
| 834 |
+
|
| 835 |
+
if args.cond_dropout_prob > 0.0:
|
| 836 |
+
assert encoder_hidden_states is not None
|
| 837 |
+
|
| 838 |
+
batch_size = encoder_hidden_states.shape[0]
|
| 839 |
+
|
| 840 |
+
mask = (
|
| 841 |
+
torch.zeros((batch_size, 1, 1), device=encoder_hidden_states.device).float().uniform_(0, 1)
|
| 842 |
+
< args.cond_dropout_prob
|
| 843 |
+
)
|
| 844 |
+
|
| 845 |
+
empty_embeds_ = empty_embeds.expand(batch_size, -1, -1)
|
| 846 |
+
encoder_hidden_states = torch.where(
|
| 847 |
+
(encoder_hidden_states * mask).bool(), encoder_hidden_states, empty_embeds_
|
| 848 |
+
)
|
| 849 |
+
|
| 850 |
+
empty_clip_embeds_ = empty_clip_embeds.expand(batch_size, -1)
|
| 851 |
+
cond_embeds = torch.where((cond_embeds * mask.squeeze(-1)).bool(), cond_embeds, empty_clip_embeds_)
|
| 852 |
+
|
| 853 |
+
bs = input_ids.shape[0]
|
| 854 |
+
vae_scale_factor = 2 ** (len(vq_model.config.block_out_channels) - 1)
|
| 855 |
+
resolution = args.resolution // vae_scale_factor
|
| 856 |
+
input_ids = input_ids.reshape(bs, resolution, resolution)
|
| 857 |
+
|
| 858 |
+
# Train Step
|
| 859 |
+
with accelerator.accumulate(model):
|
| 860 |
+
if args.pretrained_model_architecture == 'Meissonic':
|
| 861 |
+
|
| 862 |
+
if args.resolution == 1024: # only stage 3 and stage 4 do not apply 2*
|
| 863 |
+
img_ids = _prepare_latent_image_ids(input_ids.shape[0], input_ids.shape[-2], input_ids.shape[-1], input_ids.device, input_ids.dtype)
|
| 864 |
+
else:
|
| 865 |
+
img_ids = _prepare_latent_image_ids(input_ids.shape[0], 2 * input_ids.shape[-2], 2 * input_ids.shape[-1], input_ids.device, input_ids.dtype)
|
| 866 |
+
|
| 867 |
+
txt_ids = torch.zeros(encoder_hidden_states.shape[1], 3).to(device = input_ids.device, dtype = input_ids.dtype)
|
| 868 |
+
|
| 869 |
+
logits = model(
|
| 870 |
+
hidden_states=input_ids, # should be (batch size, channel, height, width)
|
| 871 |
+
encoder_hidden_states=encoder_hidden_states, # should be (batch size, sequence_len, embed_dims)
|
| 872 |
+
micro_conds=micro_conds, #
|
| 873 |
+
pooled_projections=cond_embeds, # should be (batch_size, projection_dim)
|
| 874 |
+
img_ids=img_ids,
|
| 875 |
+
txt_ids=txt_ids,
|
| 876 |
+
timestep=mask_prob * 1000,
|
| 877 |
+
)[1]
|
| 878 |
+
# print(logits.shape)
|
| 879 |
+
logits = logits.reshape(-1, tokenizer.vocab_size)
|
| 880 |
+
|
| 881 |
+
else:
|
| 882 |
+
raise ValueError(f"Unknown model architecture: {args.pretrained_model_architecture}")
|
| 883 |
+
|
| 884 |
+
loss = F.cross_entropy(
|
| 885 |
+
logits,
|
| 886 |
+
labels.view(-1),
|
| 887 |
+
ignore_index=-100,
|
| 888 |
+
reduction="mean",
|
| 889 |
+
)
|
| 890 |
+
|
| 891 |
+
# Gather the losses across all processes for logging (if we use distributed training).
|
| 892 |
+
avg_loss = accelerator.gather(loss.repeat(args.train_batch_size)).mean()
|
| 893 |
+
avg_masking_rate = accelerator.gather(mask_prob.repeat(args.train_batch_size)).mean()
|
| 894 |
+
|
| 895 |
+
accelerator.backward(loss)
|
| 896 |
+
|
| 897 |
+
if args.max_grad_norm is not None and accelerator.sync_gradients:
|
| 898 |
+
accelerator.clip_grad_norm_(model.parameters(), args.max_grad_norm)
|
| 899 |
+
|
| 900 |
+
optimizer.step()
|
| 901 |
+
lr_scheduler.step()
|
| 902 |
+
|
| 903 |
+
optimizer.zero_grad(set_to_none=True)
|
| 904 |
+
|
| 905 |
+
# Checks if the accelerator has performed an optimization step behind the scenes
|
| 906 |
+
if accelerator.sync_gradients:
|
| 907 |
+
if args.use_ema:
|
| 908 |
+
ema.step(model.parameters())
|
| 909 |
+
|
| 910 |
+
if (global_step + 1) % args.logging_steps == 0:
|
| 911 |
+
logs = {
|
| 912 |
+
"step_loss": avg_loss.item(),
|
| 913 |
+
"lr": lr_scheduler.get_last_lr()[0],
|
| 914 |
+
"avg_masking_rate": avg_masking_rate.item(),
|
| 915 |
+
}
|
| 916 |
+
accelerator.log(logs, step=global_step + 1)
|
| 917 |
+
|
| 918 |
+
logger.info(
|
| 919 |
+
f"Step: {global_step + 1} "
|
| 920 |
+
f"Loss: {avg_loss.item():0.4f} "
|
| 921 |
+
f"LR: {lr_scheduler.get_last_lr()[0]:0.6f}"
|
| 922 |
+
)
|
| 923 |
+
|
| 924 |
+
if (global_step + 1) % args.checkpointing_steps == 0:
|
| 925 |
+
save_checkpoint(args, accelerator, global_step + 1, logger)
|
| 926 |
+
|
| 927 |
+
if (global_step + 1) % args.validation_steps == 0 and accelerator.is_main_process:
|
| 928 |
+
if args.use_ema:
|
| 929 |
+
ema.store(model.parameters())
|
| 930 |
+
ema.copy_to(model.parameters())
|
| 931 |
+
|
| 932 |
+
with torch.no_grad():
|
| 933 |
+
logger.info("Generating images...")
|
| 934 |
+
|
| 935 |
+
model.eval()
|
| 936 |
+
|
| 937 |
+
scheduler = Scheduler.from_pretrained(
|
| 938 |
+
args.pretrained_model_name_or_path,
|
| 939 |
+
subfolder="scheduler",
|
| 940 |
+
revision=args.revision,
|
| 941 |
+
variant=args.variant,
|
| 942 |
+
)
|
| 943 |
+
|
| 944 |
+
pipe = UnifiedPipeline(
|
| 945 |
+
transformer=accelerator.unwrap_model(model),
|
| 946 |
+
tokenizer=tokenizer,
|
| 947 |
+
text_encoder=text_encoder,
|
| 948 |
+
vqvae=vq_model,
|
| 949 |
+
scheduler=scheduler,
|
| 950 |
+
)
|
| 951 |
+
|
| 952 |
+
output = pipe(
|
| 953 |
+
prompt=args.validation_prompts,
|
| 954 |
+
height=args.resolution,
|
| 955 |
+
width=args.resolution,
|
| 956 |
+
guidance_scale=9,
|
| 957 |
+
num_inference_steps=64
|
| 958 |
+
)
|
| 959 |
+
pil_images = output.images
|
| 960 |
+
prompts = output.prompts
|
| 961 |
+
print(prompts)
|
| 962 |
+
|
| 963 |
+
result=[]
|
| 964 |
+
for img in pil_images:
|
| 965 |
+
if not isinstance(img, torch.Tensor):
|
| 966 |
+
img = transforms.ToTensor()(img)
|
| 967 |
+
result.append(img.unsqueeze(0))
|
| 968 |
+
result = torch.cat(result,dim=0)
|
| 969 |
+
result = make_grid(result, nrow=3)
|
| 970 |
+
save_image(result,os.path.join(args.output_dir, str(global_step)+'_text2image_1024_CFG-9.png'))
|
| 971 |
+
|
| 972 |
+
# 保存为JSON
|
| 973 |
+
output_data = {
|
| 974 |
+
"step": global_step,
|
| 975 |
+
"prompts": prompts,
|
| 976 |
+
"images": [f"{global_step}_text2image_1024_CFG-9_{i}.png" for i in range(len(pil_images))]
|
| 977 |
+
}
|
| 978 |
+
|
| 979 |
+
with open(os.path.join(args.output_dir, f"prompts_{global_step}.json"), "w") as f:
|
| 980 |
+
json.dump(output_data, f, indent=2)
|
| 981 |
+
|
| 982 |
+
model.train()
|
| 983 |
+
|
| 984 |
+
if args.train_text_encoder:
|
| 985 |
+
if args.text_encoder_architecture == "CLIP_T5_base": # Not support yet. Only support open_clip
|
| 986 |
+
text_encoder[0].train()
|
| 987 |
+
text_encoder[1].trian()
|
| 988 |
+
else:
|
| 989 |
+
text_encoder.train()
|
| 990 |
+
|
| 991 |
+
if args.use_ema:
|
| 992 |
+
ema.restore(model.parameters())
|
| 993 |
+
|
| 994 |
+
global_step += 1
|
| 995 |
+
|
| 996 |
+
# Stop training if max steps is reached
|
| 997 |
+
if global_step >= args.max_train_steps:
|
| 998 |
+
break
|
| 999 |
+
# End for
|
| 1000 |
+
|
| 1001 |
+
accelerator.wait_for_everyone()
|
| 1002 |
+
|
| 1003 |
+
# Evaluate and save checkpoint at the end of training
|
| 1004 |
+
save_checkpoint(args, accelerator, global_step, logger)
|
| 1005 |
+
|
| 1006 |
+
# Save the final trained checkpoint
|
| 1007 |
+
if accelerator.is_main_process:
|
| 1008 |
+
model = accelerator.unwrap_model(model)
|
| 1009 |
+
if args.use_ema:
|
| 1010 |
+
ema.copy_to(model.parameters())
|
| 1011 |
+
model.save_pretrained(args.output_dir)
|
| 1012 |
+
|
| 1013 |
+
accelerator.end_training()
|
| 1014 |
+
|
| 1015 |
+
|
| 1016 |
+
if __name__ == "__main__":
|
| 1017 |
+
main(parse_args())
|
train/train_text_decoder.sh
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# bash it in root path
|
| 2 |
+
PYTHON_PATH='./' accelerate launch --multi_gpu --gpu_ids '2,3' --main_process_port 25001 --num_processes 2 train/train_text_decoder.py \
|
| 3 |
+
--output_dir "./outputs/football/" \
|
| 4 |
+
--train_batch_size 16 \
|
| 5 |
+
--gradient_accumulation_steps 2 \
|
| 6 |
+
--learning_rate 1e-5 \
|
| 7 |
+
--max_grad_norm 10 \
|
| 8 |
+
--pretrained_model_name_or_path "meissonflow/meissonic" \
|
| 9 |
+
--text_encoder_architecture 'open_clip' \
|
| 10 |
+
--pretrained_model_architecture 'Meissonic' \
|
| 11 |
+
--instance_dataset 'MyParquetDataset' \
|
| 12 |
+
--instance_data_dir '/data/sqy/0000/' \
|
| 13 |
+
--resolution 1024 \
|
| 14 |
+
--mixed_precision fp16 \
|
| 15 |
+
--lr_scheduler constant \
|
| 16 |
+
--use_8bit_adam \
|
| 17 |
+
--dataloader_num_workers 0 \
|
| 18 |
+
--validation_prompts \
|
| 19 |
+
'a boy' \
|
| 20 |
+
'A serene mountain landscape with towering snow-capped peaks, a crystal-clear blue lake reflecting the mountains, dense pine forests, and a vibrant orange sunrise illuminating the sky.' \
|
| 21 |
+
'A playful golden retriever puppy with a shiny coat, bounding through a meadow filled with colorful wildflowers, under a bright, clear blue sky.' \
|
| 22 |
+
'A bustling city street at night, illuminated by vibrant neon signs in various colors, with busy pedestrians, street vendors, and a light rain creating reflective puddles on the pavement.' \
|
| 23 |
+
'A majestic, medieval castle perched on a rugged cliffside, overlooking a vast, calm ocean at sunset, with the sky painted in hues of pink, orange, and purple.' \
|
| 24 |
+
'An elegant ballerina in a white tutu, dancing gracefully on a grand stage with ornate, gold-trimmed curtains, under a spotlight that casts a soft glow.' \
|
| 25 |
+
'A cozy, rustic log cabin nestled in a snow-covered forest, with smoke rising from the stone chimney, warm lights glowing from the windows, and a path of footprints leading to the front door.'\
|
| 26 |
+
'A Cute Cat' \
|
| 27 |
+
'A Snow Mountain'\
|
| 28 |
+
--max_train_steps 30000 \
|
| 29 |
+
--checkpointing_steps 1000 \
|
| 30 |
+
--validation_steps 100 \
|
| 31 |
+
--logging_steps 10
|
train/train_text_encoder.py
ADDED
|
@@ -0,0 +1,903 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import copy
|
| 3 |
+
import logging
|
| 4 |
+
import math
|
| 5 |
+
import os
|
| 6 |
+
import json
|
| 7 |
+
from contextlib import nullcontext
|
| 8 |
+
from pathlib import Path
|
| 9 |
+
import sys
|
| 10 |
+
sys.path.append(os.getcwd())
|
| 11 |
+
import gc
|
| 12 |
+
import torch
|
| 13 |
+
import torch.nn as nn
|
| 14 |
+
import torch.nn.functional as F
|
| 15 |
+
|
| 16 |
+
from accelerate import Accelerator
|
| 17 |
+
from accelerate.logging import get_logger
|
| 18 |
+
from accelerate.utils import ProjectConfiguration, set_seed
|
| 19 |
+
from peft import LoraConfig
|
| 20 |
+
from peft.utils import get_peft_model_state_dict
|
| 21 |
+
|
| 22 |
+
from torch.utils.data import DataLoader, default_collate
|
| 23 |
+
from torchvision import transforms
|
| 24 |
+
from torchvision.utils import save_image,make_grid
|
| 25 |
+
|
| 26 |
+
from transformers.models.gemma2.modeling_gemma2 import Gemma2Model
|
| 27 |
+
from transformers.models.gemma.tokenization_gemma_fast import GemmaTokenizerFast
|
| 28 |
+
from transformers import (
|
| 29 |
+
CLIPTextModelWithProjection,
|
| 30 |
+
CLIPTokenizer,
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
import diffusers.optimization
|
| 34 |
+
from diffusers import EMAModel, VQModel
|
| 35 |
+
from diffusers.loaders import LoraLoaderMixin
|
| 36 |
+
from diffusers.utils import is_wandb_available
|
| 37 |
+
|
| 38 |
+
from src.scheduler import Scheduler
|
| 39 |
+
from src.pipeline import UnifiedPipeline
|
| 40 |
+
|
| 41 |
+
from train.trainer_utils import save_checkpoint
|
| 42 |
+
from train.dataset_utils import ImageCaptionLargeDataset
|
| 43 |
+
from train.dataset_utils import tokenize_prompt, encode_prompt
|
| 44 |
+
from src.transformer import SymmetricTransformer2DModel
|
| 45 |
+
|
| 46 |
+
if is_wandb_available():
|
| 47 |
+
import wandb
|
| 48 |
+
# wandb.login(key="")
|
| 49 |
+
|
| 50 |
+
logger = get_logger(__name__, log_level="INFO")
|
| 51 |
+
|
| 52 |
+
import torch._dynamo
|
| 53 |
+
torch._dynamo.config.verbose = True
|
| 54 |
+
|
| 55 |
+
# Optionally suppress errors to fall back to eager execution
|
| 56 |
+
torch._dynamo.config.suppress_errors = True
|
| 57 |
+
|
| 58 |
+
def parse_args():
|
| 59 |
+
parser = argparse.ArgumentParser()
|
| 60 |
+
parser.add_argument(
|
| 61 |
+
"--pretrained_model_name_or_path",
|
| 62 |
+
type=str,
|
| 63 |
+
default=None,
|
| 64 |
+
required=True,
|
| 65 |
+
help="Path to pretrained model or model identifier from huggingface.co/models.",
|
| 66 |
+
)
|
| 67 |
+
parser.add_argument(
|
| 68 |
+
"--pretrained_transformer_path",
|
| 69 |
+
type=str,
|
| 70 |
+
default=None,
|
| 71 |
+
required=True,
|
| 72 |
+
help="Path to pretrained model or model identifier from huggingface.co/models.",
|
| 73 |
+
)
|
| 74 |
+
parser.add_argument(
|
| 75 |
+
"--text_encoder_architecture",
|
| 76 |
+
type=str,
|
| 77 |
+
default="open_clip",
|
| 78 |
+
required=False,
|
| 79 |
+
help="The architecture of the text encoder. One of ['CLIP', 'open_clip', 'flan-t5-base','Qwen2-0.5B','gemini-2b', 'CLIP_T5_base']",
|
| 80 |
+
)
|
| 81 |
+
parser.add_argument(
|
| 82 |
+
"--text_encoder_name_or_path",
|
| 83 |
+
type=str,
|
| 84 |
+
default=None,
|
| 85 |
+
required=True,
|
| 86 |
+
help="Path to pretrained model or model identifier from huggingface.co/models.",
|
| 87 |
+
)
|
| 88 |
+
parser.add_argument(
|
| 89 |
+
"--instance_dataset",
|
| 90 |
+
type=str,
|
| 91 |
+
default=None,
|
| 92 |
+
required=False,
|
| 93 |
+
help="The dataset to use for training. One of ['MSCOCO600K', 'PickaPicV2']",
|
| 94 |
+
)
|
| 95 |
+
parser.add_argument(
|
| 96 |
+
"--instance_data_dir",
|
| 97 |
+
type=str,
|
| 98 |
+
default=None,
|
| 99 |
+
required=False,
|
| 100 |
+
help="A folder containing the training data of instance images.",
|
| 101 |
+
)
|
| 102 |
+
parser.add_argument(
|
| 103 |
+
"--training_from_scratch",
|
| 104 |
+
type=bool,
|
| 105 |
+
default=False,
|
| 106 |
+
required=False
|
| 107 |
+
)
|
| 108 |
+
parser.add_argument(
|
| 109 |
+
"--revision",
|
| 110 |
+
type=str,
|
| 111 |
+
default=None,
|
| 112 |
+
required=False,
|
| 113 |
+
help="Revision of pretrained model identifier from huggingface.co/models.",
|
| 114 |
+
)
|
| 115 |
+
parser.add_argument(
|
| 116 |
+
"--variant",
|
| 117 |
+
type=str,
|
| 118 |
+
default=None,
|
| 119 |
+
help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16",
|
| 120 |
+
)
|
| 121 |
+
parser.add_argument(
|
| 122 |
+
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
|
| 123 |
+
)
|
| 124 |
+
parser.add_argument(
|
| 125 |
+
"--dataloader_num_workers",
|
| 126 |
+
type=int,
|
| 127 |
+
default=0,
|
| 128 |
+
help=(
|
| 129 |
+
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
|
| 130 |
+
),
|
| 131 |
+
)
|
| 132 |
+
parser.add_argument(
|
| 133 |
+
"--allow_tf32",
|
| 134 |
+
action="store_true",
|
| 135 |
+
help=(
|
| 136 |
+
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
|
| 137 |
+
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
|
| 138 |
+
),
|
| 139 |
+
)
|
| 140 |
+
parser.add_argument("--use_ema", action="store_true", help="Whether to use EMA model.")
|
| 141 |
+
parser.add_argument("--ema_decay", type=float, default=0.9999)
|
| 142 |
+
parser.add_argument("--ema_update_after_step", type=int, default=0)
|
| 143 |
+
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
|
| 144 |
+
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
|
| 145 |
+
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
|
| 146 |
+
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
|
| 147 |
+
parser.add_argument(
|
| 148 |
+
"--output_dir",
|
| 149 |
+
type=str,
|
| 150 |
+
default="muse_training",
|
| 151 |
+
help="The output directory where the model predictions and checkpoints will be written.",
|
| 152 |
+
)
|
| 153 |
+
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
|
| 154 |
+
parser.add_argument(
|
| 155 |
+
"--logging_dir",
|
| 156 |
+
type=str,
|
| 157 |
+
default="logs",
|
| 158 |
+
help=(
|
| 159 |
+
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
|
| 160 |
+
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
|
| 161 |
+
),
|
| 162 |
+
)
|
| 163 |
+
parser.add_argument(
|
| 164 |
+
"--max_train_steps",
|
| 165 |
+
type=int,
|
| 166 |
+
default=None,
|
| 167 |
+
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
|
| 168 |
+
)
|
| 169 |
+
parser.add_argument(
|
| 170 |
+
"--checkpointing_steps",
|
| 171 |
+
type=int,
|
| 172 |
+
default=500,
|
| 173 |
+
help=(
|
| 174 |
+
"Save a checkpoint of the training state every X updates. Checkpoints can be used for resuming training via `--resume_from_checkpoint`. "
|
| 175 |
+
"In the case that the checkpoint is better than the final trained model, the checkpoint can also be used for inference."
|
| 176 |
+
"Using a checkpoint for inference requires separate loading of the original pipeline and the individual checkpointed model components."
|
| 177 |
+
"See https://huggingface.co/docs/diffusers/main/en/training/dreambooth#performing-inference-using-a-saved-checkpoint for step by step"
|
| 178 |
+
"instructions."
|
| 179 |
+
),
|
| 180 |
+
)
|
| 181 |
+
parser.add_argument(
|
| 182 |
+
"--logging_steps",
|
| 183 |
+
type=int,
|
| 184 |
+
default=50,
|
| 185 |
+
)
|
| 186 |
+
parser.add_argument(
|
| 187 |
+
"--checkpoints_total_limit",
|
| 188 |
+
type=int,
|
| 189 |
+
default=None,
|
| 190 |
+
help=(
|
| 191 |
+
"Max number of checkpoints to store. Passed as `total_limit` to the `Accelerator` `ProjectConfiguration`."
|
| 192 |
+
" See Accelerator::save_state https://huggingface.co/docs/accelerate/package_reference/accelerator#accelerate.Accelerator.save_state"
|
| 193 |
+
" for more details"
|
| 194 |
+
),
|
| 195 |
+
)
|
| 196 |
+
parser.add_argument(
|
| 197 |
+
"--resume_from_checkpoint",
|
| 198 |
+
type=str,
|
| 199 |
+
default=None,
|
| 200 |
+
help=(
|
| 201 |
+
"Whether training should be resumed from a previous checkpoint. Use a path saved by"
|
| 202 |
+
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
|
| 203 |
+
),
|
| 204 |
+
)
|
| 205 |
+
parser.add_argument(
|
| 206 |
+
"--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader."
|
| 207 |
+
)
|
| 208 |
+
parser.add_argument(
|
| 209 |
+
"--gradient_accumulation_steps",
|
| 210 |
+
type=int,
|
| 211 |
+
default=1,
|
| 212 |
+
help="Number of updates steps to accumulate before performing a backward/update pass.",
|
| 213 |
+
)
|
| 214 |
+
parser.add_argument(
|
| 215 |
+
"--learning_rate",
|
| 216 |
+
type=float,
|
| 217 |
+
default=0.0003,
|
| 218 |
+
help="Initial learning rate (after the potential warmup period) to use.",
|
| 219 |
+
)
|
| 220 |
+
parser.add_argument(
|
| 221 |
+
"--scale_lr",
|
| 222 |
+
action="store_true",
|
| 223 |
+
default=False,
|
| 224 |
+
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
|
| 225 |
+
)
|
| 226 |
+
parser.add_argument(
|
| 227 |
+
"--lr_scheduler",
|
| 228 |
+
type=str,
|
| 229 |
+
default="constant",
|
| 230 |
+
help=(
|
| 231 |
+
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
|
| 232 |
+
' "constant", "constant_with_warmup"]'
|
| 233 |
+
),
|
| 234 |
+
)
|
| 235 |
+
parser.add_argument(
|
| 236 |
+
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
|
| 237 |
+
)
|
| 238 |
+
parser.add_argument(
|
| 239 |
+
"--validation_steps",
|
| 240 |
+
type=int,
|
| 241 |
+
default=100,
|
| 242 |
+
help=(
|
| 243 |
+
"Run validation every X steps. Validation consists of running the prompt"
|
| 244 |
+
" `args.validation_prompt` multiple times: `args.num_validation_images`"
|
| 245 |
+
" and logging the images."
|
| 246 |
+
),
|
| 247 |
+
)
|
| 248 |
+
parser.add_argument(
|
| 249 |
+
"--mixed_precision",
|
| 250 |
+
type=str,
|
| 251 |
+
default=None,
|
| 252 |
+
choices=["no", "fp16", "bf16"],
|
| 253 |
+
help=(
|
| 254 |
+
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
|
| 255 |
+
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
|
| 256 |
+
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
|
| 257 |
+
),
|
| 258 |
+
)
|
| 259 |
+
parser.add_argument(
|
| 260 |
+
"--report_to",
|
| 261 |
+
type=str,
|
| 262 |
+
default="wandb",
|
| 263 |
+
help=(
|
| 264 |
+
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
|
| 265 |
+
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
|
| 266 |
+
),
|
| 267 |
+
)
|
| 268 |
+
parser.add_argument("--validation_prompts", type=str, nargs="*")
|
| 269 |
+
parser.add_argument(
|
| 270 |
+
"--resolution",
|
| 271 |
+
type=int,
|
| 272 |
+
default=512,
|
| 273 |
+
help=(
|
| 274 |
+
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
|
| 275 |
+
" resolution"
|
| 276 |
+
),
|
| 277 |
+
)
|
| 278 |
+
parser.add_argument("--split_vae_encode", type=int, required=False, default=None)
|
| 279 |
+
parser.add_argument("--min_masking_rate", type=float, default=0.0)
|
| 280 |
+
parser.add_argument("--cond_dropout_prob", type=float, default=0.0)
|
| 281 |
+
parser.add_argument("--max_grad_norm", default=50.0, type=float, help="Max gradient norm.", required=False)
|
| 282 |
+
parser.add_argument("--use_lora", action="store_true", help="Fine tune the model using LoRa")
|
| 283 |
+
parser.add_argument("--text_encoder_use_lora", action="store_true", help="Fine tune the model using LoRa")
|
| 284 |
+
parser.add_argument("--lora_r", default=16, type=int)
|
| 285 |
+
parser.add_argument("--lora_alpha", default=32, type=int)
|
| 286 |
+
parser.add_argument("--lora_target_modules", default=["to_q", "to_k", "to_v"], type=str, nargs="+")
|
| 287 |
+
parser.add_argument("--text_encoder_lora_r", default=16, type=int)
|
| 288 |
+
parser.add_argument("--text_encoder_lora_alpha", default=32, type=int)
|
| 289 |
+
parser.add_argument("--text_encoder_lora_target_modules", default=["to_q", "to_k", "to_v"], type=str, nargs="+")
|
| 290 |
+
parser.add_argument("--train_text_encoder", action="store_true")
|
| 291 |
+
parser.add_argument("--image_key", type=str, required=False)
|
| 292 |
+
parser.add_argument("--prompt_key", type=str, required=False)
|
| 293 |
+
parser.add_argument(
|
| 294 |
+
"--gradient_checkpointing",
|
| 295 |
+
action="store_true",
|
| 296 |
+
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
|
| 297 |
+
)
|
| 298 |
+
parser.add_argument("--prompt_prefix", type=str, required=False, default=None)
|
| 299 |
+
|
| 300 |
+
args = parser.parse_args()
|
| 301 |
+
|
| 302 |
+
if args.report_to == "wandb":
|
| 303 |
+
if not is_wandb_available():
|
| 304 |
+
raise ImportError("Make sure to install wandb if you want to use it for logging during training.")
|
| 305 |
+
|
| 306 |
+
if args.instance_data_dir is not None:
|
| 307 |
+
if not os.path.exists(args.instance_data_dir):
|
| 308 |
+
raise ValueError(f"Does not exist: `--args.instance_data_dir` {args.instance_data_dir}")
|
| 309 |
+
|
| 310 |
+
return args
|
| 311 |
+
|
| 312 |
+
def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
|
| 313 |
+
latent_image_ids = torch.zeros(height // 2, width // 2, 3)
|
| 314 |
+
latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2)[:, None]
|
| 315 |
+
latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2)[None, :]
|
| 316 |
+
|
| 317 |
+
latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
|
| 318 |
+
|
| 319 |
+
latent_image_ids = latent_image_ids.reshape(
|
| 320 |
+
latent_image_id_height * latent_image_id_width, latent_image_id_channels
|
| 321 |
+
)
|
| 322 |
+
# latent_image_ids = latent_image_ids.unsqueeze(0).repeat(batch_size, 1, 1)
|
| 323 |
+
|
| 324 |
+
return latent_image_ids.to(device=device, dtype=dtype)
|
| 325 |
+
|
| 326 |
+
def main(args):
|
| 327 |
+
if args.allow_tf32:
|
| 328 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 329 |
+
|
| 330 |
+
|
| 331 |
+
logging_dir = Path(args.output_dir, args.logging_dir)
|
| 332 |
+
|
| 333 |
+
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
|
| 334 |
+
|
| 335 |
+
accelerator = Accelerator(
|
| 336 |
+
gradient_accumulation_steps=args.gradient_accumulation_steps,
|
| 337 |
+
mixed_precision=args.mixed_precision,
|
| 338 |
+
log_with=args.report_to,
|
| 339 |
+
project_config=accelerator_project_config,
|
| 340 |
+
)
|
| 341 |
+
|
| 342 |
+
if accelerator.is_main_process:
|
| 343 |
+
os.makedirs(args.output_dir, exist_ok=True)
|
| 344 |
+
|
| 345 |
+
# Make one log on every process with the configuration for debugging.
|
| 346 |
+
logging.basicConfig(
|
| 347 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
| 348 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
| 349 |
+
level=logging.INFO,
|
| 350 |
+
)
|
| 351 |
+
logger.info(accelerator.state, main_process_only=False)
|
| 352 |
+
|
| 353 |
+
if accelerator.is_main_process:
|
| 354 |
+
accelerator.init_trackers("muddit", config=vars(copy.deepcopy(args)))
|
| 355 |
+
|
| 356 |
+
if args.seed is not None:
|
| 357 |
+
set_seed(args.seed)
|
| 358 |
+
|
| 359 |
+
if args.text_encoder_architecture == "gemma":
|
| 360 |
+
text_encoder_one = CLIPTextModelWithProjection.from_pretrained(
|
| 361 |
+
args.pretrained_model_name_or_path, subfolder="text_encoder", variant=args.variant
|
| 362 |
+
)
|
| 363 |
+
tokenizer_one = CLIPTokenizer.from_pretrained(
|
| 364 |
+
args.pretrained_model_name_or_path, subfolder="tokenizer", variant=args.variant
|
| 365 |
+
)
|
| 366 |
+
|
| 367 |
+
text_encoder_two = Gemma2Model.from_pretrained(
|
| 368 |
+
args.text_encoder_name_or_path, variant=args.variant
|
| 369 |
+
)
|
| 370 |
+
tokenizer_two = GemmaTokenizerFast.from_pretrained(
|
| 371 |
+
args.text_encoder_name_or_path, variant=args.variant
|
| 372 |
+
)
|
| 373 |
+
t5_dim = text_encoder_two.config.hidden_size
|
| 374 |
+
|
| 375 |
+
text_encoder = [text_encoder_one, text_encoder_two]
|
| 376 |
+
tokenizer = [tokenizer_one, tokenizer_two]
|
| 377 |
+
|
| 378 |
+
text_encoder_one.requires_grad_(False)
|
| 379 |
+
text_encoder_two.requires_grad_(False)
|
| 380 |
+
else:
|
| 381 |
+
raise ValueError(f"Unknown text encoder architecture: {args.text_encoder_architecture}")
|
| 382 |
+
|
| 383 |
+
vq_model = VQModel.from_pretrained(
|
| 384 |
+
args.pretrained_model_name_or_path, subfolder="vqvae", revision=args.revision, variant=args.variant
|
| 385 |
+
)
|
| 386 |
+
vq_model.requires_grad_(False)
|
| 387 |
+
|
| 388 |
+
model = SymmetricTransformer2DModel.from_pretrained(
|
| 389 |
+
args.pretrained_model_name_or_path if args.pretrained_transformer_path is None else args.pretrained_transformer_path,
|
| 390 |
+
subfolder="transformer",
|
| 391 |
+
low_cpu_mem_usage=False,
|
| 392 |
+
device_map=None,
|
| 393 |
+
)
|
| 394 |
+
|
| 395 |
+
if args.pretrained_transformer_path is None and model.adapter is None:
|
| 396 |
+
model.register_to_config(t5_dim=t5_dim)
|
| 397 |
+
model.adapter = nn.Sequential(
|
| 398 |
+
nn.LayerNorm(t5_dim, elementwise_affine=False, eps=1e-6),
|
| 399 |
+
nn.Linear(t5_dim, model.config.joint_attention_dim, bias=False)
|
| 400 |
+
)
|
| 401 |
+
|
| 402 |
+
model.requires_grad_(True)
|
| 403 |
+
model.train()
|
| 404 |
+
model = torch.compile(model)
|
| 405 |
+
|
| 406 |
+
if args.gradient_checkpointing:
|
| 407 |
+
model.enable_gradient_checkpointing()
|
| 408 |
+
|
| 409 |
+
if args.use_ema: # Not verify the robostness of this part
|
| 410 |
+
ema = EMAModel(
|
| 411 |
+
model.parameters(),
|
| 412 |
+
decay=args.ema_decay,
|
| 413 |
+
update_after_step=args.ema_update_after_step,
|
| 414 |
+
model_cls=SymmetricTransformer2DModel,
|
| 415 |
+
model_config=model.config,
|
| 416 |
+
)
|
| 417 |
+
|
| 418 |
+
def save_model_hook(models, weights, output_dir):
|
| 419 |
+
if accelerator.is_main_process:
|
| 420 |
+
transformer_lora_layers_to_save = None
|
| 421 |
+
text_encoder_lora_layers_to_save = None
|
| 422 |
+
|
| 423 |
+
for model_ in models:
|
| 424 |
+
if isinstance(model_, type(accelerator.unwrap_model(model))):
|
| 425 |
+
if args.use_lora:
|
| 426 |
+
transformer_lora_layers_to_save = get_peft_model_state_dict(model_)
|
| 427 |
+
else:
|
| 428 |
+
model_.save_pretrained(os.path.join(output_dir, "transformer"))
|
| 429 |
+
elif isinstance(model_, type(accelerator.unwrap_model(text_encoder))):
|
| 430 |
+
if args.text_encoder_use_lora:
|
| 431 |
+
text_encoder_lora_layers_to_save = get_peft_model_state_dict(model_)
|
| 432 |
+
else:
|
| 433 |
+
model_.save_pretrained(os.path.join(output_dir, "text_encoder"))
|
| 434 |
+
else:
|
| 435 |
+
raise ValueError(f"unexpected save model: {model_.__class__}")
|
| 436 |
+
|
| 437 |
+
# make sure to pop weight so that corresponding model is not saved again
|
| 438 |
+
weights.pop()
|
| 439 |
+
|
| 440 |
+
if transformer_lora_layers_to_save is not None or text_encoder_lora_layers_to_save is not None:
|
| 441 |
+
LoraLoaderMixin.save_lora_weights(
|
| 442 |
+
output_dir,
|
| 443 |
+
unet_lora_layers=transformer_lora_layers_to_save,
|
| 444 |
+
text_encoder_lora_layers=text_encoder_lora_layers_to_save,
|
| 445 |
+
)
|
| 446 |
+
|
| 447 |
+
if args.use_ema:
|
| 448 |
+
ema.save_pretrained(os.path.join(output_dir, "ema_model"))
|
| 449 |
+
|
| 450 |
+
def load_model_hook(models, input_dir):
|
| 451 |
+
transformer = None
|
| 452 |
+
text_encoder_ = None
|
| 453 |
+
|
| 454 |
+
# this part is added for keep consistency when add model.compile() in the model
|
| 455 |
+
def adap_compile(ori_dict):#add '_orig_mod.' to each key
|
| 456 |
+
new_dict = {}
|
| 457 |
+
for k,v in ori_dict.items():
|
| 458 |
+
new_dict['_orig_mod.'+k] = v
|
| 459 |
+
return new_dict
|
| 460 |
+
|
| 461 |
+
while len(models) > 0:
|
| 462 |
+
model_ = models.pop()
|
| 463 |
+
|
| 464 |
+
if isinstance(model_, type(accelerator.unwrap_model(model))):
|
| 465 |
+
if args.use_lora:
|
| 466 |
+
transformer = model_
|
| 467 |
+
else:
|
| 468 |
+
load_model = SymmetricTransformer2DModel.from_pretrained(os.path.join(input_dir, "transformer"), low_cpu_mem_usage=False, device_map=None)
|
| 469 |
+
model_.load_state_dict(adap_compile(load_model.state_dict()))
|
| 470 |
+
del load_model
|
| 471 |
+
else:
|
| 472 |
+
raise ValueError(f"unexpected save model: {model.__class__}")
|
| 473 |
+
|
| 474 |
+
if transformer is not None or text_encoder_ is not None:
|
| 475 |
+
lora_state_dict, network_alphas = LoraLoaderMixin.lora_state_dict(input_dir)
|
| 476 |
+
LoraLoaderMixin.load_lora_into_text_encoder(
|
| 477 |
+
lora_state_dict, network_alphas=network_alphas, text_encoder=text_encoder_
|
| 478 |
+
)
|
| 479 |
+
LoraLoaderMixin.load_lora_into_transformer(
|
| 480 |
+
lora_state_dict, network_alphas=network_alphas, transformer=transformer
|
| 481 |
+
)
|
| 482 |
+
|
| 483 |
+
if args.use_ema:
|
| 484 |
+
load_from = EMAModel.from_pretrained(os.path.join(input_dir, "ema_model"), model_cls=SymmetricTransformer2DModel)
|
| 485 |
+
ema.load_state_dict(adap_compile(load_from.state_dict()))
|
| 486 |
+
del load_from
|
| 487 |
+
|
| 488 |
+
accelerator.register_load_state_pre_hook(load_model_hook)
|
| 489 |
+
accelerator.register_save_state_pre_hook(save_model_hook)
|
| 490 |
+
|
| 491 |
+
if args.scale_lr:
|
| 492 |
+
args.learning_rate = (
|
| 493 |
+
args.learning_rate * args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
|
| 494 |
+
)
|
| 495 |
+
|
| 496 |
+
if args.use_8bit_adam:
|
| 497 |
+
try:
|
| 498 |
+
import bitsandbytes as bnb
|
| 499 |
+
except ImportError:
|
| 500 |
+
raise ImportError(
|
| 501 |
+
"Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`"
|
| 502 |
+
)
|
| 503 |
+
|
| 504 |
+
optimizer_cls = bnb.optim.AdamW8bit
|
| 505 |
+
else:
|
| 506 |
+
optimizer_cls = torch.optim.AdamW
|
| 507 |
+
|
| 508 |
+
optimizer_parameters = [p for p in model.parameters() if p.requires_grad]
|
| 509 |
+
optimizer = optimizer_cls(
|
| 510 |
+
optimizer_parameters,
|
| 511 |
+
lr=args.learning_rate,
|
| 512 |
+
betas=(args.adam_beta1, args.adam_beta2),
|
| 513 |
+
weight_decay=args.adam_weight_decay,
|
| 514 |
+
eps=args.adam_epsilon,
|
| 515 |
+
)
|
| 516 |
+
|
| 517 |
+
logger.info("Creating dataloaders and lr_scheduler")
|
| 518 |
+
|
| 519 |
+
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
|
| 520 |
+
|
| 521 |
+
if args.instance_dataset == "ImageCaptionLargeDataset":
|
| 522 |
+
dataset = ImageCaptionLargeDataset(
|
| 523 |
+
root_dir=args.instance_data_dir,
|
| 524 |
+
tokenizer=tokenizer,
|
| 525 |
+
size=args.resolution,
|
| 526 |
+
text_encoder_architecture=args.text_encoder_architecture
|
| 527 |
+
)
|
| 528 |
+
elif args.instance_dataset == "DATA_TYPE":
|
| 529 |
+
raise NotImplementedError("DATA_TYPE is not yet supported")
|
| 530 |
+
else:
|
| 531 |
+
assert False
|
| 532 |
+
|
| 533 |
+
def collate_fn(samples):
|
| 534 |
+
images = [sample["image"] for sample in samples]
|
| 535 |
+
micro_conds = [sample["micro_conds"] for sample in samples]
|
| 536 |
+
|
| 537 |
+
images = torch.stack(images, dim=0)
|
| 538 |
+
micro_conds = torch.stack(micro_conds, dim=0)
|
| 539 |
+
|
| 540 |
+
if isinstance(samples[0]["prompt_input_ids"], list):
|
| 541 |
+
input_ids = [sample["prompt_input_ids"][0] for sample in samples]
|
| 542 |
+
input_ids_2 = [sample["prompt_input_ids"][1] for sample in samples]
|
| 543 |
+
|
| 544 |
+
input_ids = torch.cat(input_ids, dim=0)
|
| 545 |
+
input_ids_2 = torch.cat(input_ids_2, dim=0)
|
| 546 |
+
prompt_input_ids = [input_ids, input_ids_2]
|
| 547 |
+
|
| 548 |
+
elif isinstance(samples[0]["prompt_input_ids"], torch.Tensor):
|
| 549 |
+
input_ids = [sample["prompt_input_ids"] for sample in samples]
|
| 550 |
+
|
| 551 |
+
input_ids = torch.cat(input_ids, dim=0)
|
| 552 |
+
prompt_input_ids = input_ids
|
| 553 |
+
|
| 554 |
+
ret = dict(
|
| 555 |
+
images=images,
|
| 556 |
+
micro_conds=micro_conds,
|
| 557 |
+
prompt_input_ids=prompt_input_ids,
|
| 558 |
+
)
|
| 559 |
+
|
| 560 |
+
return ret
|
| 561 |
+
|
| 562 |
+
train_dataloader = DataLoader(
|
| 563 |
+
dataset,
|
| 564 |
+
batch_size=args.train_batch_size,
|
| 565 |
+
shuffle=True,
|
| 566 |
+
num_workers=args.dataloader_num_workers,
|
| 567 |
+
collate_fn=collate_fn,
|
| 568 |
+
pin_memory=True,
|
| 569 |
+
)
|
| 570 |
+
train_dataloader.num_batches = len(train_dataloader)
|
| 571 |
+
|
| 572 |
+
lr_scheduler = diffusers.optimization.get_scheduler(
|
| 573 |
+
args.lr_scheduler,
|
| 574 |
+
optimizer=optimizer,
|
| 575 |
+
num_training_steps=args.max_train_steps * accelerator.num_processes,
|
| 576 |
+
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
|
| 577 |
+
)
|
| 578 |
+
|
| 579 |
+
logger.info("Preparing model, optimizer and dataloaders")
|
| 580 |
+
|
| 581 |
+
if args.train_text_encoder:
|
| 582 |
+
if args.text_encoder_architecture == "CLIP_T5_base": # Not support yet. Only support open_clip
|
| 583 |
+
model, optimizer, lr_scheduler, train_dataloader, text_encoder[0], text_encoder[1] = accelerator.prepare(
|
| 584 |
+
model, optimizer, lr_scheduler, train_dataloader, text_encoder[0], text_encoder[1]
|
| 585 |
+
)
|
| 586 |
+
else:
|
| 587 |
+
model, optimizer, lr_scheduler, train_dataloader, text_encoder = accelerator.prepare(
|
| 588 |
+
model, optimizer, lr_scheduler, train_dataloader, text_encoder
|
| 589 |
+
)
|
| 590 |
+
else:
|
| 591 |
+
model, optimizer, lr_scheduler, train_dataloader = accelerator.prepare(
|
| 592 |
+
model, optimizer, lr_scheduler, train_dataloader
|
| 593 |
+
)
|
| 594 |
+
|
| 595 |
+
train_dataloader.num_batches = len(train_dataloader)
|
| 596 |
+
|
| 597 |
+
weight_dtype = torch.float32
|
| 598 |
+
if accelerator.mixed_precision == "fp16":
|
| 599 |
+
weight_dtype = torch.float16
|
| 600 |
+
elif accelerator.mixed_precision == "bf16":
|
| 601 |
+
weight_dtype = torch.bfloat16
|
| 602 |
+
|
| 603 |
+
if not args.train_text_encoder:
|
| 604 |
+
if args.text_encoder_architecture in ("t5_clip", "gemma"): # Not support yet. Only support open_clip
|
| 605 |
+
text_encoder[0].to(device=accelerator.device, dtype=weight_dtype)
|
| 606 |
+
text_encoder[1].to(device=accelerator.device, dtype=weight_dtype)
|
| 607 |
+
else:
|
| 608 |
+
text_encoder.to(device=accelerator.device, dtype=weight_dtype)
|
| 609 |
+
|
| 610 |
+
vq_model.to(device=accelerator.device)
|
| 611 |
+
|
| 612 |
+
if args.use_ema:
|
| 613 |
+
ema.to(accelerator.device)
|
| 614 |
+
|
| 615 |
+
with nullcontext() if args.train_text_encoder else torch.no_grad():
|
| 616 |
+
if args.text_encoder_architecture in ("t5_clip", "gemma"): # Not support yet. Only support open_clip
|
| 617 |
+
_input_ids_tmp_ = tokenize_prompt(tokenizer, "", args.text_encoder_architecture)
|
| 618 |
+
_input_ids_tmp_[0] = _input_ids_tmp_[0].to(accelerator.device, non_blocking=True)
|
| 619 |
+
_input_ids_tmp_[1] = _input_ids_tmp_[1].to(accelerator.device, non_blocking=True)
|
| 620 |
+
empty_embeds, empty_clip_embeds = encode_prompt(
|
| 621 |
+
text_encoder,
|
| 622 |
+
_input_ids_tmp_,
|
| 623 |
+
args.text_encoder_architecture
|
| 624 |
+
)
|
| 625 |
+
else:
|
| 626 |
+
empty_embeds, empty_clip_embeds = encode_prompt(
|
| 627 |
+
text_encoder,
|
| 628 |
+
tokenize_prompt(tokenizer, "", args.text_encoder_architecture).to(accelerator.device, non_blocking=True),
|
| 629 |
+
args.text_encoder_architecture
|
| 630 |
+
)
|
| 631 |
+
|
| 632 |
+
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
|
| 633 |
+
num_update_steps_per_epoch = math.ceil(train_dataloader.num_batches / args.gradient_accumulation_steps)
|
| 634 |
+
# Afterwards we recalculate our number of training epochs.
|
| 635 |
+
# Note: We are not doing epoch based training here, but just using this for book keeping and being able to
|
| 636 |
+
# reuse the same training loop with other datasets/loaders.
|
| 637 |
+
num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
|
| 638 |
+
|
| 639 |
+
# Train!
|
| 640 |
+
logger.info("***** Running training *****")
|
| 641 |
+
logger.info(f" Num training steps = {args.max_train_steps}")
|
| 642 |
+
logger.info(f" Instantaneous batch size per device = { args.train_batch_size}")
|
| 643 |
+
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
|
| 644 |
+
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
|
| 645 |
+
|
| 646 |
+
resume_from_checkpoint = args.resume_from_checkpoint
|
| 647 |
+
if resume_from_checkpoint:
|
| 648 |
+
if resume_from_checkpoint == "latest":
|
| 649 |
+
# Get the most recent checkpoint
|
| 650 |
+
dirs = os.listdir(args.output_dir)
|
| 651 |
+
dirs = [d for d in dirs if d.startswith("checkpoint")]
|
| 652 |
+
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
|
| 653 |
+
if len(dirs) > 0:
|
| 654 |
+
resume_from_checkpoint = os.path.join(args.output_dir, dirs[-1])
|
| 655 |
+
else:
|
| 656 |
+
resume_from_checkpoint = None
|
| 657 |
+
|
| 658 |
+
if resume_from_checkpoint is None:
|
| 659 |
+
accelerator.print(
|
| 660 |
+
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
|
| 661 |
+
)
|
| 662 |
+
else:
|
| 663 |
+
accelerator.print(f"Resuming from checkpoint {resume_from_checkpoint}")
|
| 664 |
+
|
| 665 |
+
if resume_from_checkpoint is None:
|
| 666 |
+
global_step = 0
|
| 667 |
+
first_epoch = 0
|
| 668 |
+
else:
|
| 669 |
+
accelerator.load_state(resume_from_checkpoint)
|
| 670 |
+
global_step = int(os.path.basename(resume_from_checkpoint).split("-")[1])
|
| 671 |
+
first_epoch = global_step // num_update_steps_per_epoch
|
| 672 |
+
|
| 673 |
+
# This is to solve the inconsistent tensor device issue
|
| 674 |
+
if args.use_ema:
|
| 675 |
+
ema.shadow_params = [p.to(accelerator.device) for p in ema.shadow_params]
|
| 676 |
+
|
| 677 |
+
# As stated above, we are not doing epoch based training here, but just using this for book keeping and being able to
|
| 678 |
+
# reuse the same training loop with other datasets/loaders.
|
| 679 |
+
for epoch in range(first_epoch, num_train_epochs):
|
| 680 |
+
for batch in train_dataloader:
|
| 681 |
+
torch.cuda.empty_cache()
|
| 682 |
+
with torch.no_grad():
|
| 683 |
+
micro_conds = batch["micro_conds"].to(accelerator.device, non_blocking=True)
|
| 684 |
+
pixel_values = batch["images"].to(accelerator.device, non_blocking=True)
|
| 685 |
+
|
| 686 |
+
batch_size = pixel_values.shape[0]
|
| 687 |
+
|
| 688 |
+
# ====================== tokenize images ======================
|
| 689 |
+
split_batch_size = args.split_vae_encode if args.split_vae_encode is not None else batch_size
|
| 690 |
+
num_splits = math.ceil(batch_size / split_batch_size)
|
| 691 |
+
image_tokens = []
|
| 692 |
+
for i in range(num_splits):
|
| 693 |
+
start_idx = i * split_batch_size
|
| 694 |
+
end_idx = min((i + 1) * split_batch_size, batch_size)
|
| 695 |
+
bs = pixel_values.shape[0]
|
| 696 |
+
image_tokens.append(
|
| 697 |
+
vq_model.quantize(
|
| 698 |
+
vq_model.encode(
|
| 699 |
+
pixel_values[start_idx: end_idx]
|
| 700 |
+
).latents
|
| 701 |
+
)[2][2].reshape(split_batch_size, -1)
|
| 702 |
+
)
|
| 703 |
+
image_tokens = torch.cat(image_tokens, dim=0)
|
| 704 |
+
# ====================== tokenize images ======================
|
| 705 |
+
|
| 706 |
+
batch_size, seq_len = image_tokens.shape
|
| 707 |
+
timesteps = torch.rand(batch_size, device=image_tokens.device)
|
| 708 |
+
mask_prob = torch.cos(timesteps * math.pi * 0.5)
|
| 709 |
+
mask_prob = mask_prob.clip(args.min_masking_rate)
|
| 710 |
+
|
| 711 |
+
num_token_masked = (seq_len * mask_prob).round().clamp(min=1)
|
| 712 |
+
batch_randperm = torch.rand(batch_size, seq_len, device=image_tokens.device).argsort(dim=-1)
|
| 713 |
+
mask = batch_randperm < num_token_masked.unsqueeze(-1)
|
| 714 |
+
|
| 715 |
+
mask_id = accelerator.unwrap_model(model).config.vocab_size - 1
|
| 716 |
+
input_ids = torch.where(mask, mask_id, image_tokens)
|
| 717 |
+
labels = torch.where(mask, image_tokens, -100)
|
| 718 |
+
|
| 719 |
+
if "prompt_input_ids" in batch:
|
| 720 |
+
with nullcontext() if args.train_text_encoder else torch.no_grad():
|
| 721 |
+
if args.text_encoder_architecture in ("t5_clip", "gemma"): # Not support yet. Only support open_clip
|
| 722 |
+
batch["prompt_input_ids"][0] = batch["prompt_input_ids"][0].to(accelerator.device, non_blocking=True)
|
| 723 |
+
batch["prompt_input_ids"][1] = batch["prompt_input_ids"][1].to(accelerator.device, non_blocking=True)
|
| 724 |
+
encoder_hidden_states, cond_embeds = encode_prompt(
|
| 725 |
+
text_encoder,
|
| 726 |
+
batch["prompt_input_ids"],
|
| 727 |
+
args.text_encoder_architecture
|
| 728 |
+
)
|
| 729 |
+
else:
|
| 730 |
+
encoder_hidden_states, cond_embeds = encode_prompt(
|
| 731 |
+
text_encoder,
|
| 732 |
+
batch["prompt_input_ids"].to(accelerator.device, non_blocking=True),
|
| 733 |
+
args.text_encoder_architecture
|
| 734 |
+
)
|
| 735 |
+
|
| 736 |
+
if args.cond_dropout_prob > 0.0:
|
| 737 |
+
assert encoder_hidden_states is not None
|
| 738 |
+
|
| 739 |
+
batch_size = encoder_hidden_states.shape[0]
|
| 740 |
+
|
| 741 |
+
mask = (
|
| 742 |
+
torch.zeros((batch_size, 1, 1), device=encoder_hidden_states.device).float().uniform_(0, 1)
|
| 743 |
+
< args.cond_dropout_prob
|
| 744 |
+
)
|
| 745 |
+
|
| 746 |
+
empty_embeds_ = empty_embeds.expand(batch_size, -1, -1)
|
| 747 |
+
encoder_hidden_states = torch.where(
|
| 748 |
+
(encoder_hidden_states * mask).bool(), encoder_hidden_states, empty_embeds_
|
| 749 |
+
)
|
| 750 |
+
|
| 751 |
+
empty_clip_embeds_ = empty_clip_embeds.expand(batch_size, -1)
|
| 752 |
+
cond_embeds = torch.where((cond_embeds * mask.squeeze(-1)).bool(), cond_embeds, empty_clip_embeds_)
|
| 753 |
+
|
| 754 |
+
bs = input_ids.shape[0]
|
| 755 |
+
vae_scale_factor = 2 ** (len(vq_model.config.block_out_channels) - 1)
|
| 756 |
+
resolution = args.resolution // vae_scale_factor
|
| 757 |
+
input_ids = input_ids.reshape(bs, resolution, resolution)
|
| 758 |
+
|
| 759 |
+
# Train Step
|
| 760 |
+
with accelerator.accumulate(model):
|
| 761 |
+
codebook_size = accelerator.unwrap_model(model).config.codebook_size
|
| 762 |
+
if args.resolution == 1024: # only stage 3 and stage 4 do not apply 2*
|
| 763 |
+
img_ids = _prepare_latent_image_ids(input_ids.shape[0], input_ids.shape[-2], input_ids.shape[-1], input_ids.device, input_ids.dtype)
|
| 764 |
+
else:
|
| 765 |
+
img_ids = _prepare_latent_image_ids(input_ids.shape[0], 2 * input_ids.shape[-2], 2 * input_ids.shape[-1], input_ids.device, input_ids.dtype)
|
| 766 |
+
|
| 767 |
+
txt_ids = torch.zeros(encoder_hidden_states.shape[1], 3).to(device = input_ids.device, dtype = input_ids.dtype)
|
| 768 |
+
|
| 769 |
+
logits = model(
|
| 770 |
+
hidden_states=input_ids, # should be (batch size, channel, height, width)
|
| 771 |
+
encoder_hidden_states=encoder_hidden_states, # should be (batch size, sequence_len, embed_dims)
|
| 772 |
+
micro_conds=micro_conds, #
|
| 773 |
+
pooled_projections=cond_embeds, # should be (batch_size, projection_dim)
|
| 774 |
+
img_ids=img_ids,
|
| 775 |
+
txt_ids=txt_ids,
|
| 776 |
+
timestep=mask_prob,
|
| 777 |
+
)[0]
|
| 778 |
+
logits = logits.reshape(batch_size, codebook_size, -1).permute(0, 2, 1)
|
| 779 |
+
logits = logits.reshape(-1, codebook_size)
|
| 780 |
+
loss = F.cross_entropy(
|
| 781 |
+
logits,
|
| 782 |
+
labels.view(-1),
|
| 783 |
+
ignore_index=-100,
|
| 784 |
+
reduction="mean",
|
| 785 |
+
)
|
| 786 |
+
|
| 787 |
+
# Gather the losses across all processes for logging (if we use distributed training).
|
| 788 |
+
avg_loss = accelerator.gather(loss.repeat(args.train_batch_size)).mean()
|
| 789 |
+
avg_masking_rate = accelerator.gather(mask_prob.repeat(args.train_batch_size)).mean()
|
| 790 |
+
|
| 791 |
+
accelerator.backward(loss)
|
| 792 |
+
|
| 793 |
+
if args.max_grad_norm is not None and accelerator.sync_gradients:
|
| 794 |
+
accelerator.clip_grad_norm_(model.parameters(), args.max_grad_norm)
|
| 795 |
+
|
| 796 |
+
optimizer.step()
|
| 797 |
+
lr_scheduler.step()
|
| 798 |
+
|
| 799 |
+
optimizer.zero_grad(set_to_none=True)
|
| 800 |
+
|
| 801 |
+
# Checks if the accelerator has performed an optimization step behind the scenes
|
| 802 |
+
if accelerator.sync_gradients:
|
| 803 |
+
if args.use_ema:
|
| 804 |
+
ema.step(model.parameters())
|
| 805 |
+
|
| 806 |
+
if (global_step + 1) % args.logging_steps == 0:
|
| 807 |
+
logs = {
|
| 808 |
+
"step_loss": avg_loss.item(),
|
| 809 |
+
"lr": lr_scheduler.get_last_lr()[0],
|
| 810 |
+
"avg_masking_rate": avg_masking_rate.item(),
|
| 811 |
+
}
|
| 812 |
+
accelerator.log(logs, step=global_step + 1)
|
| 813 |
+
|
| 814 |
+
logger.info(
|
| 815 |
+
f"Step: {global_step + 1} "
|
| 816 |
+
f"Loss: {avg_loss.item():0.4f} "
|
| 817 |
+
f"LR: {lr_scheduler.get_last_lr()[0]:0.6f}"
|
| 818 |
+
)
|
| 819 |
+
|
| 820 |
+
if (global_step + 1) % args.checkpointing_steps == 0:
|
| 821 |
+
save_checkpoint(args, accelerator, global_step + 1, logger)
|
| 822 |
+
|
| 823 |
+
if (global_step + 1) % args.validation_steps == 0 and accelerator.is_main_process:
|
| 824 |
+
if args.use_ema:
|
| 825 |
+
ema.store(model.parameters())
|
| 826 |
+
ema.copy_to(model.parameters())
|
| 827 |
+
|
| 828 |
+
with torch.no_grad():
|
| 829 |
+
logger.info("Generating images...")
|
| 830 |
+
|
| 831 |
+
model.eval()
|
| 832 |
+
|
| 833 |
+
scheduler = Scheduler.from_pretrained(
|
| 834 |
+
args.pretrained_model_name_or_path,
|
| 835 |
+
subfolder="scheduler",
|
| 836 |
+
revision=args.revision,
|
| 837 |
+
variant=args.variant,
|
| 838 |
+
)
|
| 839 |
+
|
| 840 |
+
pipe = UnifiedPipeline(
|
| 841 |
+
transformer=accelerator.unwrap_model(model),
|
| 842 |
+
tokenizer=tokenizer_one,
|
| 843 |
+
tokenizer_2=tokenizer_two,
|
| 844 |
+
text_encoder=text_encoder_one,
|
| 845 |
+
text_encoder_2=text_encoder_two,
|
| 846 |
+
vqvae=vq_model,
|
| 847 |
+
scheduler=scheduler,
|
| 848 |
+
)
|
| 849 |
+
|
| 850 |
+
output = pipe(
|
| 851 |
+
prompt=args.validation_prompts,
|
| 852 |
+
height=args.resolution,
|
| 853 |
+
width=args.resolution,
|
| 854 |
+
guidance_scale=9,
|
| 855 |
+
num_inference_steps=64
|
| 856 |
+
)
|
| 857 |
+
pil_images = output.images
|
| 858 |
+
|
| 859 |
+
wandb_images = [
|
| 860 |
+
wandb.Image(image, caption=args.validation_prompts[i])
|
| 861 |
+
for i, image in enumerate(pil_images)
|
| 862 |
+
]
|
| 863 |
+
|
| 864 |
+
wandb.log({"generated_images": wandb_images}, step=global_step + 1)
|
| 865 |
+
|
| 866 |
+
result=[]
|
| 867 |
+
for img in pil_images:
|
| 868 |
+
if not isinstance(img, torch.Tensor):
|
| 869 |
+
img = transforms.ToTensor()(img)
|
| 870 |
+
result.append(img.unsqueeze(0))
|
| 871 |
+
result = torch.cat(result,dim=0)
|
| 872 |
+
result = make_grid(result, nrow=3)
|
| 873 |
+
save_image(result,os.path.join(args.output_dir, str(global_step)+'_text2image_1024_CFG-9.png'))
|
| 874 |
+
|
| 875 |
+
model.train()
|
| 876 |
+
|
| 877 |
+
if args.use_ema:
|
| 878 |
+
ema.restore(model.parameters())
|
| 879 |
+
|
| 880 |
+
global_step += 1
|
| 881 |
+
|
| 882 |
+
# Stop training if max steps is reached
|
| 883 |
+
if global_step >= args.max_train_steps:
|
| 884 |
+
break
|
| 885 |
+
# End for
|
| 886 |
+
|
| 887 |
+
accelerator.wait_for_everyone()
|
| 888 |
+
|
| 889 |
+
# Evaluate and save checkpoint at the end of training
|
| 890 |
+
save_checkpoint(args, accelerator, global_step, logger)
|
| 891 |
+
|
| 892 |
+
# Save the final trained checkpoint
|
| 893 |
+
if accelerator.is_main_process:
|
| 894 |
+
model = accelerator.unwrap_model(model)
|
| 895 |
+
if args.use_ema:
|
| 896 |
+
ema.copy_to(model.parameters())
|
| 897 |
+
model.save_pretrained(args.output_dir)
|
| 898 |
+
|
| 899 |
+
accelerator.end_training()
|
| 900 |
+
|
| 901 |
+
|
| 902 |
+
if __name__ == "__main__":
|
| 903 |
+
main(parse_args())
|
train/train_text_encoder.sh
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
export TOKENIZERS_PARALLELISM=false
|
| 2 |
+
|
| 3 |
+
# bash it in root path
|
| 4 |
+
PYTHON_PATH='./' accelerate launch --multi_gpu --gpu_ids '2,3' --main_process_port 25000 --num_processes 2 train/train_text_encoder.py \
|
| 5 |
+
--output_dir "./outputs/debug/" \
|
| 6 |
+
--train_batch_size 8 \
|
| 7 |
+
--gradient_accumulation_steps 2 \
|
| 8 |
+
--learning_rate 1e-4 \
|
| 9 |
+
--max_grad_norm 10 \
|
| 10 |
+
--pretrained_model_name_or_path "MeissonFlow/Meissonic" \
|
| 11 |
+
--text_encoder_architecture 'gemma' \
|
| 12 |
+
--text_encoder_name_or_path "google/gemma-2-2b-it" \
|
| 13 |
+
--instance_dataset 'ImageCaptionLargeDataset' \
|
| 14 |
+
--instance_data_dir '/data/sqy/0000/' \
|
| 15 |
+
--resolution 1024 \
|
| 16 |
+
--mixed_precision fp16 \
|
| 17 |
+
--lr_scheduler constant \
|
| 18 |
+
--use_8bit_adam \
|
| 19 |
+
--dataloader_num_workers 4 \
|
| 20 |
+
--validation_prompts \
|
| 21 |
+
'a boy' \
|
| 22 |
+
'A serene mountain landscape with towering snow-capped peaks, a crystal-clear blue lake reflecting the mountains, dense pine forests, and a vibrant orange sunrise illuminating the sky.' \
|
| 23 |
+
'A playful golden retriever puppy with a shiny coat, bounding through a meadow filled with colorful wildflowers, under a bright, clear blue sky.' \
|
| 24 |
+
'A bustling city street at night, illuminated by vibrant neon signs in various colors, with busy pedestrians, street vendors, and a light rain creating reflective puddles on the pavement.' \
|
| 25 |
+
'A majestic, medieval castle perched on a rugged cliffside, overlooking a vast, calm ocean at sunset, with the sky painted in hues of pink, orange, and purple.' \
|
| 26 |
+
'An elegant ballerina in a white tutu, dancing gracefully on a grand stage with ornate, gold-trimmed curtains, under a spotlight that casts a soft glow.' \
|
| 27 |
+
'A cozy, rustic log cabin nestled in a snow-covered forest, with smoke rising from the stone chimney, warm lights glowing from the windows, and a path of footprints leading to the front door.'\
|
| 28 |
+
'A Cute Cat' \
|
| 29 |
+
'A Snow Mountain'\
|
| 30 |
+
--max_train_steps 30000 \
|
| 31 |
+
--checkpointing_steps 1000 \
|
| 32 |
+
--validation_steps 100 \
|
| 33 |
+
--logging_steps 10 \
|
| 34 |
+
--report_to "wandb"
|
train/train_unified.py
ADDED
|
@@ -0,0 +1,1141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2024 The HuggingFace Team and The MeissonFlow Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
import argparse
|
| 16 |
+
import copy
|
| 17 |
+
import logging
|
| 18 |
+
import math
|
| 19 |
+
import os
|
| 20 |
+
from pathlib import Path
|
| 21 |
+
import sys
|
| 22 |
+
sys.path.append(os.getcwd())
|
| 23 |
+
import json
|
| 24 |
+
import gc
|
| 25 |
+
|
| 26 |
+
import torch
|
| 27 |
+
import torch.nn.functional as F
|
| 28 |
+
from torch import nn
|
| 29 |
+
|
| 30 |
+
from accelerate import Accelerator
|
| 31 |
+
from accelerate.logging import get_logger
|
| 32 |
+
from accelerate.utils import ProjectConfiguration, set_seed
|
| 33 |
+
from peft import LoraConfig
|
| 34 |
+
from peft.utils import get_peft_model_state_dict
|
| 35 |
+
from torch.utils.data import DataLoader
|
| 36 |
+
from torchvision import transforms
|
| 37 |
+
|
| 38 |
+
from transformers.models.gemma2.modeling_gemma2 import Gemma2Model
|
| 39 |
+
from transformers.models.gemma.tokenization_gemma_fast import GemmaTokenizerFast
|
| 40 |
+
from transformers import (
|
| 41 |
+
CLIPTextModelWithProjection,
|
| 42 |
+
CLIPTokenizer,
|
| 43 |
+
T5EncoderModel,
|
| 44 |
+
T5Tokenizer,
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
import diffusers.optimization
|
| 48 |
+
from diffusers import VQModel
|
| 49 |
+
|
| 50 |
+
from src.scheduler import Scheduler
|
| 51 |
+
from diffusers.loaders import LoraLoaderMixin
|
| 52 |
+
from diffusers.utils import is_wandb_available
|
| 53 |
+
from src.pipeline import UnifiedPipeline
|
| 54 |
+
from torchvision.utils import save_image, make_grid
|
| 55 |
+
from train.trainer_utils import save_checkpoint
|
| 56 |
+
from train.dataset_utils import ImageCaptionLargeDataset
|
| 57 |
+
from train.dataset_utils import tokenize_prompt, encode_prompt
|
| 58 |
+
from src.transformer import Transformer2DModel, SymmetricTransformer2DModel
|
| 59 |
+
from train.trainer_utils import load_images_to_tensor
|
| 60 |
+
|
| 61 |
+
if is_wandb_available():
|
| 62 |
+
import wandb
|
| 63 |
+
# wandb.login(key="")
|
| 64 |
+
|
| 65 |
+
logger = get_logger(__name__, log_level="INFO")
|
| 66 |
+
|
| 67 |
+
import torch._dynamo
|
| 68 |
+
torch._dynamo.config.verbose = True
|
| 69 |
+
|
| 70 |
+
# Optionally suppress errors to fall back to eager execution
|
| 71 |
+
torch._dynamo.config.suppress_errors = True
|
| 72 |
+
|
| 73 |
+
def parse_args():
|
| 74 |
+
parser = argparse.ArgumentParser()
|
| 75 |
+
parser.add_argument(
|
| 76 |
+
"--pretrained_model_name_or_path",
|
| 77 |
+
type=str,
|
| 78 |
+
default=None,
|
| 79 |
+
required=True,
|
| 80 |
+
help="Path to pretrained model or model identifier from huggingface.co/models.",
|
| 81 |
+
)
|
| 82 |
+
parser.add_argument(
|
| 83 |
+
"--pretrained_transformer_path",
|
| 84 |
+
type=str,
|
| 85 |
+
default=None,
|
| 86 |
+
required=True,
|
| 87 |
+
help="Path to pretrained model or model identifier from huggingface.co/models.",
|
| 88 |
+
)
|
| 89 |
+
parser.add_argument(
|
| 90 |
+
"--text_encoder_architecture",
|
| 91 |
+
type=str,
|
| 92 |
+
default="open_clip",
|
| 93 |
+
required=False,
|
| 94 |
+
help="The architecture of the text encoder. One of ['CLIP', 'open_clip', 'flan-t5-base','Qwen2-0.5B','gemini-2b',long_t5_clip','t5_clip']",
|
| 95 |
+
)
|
| 96 |
+
parser.add_argument(
|
| 97 |
+
"--text_encoder_name_or_path",
|
| 98 |
+
type=str,
|
| 99 |
+
default=None,
|
| 100 |
+
required=True,
|
| 101 |
+
help="Path to pretrained model or model identifier from huggingface.co/models.",
|
| 102 |
+
)
|
| 103 |
+
parser.add_argument(
|
| 104 |
+
"--remove_pooled_embeddings",
|
| 105 |
+
type=bool,
|
| 106 |
+
default=False,
|
| 107 |
+
required=False,
|
| 108 |
+
help="Whether to remove the pooled embeddings from the text encoder.",
|
| 109 |
+
)
|
| 110 |
+
parser.add_argument(
|
| 111 |
+
"--instance_dataset",
|
| 112 |
+
type=str,
|
| 113 |
+
default=None,
|
| 114 |
+
required=False,
|
| 115 |
+
help="The dataset to use for training. One of ['MSCOCO600K', 'PickaPicV2']",
|
| 116 |
+
)
|
| 117 |
+
parser.add_argument(
|
| 118 |
+
"--instance_data_dir",
|
| 119 |
+
type=str,
|
| 120 |
+
default=None,
|
| 121 |
+
required=False,
|
| 122 |
+
help="A folder containing the training data of instance images.",
|
| 123 |
+
)
|
| 124 |
+
parser.add_argument(
|
| 125 |
+
"--training_from_scratch",
|
| 126 |
+
type=bool,
|
| 127 |
+
default=False,
|
| 128 |
+
required=False
|
| 129 |
+
)
|
| 130 |
+
parser.add_argument(
|
| 131 |
+
"--revision",
|
| 132 |
+
type=str,
|
| 133 |
+
default=None,
|
| 134 |
+
required=False,
|
| 135 |
+
help="Revision of pretrained model identifier from huggingface.co/models.",
|
| 136 |
+
)
|
| 137 |
+
parser.add_argument(
|
| 138 |
+
"--variant",
|
| 139 |
+
type=str,
|
| 140 |
+
default=None,
|
| 141 |
+
help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16",
|
| 142 |
+
)
|
| 143 |
+
parser.add_argument(
|
| 144 |
+
"--instance_data_image", type=str, default=None, required=False, help="A single training image"
|
| 145 |
+
)
|
| 146 |
+
parser.add_argument(
|
| 147 |
+
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
|
| 148 |
+
)
|
| 149 |
+
parser.add_argument(
|
| 150 |
+
"--dataloader_num_workers",
|
| 151 |
+
type=int,
|
| 152 |
+
default=0,
|
| 153 |
+
help=(
|
| 154 |
+
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
|
| 155 |
+
),
|
| 156 |
+
)
|
| 157 |
+
parser.add_argument(
|
| 158 |
+
"--allow_tf32",
|
| 159 |
+
action="store_true",
|
| 160 |
+
help=(
|
| 161 |
+
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
|
| 162 |
+
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
|
| 163 |
+
),
|
| 164 |
+
)
|
| 165 |
+
parser.add_argument("--use_ema", action="store_true", help="Whether to use EMA model.")
|
| 166 |
+
parser.add_argument("--ema_decay", type=float, default=0.9999)
|
| 167 |
+
parser.add_argument("--ema_update_after_step", type=int, default=0)
|
| 168 |
+
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
|
| 169 |
+
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
|
| 170 |
+
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
|
| 171 |
+
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
|
| 172 |
+
parser.add_argument(
|
| 173 |
+
"--output_dir",
|
| 174 |
+
type=str,
|
| 175 |
+
default="muse_training",
|
| 176 |
+
help="The output directory where the model predictions and checkpoints will be written.",
|
| 177 |
+
)
|
| 178 |
+
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
|
| 179 |
+
parser.add_argument(
|
| 180 |
+
"--logging_dir",
|
| 181 |
+
type=str,
|
| 182 |
+
default="logs",
|
| 183 |
+
help=(
|
| 184 |
+
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
|
| 185 |
+
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
|
| 186 |
+
),
|
| 187 |
+
)
|
| 188 |
+
parser.add_argument(
|
| 189 |
+
"--max_train_steps",
|
| 190 |
+
type=int,
|
| 191 |
+
default=None,
|
| 192 |
+
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
|
| 193 |
+
)
|
| 194 |
+
parser.add_argument(
|
| 195 |
+
"--checkpointing_steps",
|
| 196 |
+
type=int,
|
| 197 |
+
default=500,
|
| 198 |
+
help=(
|
| 199 |
+
"Save a checkpoint of the training state every X updates. Checkpoints can be used for resuming training via `--resume_from_checkpoint`. "
|
| 200 |
+
"In the case that the checkpoint is better than the final trained model, the checkpoint can also be used for inference."
|
| 201 |
+
"Using a checkpoint for inference requires separate loading of the original pipeline and the individual checkpointed model components."
|
| 202 |
+
"See https://huggingface.co/docs/diffusers/main/en/training/dreambooth#performing-inference-using-a-saved-checkpoint for step by step"
|
| 203 |
+
"instructions."
|
| 204 |
+
),
|
| 205 |
+
)
|
| 206 |
+
parser.add_argument(
|
| 207 |
+
"--logging_steps",
|
| 208 |
+
type=int,
|
| 209 |
+
default=50,
|
| 210 |
+
)
|
| 211 |
+
parser.add_argument(
|
| 212 |
+
"--checkpoints_total_limit",
|
| 213 |
+
type=int,
|
| 214 |
+
default=None,
|
| 215 |
+
help=(
|
| 216 |
+
"Max number of checkpoints to store. Passed as `total_limit` to the `Accelerator` `ProjectConfiguration`."
|
| 217 |
+
" See Accelerator::save_state https://huggingface.co/docs/accelerate/package_reference/accelerator#accelerate.Accelerator.save_state"
|
| 218 |
+
" for more details"
|
| 219 |
+
),
|
| 220 |
+
)
|
| 221 |
+
parser.add_argument(
|
| 222 |
+
"--resume_from_checkpoint",
|
| 223 |
+
type=str,
|
| 224 |
+
default=None,
|
| 225 |
+
help=(
|
| 226 |
+
"Whether training should be resumed from a previous checkpoint. Use a path saved by"
|
| 227 |
+
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
|
| 228 |
+
),
|
| 229 |
+
)
|
| 230 |
+
parser.add_argument(
|
| 231 |
+
"--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader."
|
| 232 |
+
)
|
| 233 |
+
parser.add_argument(
|
| 234 |
+
"--gradient_accumulation_steps",
|
| 235 |
+
type=int,
|
| 236 |
+
default=1,
|
| 237 |
+
help="Number of updates steps to accumulate before performing a backward/update pass.",
|
| 238 |
+
)
|
| 239 |
+
parser.add_argument(
|
| 240 |
+
"--text_loss_weight",
|
| 241 |
+
type=float,
|
| 242 |
+
default=0.2,
|
| 243 |
+
)
|
| 244 |
+
parser.add_argument(
|
| 245 |
+
"--learning_rate",
|
| 246 |
+
type=float,
|
| 247 |
+
default=0.0003,
|
| 248 |
+
help="Initial learning rate (after the potential warmup period) to use.",
|
| 249 |
+
)
|
| 250 |
+
parser.add_argument(
|
| 251 |
+
"--scale_lr",
|
| 252 |
+
action="store_true",
|
| 253 |
+
default=False,
|
| 254 |
+
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
|
| 255 |
+
)
|
| 256 |
+
parser.add_argument(
|
| 257 |
+
"--lr_scheduler",
|
| 258 |
+
type=str,
|
| 259 |
+
default="constant",
|
| 260 |
+
help=(
|
| 261 |
+
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
|
| 262 |
+
' "constant", "constant_with_warmup"]'
|
| 263 |
+
),
|
| 264 |
+
)
|
| 265 |
+
parser.add_argument(
|
| 266 |
+
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
|
| 267 |
+
)
|
| 268 |
+
parser.add_argument(
|
| 269 |
+
"--validation_steps",
|
| 270 |
+
type=int,
|
| 271 |
+
default=100,
|
| 272 |
+
help=(
|
| 273 |
+
"Run validation every X steps. Validation consists of running the prompt"
|
| 274 |
+
" `args.validation_prompt` multiple times: `args.num_validation_images`"
|
| 275 |
+
" and logging the images."
|
| 276 |
+
),
|
| 277 |
+
)
|
| 278 |
+
parser.add_argument(
|
| 279 |
+
"--mixed_precision",
|
| 280 |
+
type=str,
|
| 281 |
+
default=None,
|
| 282 |
+
choices=["no", "fp16", "bf16"],
|
| 283 |
+
help=(
|
| 284 |
+
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
|
| 285 |
+
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
|
| 286 |
+
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
|
| 287 |
+
),
|
| 288 |
+
)
|
| 289 |
+
parser.add_argument(
|
| 290 |
+
"--report_to",
|
| 291 |
+
type=str,
|
| 292 |
+
default="wandb",
|
| 293 |
+
help=(
|
| 294 |
+
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
|
| 295 |
+
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
|
| 296 |
+
),
|
| 297 |
+
)
|
| 298 |
+
parser.add_argument("--validation_prompts", type=str, nargs="*")
|
| 299 |
+
parser.add_argument("--validation_images", type=str, default="./validation_images")
|
| 300 |
+
parser.add_argument(
|
| 301 |
+
"--resolution",
|
| 302 |
+
type=int,
|
| 303 |
+
default=512,
|
| 304 |
+
help=(
|
| 305 |
+
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
|
| 306 |
+
" resolution"
|
| 307 |
+
),
|
| 308 |
+
)
|
| 309 |
+
parser.add_argument("--split_vae_encode", type=int, required=False, default=None)
|
| 310 |
+
parser.add_argument("--min_masking_rate", type=float, default=0.0)
|
| 311 |
+
parser.add_argument("--cond_dropout_prob", type=float, default=0.0)
|
| 312 |
+
parser.add_argument("--max_grad_norm", default=50.0, type=float, help="Max gradient norm.", required=False)
|
| 313 |
+
parser.add_argument("--use_lora", action="store_true", help="Fine tune the model using LoRa")
|
| 314 |
+
parser.add_argument("--text_encoder_use_lora", action="store_true", help="Fine tune the model using LoRa")
|
| 315 |
+
parser.add_argument("--lora_r", default=16, type=int)
|
| 316 |
+
parser.add_argument("--lora_alpha", default=32, type=int)
|
| 317 |
+
parser.add_argument("--lora_target_modules", default=["to_q", "to_k", "to_v"], type=str, nargs="+")
|
| 318 |
+
parser.add_argument("--text_encoder_lora_r", default=16, type=int)
|
| 319 |
+
parser.add_argument("--text_encoder_lora_alpha", default=32, type=int)
|
| 320 |
+
parser.add_argument("--text_encoder_lora_target_modules", default=["to_q", "to_k", "to_v"], type=str, nargs="+")
|
| 321 |
+
parser.add_argument("--train_text_encoder", action="store_true")
|
| 322 |
+
parser.add_argument("--image_to_text_only", action="store_true")
|
| 323 |
+
parser.add_argument("--image_key", type=str, required=False)
|
| 324 |
+
parser.add_argument("--prompt_key", type=str, required=False)
|
| 325 |
+
parser.add_argument(
|
| 326 |
+
"--gradient_checkpointing",
|
| 327 |
+
action="store_true",
|
| 328 |
+
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
|
| 329 |
+
)
|
| 330 |
+
parser.add_argument("--prompt_prefix", type=str, required=False, default=None)
|
| 331 |
+
|
| 332 |
+
args = parser.parse_args()
|
| 333 |
+
|
| 334 |
+
if args.report_to == "wandb":
|
| 335 |
+
if not is_wandb_available():
|
| 336 |
+
raise ImportError("Make sure to install wandb if you want to use it for logging during training.")
|
| 337 |
+
|
| 338 |
+
num_datasources = sum(
|
| 339 |
+
[x is not None for x in [args.instance_data_dir, args.instance_data_image]]
|
| 340 |
+
)
|
| 341 |
+
|
| 342 |
+
if num_datasources != 1:
|
| 343 |
+
raise ValueError(
|
| 344 |
+
"provide one and only one of `--instance_data_dir`, `--instance_data_image`, or `--instance_data_dataset`"
|
| 345 |
+
)
|
| 346 |
+
|
| 347 |
+
if args.instance_data_dir is not None:
|
| 348 |
+
if not os.path.exists(args.instance_data_dir):
|
| 349 |
+
raise ValueError(f"Does not exist: `--args.instance_data_dir` {args.instance_data_dir}")
|
| 350 |
+
|
| 351 |
+
if args.instance_data_image is not None:
|
| 352 |
+
if not os.path.exists(args.instance_data_image):
|
| 353 |
+
raise ValueError(f"Does not exist: `--args.instance_data_image` {args.instance_data_image}")
|
| 354 |
+
|
| 355 |
+
return args
|
| 356 |
+
|
| 357 |
+
def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
|
| 358 |
+
latent_image_ids = torch.zeros(height // 2, width // 2, 3)
|
| 359 |
+
latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2)[:, None]
|
| 360 |
+
latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2)[None, :]
|
| 361 |
+
|
| 362 |
+
latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
|
| 363 |
+
|
| 364 |
+
latent_image_ids = latent_image_ids.reshape(
|
| 365 |
+
latent_image_id_height * latent_image_id_width, latent_image_id_channels
|
| 366 |
+
)
|
| 367 |
+
|
| 368 |
+
return latent_image_ids.to(device=device, dtype=dtype)
|
| 369 |
+
|
| 370 |
+
def main(args):
|
| 371 |
+
if args.allow_tf32:
|
| 372 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 373 |
+
|
| 374 |
+
logging_dir = Path(args.output_dir, args.logging_dir)
|
| 375 |
+
|
| 376 |
+
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
|
| 377 |
+
|
| 378 |
+
accelerator = Accelerator(
|
| 379 |
+
gradient_accumulation_steps=args.gradient_accumulation_steps,
|
| 380 |
+
mixed_precision=args.mixed_precision,
|
| 381 |
+
log_with=args.report_to,
|
| 382 |
+
project_config=accelerator_project_config,
|
| 383 |
+
)
|
| 384 |
+
|
| 385 |
+
if accelerator.is_main_process:
|
| 386 |
+
os.makedirs(args.output_dir, exist_ok=True)
|
| 387 |
+
|
| 388 |
+
# Make one log on every process with the configuration for debugging.
|
| 389 |
+
logging.basicConfig(
|
| 390 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
| 391 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
| 392 |
+
level=logging.INFO,
|
| 393 |
+
)
|
| 394 |
+
logger.info(accelerator.state, main_process_only=False)
|
| 395 |
+
|
| 396 |
+
if accelerator.is_main_process:
|
| 397 |
+
accelerator.init_trackers("meissonic", config=vars(copy.deepcopy(args)))
|
| 398 |
+
|
| 399 |
+
if args.seed is not None:
|
| 400 |
+
set_seed(args.seed)
|
| 401 |
+
|
| 402 |
+
if args.text_encoder_architecture == "open_clip":
|
| 403 |
+
text_encoder = CLIPTextModelWithProjection.from_pretrained(
|
| 404 |
+
args.pretrained_model_name_or_path, subfolder="text_encoder", variant=args.variant
|
| 405 |
+
)
|
| 406 |
+
tokenizer = CLIPTokenizer.from_pretrained(
|
| 407 |
+
args.pretrained_model_name_or_path, subfolder="tokenizer", variant=args.variant
|
| 408 |
+
)
|
| 409 |
+
tokenizer_2 = None
|
| 410 |
+
text_encoder_2 = None
|
| 411 |
+
|
| 412 |
+
extra_id_0_token = "<extra_id_0>"
|
| 413 |
+
num_new_tokens = tokenizer.add_tokens(extra_id_0_token)
|
| 414 |
+
mask_id_1 = tokenizer.convert_tokens_to_ids(extra_id_0_token)
|
| 415 |
+
if num_new_tokens > 0:
|
| 416 |
+
text_encoder.resize_token_embeddings(len(tokenizer))
|
| 417 |
+
mask_token_embedding = text_encoder.get_input_embeddings().weight[mask_id_1]
|
| 418 |
+
mask_token_embedding = mask_token_embedding.clone().detach().cpu().float()
|
| 419 |
+
if accelerator.is_main_process:
|
| 420 |
+
print("Saving masked token embedding...")
|
| 421 |
+
torch.save(mask_token_embedding, os.path.join(args.output_dir, "mask_token_embedding.pth"))
|
| 422 |
+
|
| 423 |
+
text_encoder.requires_grad_(False)
|
| 424 |
+
elif args.text_encoder_architecture == "t5_clip":
|
| 425 |
+
tokenizer = CLIPTokenizer.from_pretrained(
|
| 426 |
+
args.pretrained_model_name_or_path, subfolder="tokenizer", variant=args.variant
|
| 427 |
+
)
|
| 428 |
+
text_encoder = CLIPTextModelWithProjection.from_pretrained(
|
| 429 |
+
args.pretrained_model_name_or_path, subfolder="text_encoder", variant=args.variant
|
| 430 |
+
)
|
| 431 |
+
|
| 432 |
+
tokenizer_2 = T5Tokenizer.from_pretrained(
|
| 433 |
+
args.pretrained_model_name_or_path, subfolder="tokenizer_2", variant=args.variant,
|
| 434 |
+
)
|
| 435 |
+
text_encoder_2 = T5EncoderModel.from_pretrained(
|
| 436 |
+
args.pretrained_model_name_or_path, subfolder="text_encoder_2", variant=args.variant,
|
| 437 |
+
)
|
| 438 |
+
|
| 439 |
+
text_encoder.requires_grad_(False)
|
| 440 |
+
text_encoder_2.requires_grad_(False)
|
| 441 |
+
elif args.text_encoder_architecture == "gemma":
|
| 442 |
+
tokenizer = CLIPTokenizer.from_pretrained(
|
| 443 |
+
args.pretrained_model_name_or_path, subfolder="tokenizer", variant=args.variant
|
| 444 |
+
)
|
| 445 |
+
text_encoder = CLIPTextModelWithProjection.from_pretrained(
|
| 446 |
+
args.pretrained_model_name_or_path, subfolder="text_encoder", variant=args.variant
|
| 447 |
+
)
|
| 448 |
+
|
| 449 |
+
tokenizer_2 = GemmaTokenizerFast.from_pretrained(
|
| 450 |
+
args.text_encoder_name_or_path, variant=args.variant,
|
| 451 |
+
)
|
| 452 |
+
text_encoder_2 = Gemma2Model.from_pretrained(
|
| 453 |
+
args.text_encoder_name_or_path, variant=args.variant,
|
| 454 |
+
)
|
| 455 |
+
|
| 456 |
+
extra_id_0_token = "<extra_id_0>"
|
| 457 |
+
|
| 458 |
+
tokenizer.add_tokens(extra_id_0_token)
|
| 459 |
+
tokenizer_2.add_tokens(extra_id_0_token)
|
| 460 |
+
mask_id_1 = tokenizer.convert_tokens_to_ids(extra_id_0_token)
|
| 461 |
+
mask_id_2 = tokenizer_2.convert_tokens_to_ids(extra_id_0_token)
|
| 462 |
+
|
| 463 |
+
text_encoder.resize_token_embeddings(len(tokenizer))
|
| 464 |
+
text_encoder_2.resize_token_embeddings(len(tokenizer_2))
|
| 465 |
+
|
| 466 |
+
text_encoder.requires_grad_(False)
|
| 467 |
+
text_encoder_2.requires_grad_(False)
|
| 468 |
+
else:
|
| 469 |
+
raise ValueError(f"Unknown text encoder architecture: {args.text_encoder_architecture}")
|
| 470 |
+
|
| 471 |
+
vq_model = VQModel.from_pretrained(
|
| 472 |
+
args.pretrained_model_name_or_path, subfolder="vqvae", revision=args.revision, variant=args.variant
|
| 473 |
+
)
|
| 474 |
+
vq_model.requires_grad_(False)
|
| 475 |
+
|
| 476 |
+
model = SymmetricTransformer2DModel.from_pretrained(
|
| 477 |
+
args.pretrained_transformer_path,
|
| 478 |
+
subfolder="transformer",
|
| 479 |
+
low_cpu_mem_usage=False,
|
| 480 |
+
device_map=None
|
| 481 |
+
)
|
| 482 |
+
|
| 483 |
+
if model.config.tokenizer_vocab_size is None:
|
| 484 |
+
if args.text_encoder_architecture == "open_clip":
|
| 485 |
+
model.register_to_config(tokenizer_vocab_size=len(tokenizer))
|
| 486 |
+
elif args.text_encoder_architecture in ("t5_clip", "gemma"):
|
| 487 |
+
model.register_to_config(tokenizer_vocab_size=len(tokenizer_2))
|
| 488 |
+
if model.adapter is None:
|
| 489 |
+
raise ValueError(f"The MMDiT must has adapter if you want to use t5_clip mode!!!")
|
| 490 |
+
else:
|
| 491 |
+
raise ValueError(f"Unknown text encoder architecture!")
|
| 492 |
+
|
| 493 |
+
if accelerator.is_main_process:
|
| 494 |
+
print(f"model's tokenizer vocab size is {model.config.tokenizer_vocab_size}")
|
| 495 |
+
|
| 496 |
+
model.text_decoder = nn.Sequential(
|
| 497 |
+
nn.LayerNorm(model.inner_dim, elementwise_affine=False, eps=1e-6),
|
| 498 |
+
nn.Linear(model.inner_dim, model.config.tokenizer_vocab_size, bias=False)
|
| 499 |
+
)
|
| 500 |
+
|
| 501 |
+
model = torch.compile(model)
|
| 502 |
+
|
| 503 |
+
if args.use_lora:
|
| 504 |
+
lora_config = LoraConfig(
|
| 505 |
+
r=args.lora_r,
|
| 506 |
+
lora_alpha=args.lora_alpha,
|
| 507 |
+
target_modules=args.lora_target_modules,
|
| 508 |
+
)
|
| 509 |
+
model.add_adapter(lora_config)
|
| 510 |
+
|
| 511 |
+
model.train()
|
| 512 |
+
|
| 513 |
+
if args.image_to_text_only:
|
| 514 |
+
frozen_keys = ["project_from_hidden", "up_block", "mlm_layer"]
|
| 515 |
+
for n, p in model.named_parameters():
|
| 516 |
+
if any([frozen_key in n for frozen_key in frozen_keys]):
|
| 517 |
+
p.requires_grad_(False)
|
| 518 |
+
else:
|
| 519 |
+
p.requires_grad_(True)
|
| 520 |
+
else:
|
| 521 |
+
model.requires_grad_(True)
|
| 522 |
+
|
| 523 |
+
if args.gradient_checkpointing:
|
| 524 |
+
model.enable_gradient_checkpointing()
|
| 525 |
+
|
| 526 |
+
def save_model_hook(models, weights, output_dir):
|
| 527 |
+
if accelerator.is_main_process:
|
| 528 |
+
transformer_lora_layers_to_save = None
|
| 529 |
+
text_encoder_lora_layers_to_save = None
|
| 530 |
+
|
| 531 |
+
for model_ in models:
|
| 532 |
+
if isinstance(model_, type(accelerator.unwrap_model(model))):
|
| 533 |
+
if args.use_lora:
|
| 534 |
+
transformer_lora_layers_to_save = get_peft_model_state_dict(model_)
|
| 535 |
+
else:
|
| 536 |
+
model_.save_pretrained(os.path.join(output_dir, "transformer"))
|
| 537 |
+
elif isinstance(model_, type(accelerator.unwrap_model(text_encoder))):
|
| 538 |
+
if args.text_encoder_use_lora:
|
| 539 |
+
text_encoder_lora_layers_to_save = get_peft_model_state_dict(model_)
|
| 540 |
+
else:
|
| 541 |
+
model_.save_pretrained(os.path.join(output_dir, "text_encoder"))
|
| 542 |
+
else:
|
| 543 |
+
raise ValueError(f"unexpected save model: {model_.__class__}")
|
| 544 |
+
|
| 545 |
+
# make sure to pop weight so that corresponding model is not saved again
|
| 546 |
+
weights.pop()
|
| 547 |
+
|
| 548 |
+
if transformer_lora_layers_to_save is not None or text_encoder_lora_layers_to_save is not None:
|
| 549 |
+
LoraLoaderMixin.save_lora_weights(
|
| 550 |
+
output_dir,
|
| 551 |
+
unet_lora_layers=transformer_lora_layers_to_save,
|
| 552 |
+
text_encoder_lora_layers=text_encoder_lora_layers_to_save,
|
| 553 |
+
)
|
| 554 |
+
|
| 555 |
+
|
| 556 |
+
def load_model_hook(models, input_dir):
|
| 557 |
+
transformer = None
|
| 558 |
+
text_encoder_ = None
|
| 559 |
+
|
| 560 |
+
# this part is added for keep consistency when add model.compile() in the model
|
| 561 |
+
def adap_compile(ori_dict):#add '_orig_mod.' to each key
|
| 562 |
+
new_dict = {}
|
| 563 |
+
for k,v in ori_dict.items():
|
| 564 |
+
new_dict['_orig_mod.' + k] = v
|
| 565 |
+
return new_dict
|
| 566 |
+
|
| 567 |
+
while len(models) > 0:
|
| 568 |
+
model_ = models.pop()
|
| 569 |
+
|
| 570 |
+
if isinstance(model_, type(accelerator.unwrap_model(model))):
|
| 571 |
+
if args.use_lora:
|
| 572 |
+
transformer = model_
|
| 573 |
+
else:
|
| 574 |
+
load_model = SymmetricTransformer2DModel.from_pretrained(os.path.join(input_dir, "transformer"), low_cpu_mem_usage=False, device_map=None)
|
| 575 |
+
model_.load_state_dict(adap_compile(load_model.state_dict()))
|
| 576 |
+
del load_model
|
| 577 |
+
elif isinstance(model_, type(accelerator.unwrap_model(text_encoder))):
|
| 578 |
+
if args.text_encoder_use_lora:
|
| 579 |
+
text_encoder_ = model_
|
| 580 |
+
else:
|
| 581 |
+
try:
|
| 582 |
+
load_model = CLIPTextModelWithProjection.from_pretrained(os.path.join(input_dir, "text_encoder"))
|
| 583 |
+
model_.load_state_dict(load_model.state_dict())
|
| 584 |
+
# print('finished loading text encoder!')
|
| 585 |
+
except:
|
| 586 |
+
print('Not found text-encoder model in current folder. So we download one text encoder from Internet.')
|
| 587 |
+
load_model = CLIPTextModelWithProjection.from_pretrained("laion/CLIP-ViT-H-14-laion2B-s32B-b79K")
|
| 588 |
+
model_.load_state_dict(load_model.state_dict())
|
| 589 |
+
del load_model
|
| 590 |
+
else:
|
| 591 |
+
raise ValueError(f"unexpected save model: {model.__class__}")
|
| 592 |
+
|
| 593 |
+
if transformer is not None or text_encoder_ is not None:
|
| 594 |
+
lora_state_dict, network_alphas = LoraLoaderMixin.lora_state_dict(input_dir)
|
| 595 |
+
LoraLoaderMixin.load_lora_into_text_encoder(
|
| 596 |
+
lora_state_dict, network_alphas=network_alphas, text_encoder=text_encoder_
|
| 597 |
+
)
|
| 598 |
+
LoraLoaderMixin.load_lora_into_transformer(
|
| 599 |
+
lora_state_dict, network_alphas=network_alphas, transformer=transformer
|
| 600 |
+
)
|
| 601 |
+
|
| 602 |
+
accelerator.register_load_state_pre_hook(load_model_hook)
|
| 603 |
+
accelerator.register_save_state_pre_hook(save_model_hook)
|
| 604 |
+
|
| 605 |
+
if args.scale_lr:
|
| 606 |
+
args.learning_rate = (
|
| 607 |
+
args.learning_rate * args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
|
| 608 |
+
)
|
| 609 |
+
|
| 610 |
+
if args.use_8bit_adam:
|
| 611 |
+
try:
|
| 612 |
+
import bitsandbytes as bnb
|
| 613 |
+
except ImportError:
|
| 614 |
+
raise ImportError(
|
| 615 |
+
"Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`"
|
| 616 |
+
)
|
| 617 |
+
|
| 618 |
+
optimizer_cls = bnb.optim.AdamW8bit
|
| 619 |
+
else:
|
| 620 |
+
optimizer_cls = torch.optim.AdamW
|
| 621 |
+
|
| 622 |
+
optimizer_grouped_parameters = [
|
| 623 |
+
{
|
| 624 |
+
"params": [p for p in model.parameters() if p.requires_grad],
|
| 625 |
+
"weight_decay": args.adam_weight_decay,
|
| 626 |
+
}
|
| 627 |
+
]
|
| 628 |
+
optimizer = optimizer_cls(
|
| 629 |
+
optimizer_grouped_parameters,
|
| 630 |
+
lr=args.learning_rate,
|
| 631 |
+
betas=(args.adam_beta1, args.adam_beta2),
|
| 632 |
+
weight_decay=args.adam_weight_decay,
|
| 633 |
+
eps=args.adam_epsilon,
|
| 634 |
+
)
|
| 635 |
+
|
| 636 |
+
logger.info("Creating dataloaders and lr_scheduler")
|
| 637 |
+
|
| 638 |
+
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
|
| 639 |
+
|
| 640 |
+
if args.text_encoder_architecture in ("t5_clip", "gemma"):
|
| 641 |
+
tokenizer_for_dataset = [tokenizer, tokenizer_2]
|
| 642 |
+
else:
|
| 643 |
+
tokenizer_for_dataset = tokenizer
|
| 644 |
+
|
| 645 |
+
if args.instance_dataset == "ImageCaptionLargeDataset":
|
| 646 |
+
dataset = ImageCaptionLargeDataset(
|
| 647 |
+
root_dir=args.instance_data_dir,
|
| 648 |
+
tokenizer=tokenizer_for_dataset,
|
| 649 |
+
size=args.resolution,
|
| 650 |
+
text_encoder_architecture=args.text_encoder_architecture
|
| 651 |
+
)
|
| 652 |
+
elif args.instance_dataset == "DATA_TYPE":
|
| 653 |
+
raise NotImplementedError("DATA_TYPE is not yet supported")
|
| 654 |
+
else:
|
| 655 |
+
assert False
|
| 656 |
+
|
| 657 |
+
def collate_fn(samples):
|
| 658 |
+
images = [sample["image"] for sample in samples]
|
| 659 |
+
micro_conds = [sample["micro_conds"] for sample in samples]
|
| 660 |
+
|
| 661 |
+
images = torch.stack(images, dim=0)
|
| 662 |
+
micro_conds = torch.stack(micro_conds, dim=0)
|
| 663 |
+
|
| 664 |
+
if isinstance(samples[0]["prompt_input_ids"], list):
|
| 665 |
+
input_ids = [sample["prompt_input_ids"][0] for sample in samples]
|
| 666 |
+
input_ids_2 = [sample["prompt_input_ids"][1] for sample in samples]
|
| 667 |
+
|
| 668 |
+
input_ids = torch.cat(input_ids, dim=0)
|
| 669 |
+
input_ids_2 = torch.cat(input_ids_2, dim=0)
|
| 670 |
+
prompt_input_ids = [input_ids, input_ids_2]
|
| 671 |
+
else:
|
| 672 |
+
input_ids = [sample["prompt_input_ids"] for sample in samples]
|
| 673 |
+
|
| 674 |
+
input_ids = torch.cat(input_ids, dim=0)
|
| 675 |
+
prompt_input_ids = input_ids
|
| 676 |
+
|
| 677 |
+
ret = dict(
|
| 678 |
+
images=images,
|
| 679 |
+
micro_conds=micro_conds,
|
| 680 |
+
prompt_input_ids=prompt_input_ids,
|
| 681 |
+
)
|
| 682 |
+
|
| 683 |
+
return ret
|
| 684 |
+
|
| 685 |
+
train_dataloader = DataLoader(
|
| 686 |
+
dataset,
|
| 687 |
+
batch_size=args.train_batch_size,
|
| 688 |
+
shuffle=True,
|
| 689 |
+
num_workers=args.dataloader_num_workers,
|
| 690 |
+
collate_fn=collate_fn,
|
| 691 |
+
pin_memory=True,
|
| 692 |
+
)
|
| 693 |
+
train_dataloader.num_batches = len(train_dataloader)
|
| 694 |
+
|
| 695 |
+
lr_scheduler = diffusers.optimization.get_scheduler(
|
| 696 |
+
args.lr_scheduler,
|
| 697 |
+
optimizer=optimizer,
|
| 698 |
+
num_training_steps=args.max_train_steps * accelerator.num_processes,
|
| 699 |
+
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
|
| 700 |
+
)
|
| 701 |
+
|
| 702 |
+
logger.info("Preparing model, optimizer and dataloaders")
|
| 703 |
+
|
| 704 |
+
model, optimizer, lr_scheduler, train_dataloader = accelerator.prepare(
|
| 705 |
+
model, optimizer, lr_scheduler, train_dataloader
|
| 706 |
+
)
|
| 707 |
+
|
| 708 |
+
train_dataloader.num_batches = len(train_dataloader)
|
| 709 |
+
|
| 710 |
+
weight_dtype = torch.float32
|
| 711 |
+
if accelerator.mixed_precision == "fp16":
|
| 712 |
+
weight_dtype = torch.float16
|
| 713 |
+
elif accelerator.mixed_precision == "bf16":
|
| 714 |
+
weight_dtype = torch.bfloat16
|
| 715 |
+
|
| 716 |
+
if args.text_encoder_architecture in ("t5_clip", "gemma"):
|
| 717 |
+
text_encoder.to(device=accelerator.device, dtype=weight_dtype)
|
| 718 |
+
text_encoder_2.to(device=accelerator.device, dtype=weight_dtype)
|
| 719 |
+
else:
|
| 720 |
+
text_encoder.to(device=accelerator.device, dtype=weight_dtype)
|
| 721 |
+
|
| 722 |
+
vq_model.to(device=accelerator.device)
|
| 723 |
+
|
| 724 |
+
with torch.no_grad():
|
| 725 |
+
if args.text_encoder_architecture in ("t5_clip", "gemma"):
|
| 726 |
+
_input_ids_tmp_ = tokenize_prompt([tokenizer, tokenizer_2], "", args.text_encoder_architecture)
|
| 727 |
+
_input_ids_tmp_[0] = _input_ids_tmp_[0].to(accelerator.device)
|
| 728 |
+
_input_ids_tmp_[1] = _input_ids_tmp_[1].to(accelerator.device)
|
| 729 |
+
empty_embeds, empty_clip_embeds = encode_prompt(
|
| 730 |
+
[text_encoder, text_encoder_2],
|
| 731 |
+
_input_ids_tmp_,
|
| 732 |
+
args.text_encoder_architecture
|
| 733 |
+
)
|
| 734 |
+
else:
|
| 735 |
+
_input_ids_tmp_ = tokenize_prompt(tokenizer, "", args.text_encoder_architecture)
|
| 736 |
+
_input_ids_tmp_ = _input_ids_tmp_.to(accelerator.device)
|
| 737 |
+
empty_embeds, empty_clip_embeds = encode_prompt(
|
| 738 |
+
text_encoder,
|
| 739 |
+
_input_ids_tmp_,
|
| 740 |
+
args.text_encoder_architecture
|
| 741 |
+
)
|
| 742 |
+
|
| 743 |
+
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
|
| 744 |
+
num_update_steps_per_epoch = math.ceil(train_dataloader.num_batches / args.gradient_accumulation_steps)
|
| 745 |
+
# Afterwards we recalculate our number of training epochs.
|
| 746 |
+
# Note: We are not doing epoch based training here, but just using this for book keeping and being able to
|
| 747 |
+
# reuse the same training loop with other datasets/loaders.
|
| 748 |
+
num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
|
| 749 |
+
|
| 750 |
+
# Train!
|
| 751 |
+
logger.info("***** Running training *****")
|
| 752 |
+
logger.info(f" Num training steps = {args.max_train_steps}")
|
| 753 |
+
logger.info(f" Instantaneous batch size per device = { args.train_batch_size}")
|
| 754 |
+
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
|
| 755 |
+
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
|
| 756 |
+
|
| 757 |
+
resume_from_checkpoint = args.resume_from_checkpoint
|
| 758 |
+
if resume_from_checkpoint:
|
| 759 |
+
if resume_from_checkpoint == "latest":
|
| 760 |
+
# Get the most recent checkpoint
|
| 761 |
+
dirs = os.listdir(args.output_dir)
|
| 762 |
+
dirs = [d for d in dirs if d.startswith("checkpoint")]
|
| 763 |
+
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
|
| 764 |
+
if len(dirs) > 0:
|
| 765 |
+
resume_from_checkpoint = os.path.join(args.output_dir, dirs[-1])
|
| 766 |
+
else:
|
| 767 |
+
resume_from_checkpoint = None
|
| 768 |
+
|
| 769 |
+
if resume_from_checkpoint is None:
|
| 770 |
+
accelerator.print(
|
| 771 |
+
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
|
| 772 |
+
)
|
| 773 |
+
else:
|
| 774 |
+
accelerator.print(f"Resuming from checkpoint {resume_from_checkpoint}")
|
| 775 |
+
|
| 776 |
+
if resume_from_checkpoint is None:
|
| 777 |
+
global_step = 0
|
| 778 |
+
first_epoch = 0
|
| 779 |
+
else:
|
| 780 |
+
accelerator.load_state(resume_from_checkpoint)
|
| 781 |
+
global_step = int(os.path.basename(resume_from_checkpoint).split("-")[1])
|
| 782 |
+
first_epoch = global_step // num_update_steps_per_epoch
|
| 783 |
+
|
| 784 |
+
# As stated above, we are not doing epoch based training here, but just using this for book keeping and being able to
|
| 785 |
+
# reuse the same training loop with other datasets/loaders.
|
| 786 |
+
for epoch in range(first_epoch, num_train_epochs):
|
| 787 |
+
for batch in train_dataloader:
|
| 788 |
+
torch.cuda.empty_cache()
|
| 789 |
+
with torch.no_grad():
|
| 790 |
+
micro_conds = batch["micro_conds"].to(accelerator.device, non_blocking=True)
|
| 791 |
+
image_micro_conds, text_micro_conds = micro_conds.chunk(2, dim=0)
|
| 792 |
+
|
| 793 |
+
pixel_values = batch["images"].to(accelerator.device, non_blocking=True)
|
| 794 |
+
batch_size = pixel_values.shape[0]
|
| 795 |
+
|
| 796 |
+
# ====================== tokenize images ======================
|
| 797 |
+
split_batch_size = args.split_vae_encode if args.split_vae_encode is not None else batch_size
|
| 798 |
+
num_splits = math.ceil(batch_size / split_batch_size)
|
| 799 |
+
image_tokens = []
|
| 800 |
+
for i in range(num_splits):
|
| 801 |
+
start_idx = i * split_batch_size
|
| 802 |
+
end_idx = min((i + 1) * split_batch_size, batch_size)
|
| 803 |
+
image_tokens.append(
|
| 804 |
+
vq_model.quantize(
|
| 805 |
+
vq_model.encode(pixel_values[start_idx:end_idx]).latents
|
| 806 |
+
)[2][2].reshape(split_batch_size, -1)
|
| 807 |
+
)
|
| 808 |
+
image_tokens = torch.cat(image_tokens, dim=0)
|
| 809 |
+
# ====================== tokenize images ======================
|
| 810 |
+
|
| 811 |
+
|
| 812 |
+
# ====================== tokenize text prompts ======================
|
| 813 |
+
if args.text_encoder_architecture in ("t5_clip", "gemma"):
|
| 814 |
+
prompt_input_ids_clip = batch["prompt_input_ids"][0].to(accelerator.device, non_blocking=True)
|
| 815 |
+
prompt_input_ids_t5 = batch["prompt_input_ids"][1].to(accelerator.device, non_blocking=True)
|
| 816 |
+
prompt_input_ids_clip_1, prompt_input_ids_clip_2 = prompt_input_ids_clip.chunk(2, dim=0)
|
| 817 |
+
prompt_input_ids_t5_1, prompt_input_ids_t5_2 = prompt_input_ids_t5.chunk(2, dim=0)
|
| 818 |
+
encoder_hidden_states, cond_embeds = encode_prompt(
|
| 819 |
+
[text_encoder, text_encoder_2],
|
| 820 |
+
[prompt_input_ids_clip_1, prompt_input_ids_t5_1],
|
| 821 |
+
args.text_encoder_architecture
|
| 822 |
+
)
|
| 823 |
+
else:
|
| 824 |
+
prompt_input_ids = batch["prompt_input_ids"].to(accelerator.device, non_blocking=True)
|
| 825 |
+
prompt_input_ids_clip_1, prompt_input_ids_clip_2 = prompt_input_ids.chunk(2, dim=0)
|
| 826 |
+
encoder_hidden_states, cond_embeds = encode_prompt(
|
| 827 |
+
text_encoder,
|
| 828 |
+
prompt_input_ids_clip_1,
|
| 829 |
+
args.text_encoder_architecture
|
| 830 |
+
)
|
| 831 |
+
encoder_hidden_states = encoder_hidden_states.to(accelerator.device, dtype=accelerator.unwrap_model(model).dtype)
|
| 832 |
+
cond_embeds = cond_embeds.to(accelerator.device, dtype=accelerator.unwrap_model(model).dtype)
|
| 833 |
+
# ====================== tokenize text prompts ======================
|
| 834 |
+
|
| 835 |
+
|
| 836 |
+
# ====================== image perturbation ======================
|
| 837 |
+
image_tokens_1, image_tokens_2 = image_tokens.chunk(2, dim=0) # (b // 2, seq_len)
|
| 838 |
+
half_batch_size, seq_len = image_tokens_1.shape
|
| 839 |
+
sigma = torch.rand(half_batch_size, device=image_tokens_1.device)
|
| 840 |
+
image_mask_prob = torch.cos(sigma * math.pi * 0.5)
|
| 841 |
+
image_mask_prob = image_mask_prob.clip(args.min_masking_rate)
|
| 842 |
+
|
| 843 |
+
num_token_masked = (seq_len * image_mask_prob).round().clamp(min=1)
|
| 844 |
+
batch_randperm = torch.rand(half_batch_size, seq_len, device=image_tokens_1.device).argsort(dim=-1)
|
| 845 |
+
mask = batch_randperm < num_token_masked.unsqueeze(-1)
|
| 846 |
+
|
| 847 |
+
mask_id = accelerator.unwrap_model(model).config.vocab_size - 1
|
| 848 |
+
masked_image_ids = torch.where(mask, mask_id, image_tokens_1)
|
| 849 |
+
image_labels = torch.where(mask, image_tokens_1, -100)
|
| 850 |
+
# ====================== image perturbation ======================
|
| 851 |
+
|
| 852 |
+
|
| 853 |
+
# ====================== text perturbation ======================
|
| 854 |
+
if args.text_encoder_architecture in ("t5_clip", "gemma"):
|
| 855 |
+
half_batch_size, seq_len = prompt_input_ids_t5_2.shape
|
| 856 |
+
sigma = torch.rand(half_batch_size, device=image_tokens_1.device)
|
| 857 |
+
text_mask_prob = torch.cos(sigma * math.pi * 0.5)
|
| 858 |
+
text_mask_prob = text_mask_prob.clip(args.min_masking_rate)
|
| 859 |
+
text_timestep = text_mask_prob.clone().clamp(min=1e-3)
|
| 860 |
+
|
| 861 |
+
num_token_masked = (seq_len * text_mask_prob).round().clamp(min=1)
|
| 862 |
+
batch_randperm = torch.rand(half_batch_size, seq_len, device=image_tokens_1.device).argsort(dim=-1)
|
| 863 |
+
mask = batch_randperm < num_token_masked.unsqueeze(-1)
|
| 864 |
+
|
| 865 |
+
masked_prompt_input_ids_t5 = torch.where(mask, mask_id_2, prompt_input_ids_t5_2)
|
| 866 |
+
text_labels = torch.where(mask, prompt_input_ids_t5_2, -100)
|
| 867 |
+
|
| 868 |
+
# prepare input_ids for clip model
|
| 869 |
+
batch_prompt_2 = []
|
| 870 |
+
for i in range(masked_prompt_input_ids_t5.size(0)):
|
| 871 |
+
masked_prompt_input_id = masked_prompt_input_ids_t5[i].tolist()
|
| 872 |
+
prompt_2 = tokenizer_2.decode(masked_prompt_input_id, skip_special_tokens=True)
|
| 873 |
+
batch_prompt_2.append(prompt_2)
|
| 874 |
+
|
| 875 |
+
masked_prompt_input_ids_clip = tokenizer(
|
| 876 |
+
batch_prompt_2,
|
| 877 |
+
truncation=True,
|
| 878 |
+
padding="max_length",
|
| 879 |
+
max_length=77,
|
| 880 |
+
return_tensors="pt"
|
| 881 |
+
).input_ids
|
| 882 |
+
masked_prompt_input_ids_clip = masked_prompt_input_ids_clip.to(accelerator.device)
|
| 883 |
+
else:
|
| 884 |
+
half_batch_size, seq_len = prompt_input_ids_clip_2.shape
|
| 885 |
+
sigma = torch.rand(half_batch_size, device=image_tokens_1.device)
|
| 886 |
+
text_mask_prob = torch.cos(sigma * math.pi * 0.5)
|
| 887 |
+
text_mask_prob = text_mask_prob.clip(args.min_masking_rate)
|
| 888 |
+
text_timestep = text_mask_prob.clone().clamp(min=1e-3)
|
| 889 |
+
|
| 890 |
+
num_token_masked = (seq_len * text_mask_prob).round().clamp(min=1)
|
| 891 |
+
batch_randperm = torch.rand(half_batch_size, seq_len, device=image_tokens_1.device).argsort(dim=-1)
|
| 892 |
+
mask = batch_randperm < num_token_masked.unsqueeze(-1)
|
| 893 |
+
|
| 894 |
+
masked_prompt_input_ids_clip = torch.where(mask, mask_id_1, prompt_input_ids_clip_2)
|
| 895 |
+
text_labels = torch.where(mask, prompt_input_ids_clip_2, -100)
|
| 896 |
+
# ====================== text perturbation ======================
|
| 897 |
+
|
| 898 |
+
|
| 899 |
+
# ====================== encode masked text prompts ======================
|
| 900 |
+
if args.text_encoder_architecture in ("t5_clip", "gemma"):
|
| 901 |
+
masked_encoder_hidden_states, masked_cond_embeds = encode_prompt(
|
| 902 |
+
[text_encoder, text_encoder_2],
|
| 903 |
+
[masked_prompt_input_ids_clip, masked_prompt_input_ids_t5],
|
| 904 |
+
args.text_encoder_architecture
|
| 905 |
+
)
|
| 906 |
+
else:
|
| 907 |
+
masked_encoder_hidden_states, masked_cond_embeds = encode_prompt(
|
| 908 |
+
text_encoder,
|
| 909 |
+
masked_prompt_input_ids_clip,
|
| 910 |
+
args.text_encoder_architecture
|
| 911 |
+
)
|
| 912 |
+
masked_encoder_hidden_states = masked_encoder_hidden_states.to(accelerator.device, dtype=accelerator.unwrap_model(model).dtype)
|
| 913 |
+
masked_cond_embeds = masked_cond_embeds.to(accelerator.device, dtype=accelerator.unwrap_model(model).dtype)
|
| 914 |
+
# ====================== encode masked text prompts ======================
|
| 915 |
+
|
| 916 |
+
|
| 917 |
+
# for CFG
|
| 918 |
+
if args.cond_dropout_prob > 0.0:
|
| 919 |
+
assert encoder_hidden_states is not None
|
| 920 |
+
|
| 921 |
+
batch_size = encoder_hidden_states.shape[0]
|
| 922 |
+
|
| 923 |
+
mask = (
|
| 924 |
+
torch.zeros((batch_size, 1, 1), device=encoder_hidden_states.device).float().uniform_(0, 1)
|
| 925 |
+
< args.cond_dropout_prob
|
| 926 |
+
)
|
| 927 |
+
|
| 928 |
+
empty_embeds_ = empty_embeds.expand(batch_size, -1, -1)
|
| 929 |
+
encoder_hidden_states = torch.where(
|
| 930 |
+
(encoder_hidden_states * mask).bool(), encoder_hidden_states, empty_embeds_
|
| 931 |
+
)
|
| 932 |
+
|
| 933 |
+
empty_clip_embeds_ = empty_clip_embeds.expand(batch_size, -1)
|
| 934 |
+
cond_embeds = torch.where((cond_embeds * mask.squeeze(-1)).bool(), cond_embeds, empty_clip_embeds_)
|
| 935 |
+
|
| 936 |
+
vae_scale_factor = 2 ** (len(vq_model.config.block_out_channels) - 1)
|
| 937 |
+
resolution = args.resolution // vae_scale_factor
|
| 938 |
+
masked_image_ids = masked_image_ids.reshape(half_batch_size, resolution, resolution)
|
| 939 |
+
image_ids = image_tokens_2.reshape(half_batch_size, resolution, resolution)
|
| 940 |
+
|
| 941 |
+
|
| 942 |
+
# Train Step
|
| 943 |
+
with accelerator.accumulate(model):
|
| 944 |
+
codebook_size = accelerator.unwrap_model(model).config.codebook_size
|
| 945 |
+
if args.resolution == 1024: # only stage 3 and stage 4 do not apply 2*
|
| 946 |
+
img_ids = _prepare_latent_image_ids(
|
| 947 |
+
masked_image_ids.shape[0],
|
| 948 |
+
masked_image_ids.shape[-2],
|
| 949 |
+
masked_image_ids.shape[-1],
|
| 950 |
+
masked_image_ids.device,
|
| 951 |
+
masked_image_ids.dtype
|
| 952 |
+
)
|
| 953 |
+
else:
|
| 954 |
+
img_ids = _prepare_latent_image_ids(
|
| 955 |
+
masked_image_ids.shape[0],
|
| 956 |
+
masked_image_ids.shape[-2],
|
| 957 |
+
masked_image_ids.shape[-1],
|
| 958 |
+
masked_image_ids.device,
|
| 959 |
+
masked_image_ids.dtype
|
| 960 |
+
)
|
| 961 |
+
|
| 962 |
+
txt_ids = torch.zeros(encoder_hidden_states.shape[1], 3).to(device=masked_image_ids.device, dtype=masked_image_ids.dtype)
|
| 963 |
+
|
| 964 |
+
image_logits = (
|
| 965 |
+
model(
|
| 966 |
+
hidden_states=masked_image_ids, # should be (batch size, channel, height, width)
|
| 967 |
+
encoder_hidden_states=encoder_hidden_states, # should be (batch size, sequence_len, embed_dims)
|
| 968 |
+
micro_conds=image_micro_conds,
|
| 969 |
+
pooled_projections=cond_embeds, # should be (batch_size, projection_dim)
|
| 970 |
+
img_ids=img_ids,
|
| 971 |
+
txt_ids=txt_ids,
|
| 972 |
+
timestep=image_mask_prob,
|
| 973 |
+
)[0]
|
| 974 |
+
.reshape(half_batch_size, codebook_size, -1)
|
| 975 |
+
.permute(0, 2, 1)
|
| 976 |
+
.reshape(-1, codebook_size)
|
| 977 |
+
)
|
| 978 |
+
|
| 979 |
+
image_loss = F.cross_entropy(
|
| 980 |
+
image_logits,
|
| 981 |
+
image_labels.view(-1),
|
| 982 |
+
ignore_index=-100,
|
| 983 |
+
reduction="mean",
|
| 984 |
+
)
|
| 985 |
+
|
| 986 |
+
text_logits = model(
|
| 987 |
+
hidden_states=image_ids, # should be (batch size, channel, height, width)
|
| 988 |
+
encoder_hidden_states=masked_encoder_hidden_states, # should be (batch size, sequence_len, embed_dims)
|
| 989 |
+
micro_conds=text_micro_conds,
|
| 990 |
+
pooled_projections=masked_cond_embeds, # should be (batch_size, projection_dim)
|
| 991 |
+
img_ids=img_ids,
|
| 992 |
+
txt_ids=txt_ids,
|
| 993 |
+
timestep=text_timestep,
|
| 994 |
+
)[1]
|
| 995 |
+
text_logits = text_logits.reshape(-1, accelerator.unwrap_model(model).config.tokenizer_vocab_size)
|
| 996 |
+
|
| 997 |
+
text_loss = F.cross_entropy(
|
| 998 |
+
text_logits,
|
| 999 |
+
text_labels.view(-1),
|
| 1000 |
+
ignore_index=-100,
|
| 1001 |
+
reduction="none",
|
| 1002 |
+
)
|
| 1003 |
+
text_loss = text_loss.reshape(half_batch_size, -1).mean(-1)
|
| 1004 |
+
text_loss = text_loss / text_timestep
|
| 1005 |
+
text_loss = text_loss.mean()
|
| 1006 |
+
|
| 1007 |
+
loss = image_loss + args.text_loss_weight * text_loss
|
| 1008 |
+
|
| 1009 |
+
# Gather the losses across all processes for logging (if we use distributed training).
|
| 1010 |
+
avg_loss = accelerator.gather(loss.repeat(args.train_batch_size)).mean()
|
| 1011 |
+
avg_masking_rate = accelerator.gather(text_mask_prob.repeat(args.train_batch_size)).mean()
|
| 1012 |
+
|
| 1013 |
+
accelerator.backward(loss)
|
| 1014 |
+
|
| 1015 |
+
# Temporarily add this to identify unused parameters
|
| 1016 |
+
# for name, param in accelerator.unwrap_model(model).named_parameters():
|
| 1017 |
+
# if param.grad is None:
|
| 1018 |
+
# print(f"Unused parameter: {name}")
|
| 1019 |
+
|
| 1020 |
+
if args.max_grad_norm is not None and accelerator.sync_gradients:
|
| 1021 |
+
accelerator.clip_grad_norm_(model.parameters(), args.max_grad_norm)
|
| 1022 |
+
|
| 1023 |
+
optimizer.step()
|
| 1024 |
+
lr_scheduler.step()
|
| 1025 |
+
|
| 1026 |
+
optimizer.zero_grad(set_to_none=True)
|
| 1027 |
+
|
| 1028 |
+
# Checks if the accelerator has performed an optimization step behind the scenes
|
| 1029 |
+
if accelerator.sync_gradients:
|
| 1030 |
+
if (global_step + 1) % args.logging_steps == 0:
|
| 1031 |
+
logs = {
|
| 1032 |
+
"step_loss": avg_loss.item(),
|
| 1033 |
+
"lr": lr_scheduler.get_last_lr()[0],
|
| 1034 |
+
"avg_masking_rate": avg_masking_rate.item(),
|
| 1035 |
+
}
|
| 1036 |
+
accelerator.log(logs, step=global_step + 1)
|
| 1037 |
+
|
| 1038 |
+
logger.info(
|
| 1039 |
+
f"Step: {global_step + 1} "
|
| 1040 |
+
f"Loss: {avg_loss.item():0.4f} "
|
| 1041 |
+
f"LR: {lr_scheduler.get_last_lr()[0]:0.6f}"
|
| 1042 |
+
)
|
| 1043 |
+
|
| 1044 |
+
if (global_step + 1) % args.checkpointing_steps == 0:
|
| 1045 |
+
save_checkpoint(args, accelerator, global_step + 1, logger)
|
| 1046 |
+
|
| 1047 |
+
if (global_step + 1) % args.validation_steps == 0 and accelerator.is_main_process:
|
| 1048 |
+
|
| 1049 |
+
with torch.no_grad():
|
| 1050 |
+
logger.info("Generating images...")
|
| 1051 |
+
|
| 1052 |
+
model.eval()
|
| 1053 |
+
|
| 1054 |
+
scheduler = Scheduler.from_pretrained(
|
| 1055 |
+
args.pretrained_model_name_or_path,
|
| 1056 |
+
subfolder="scheduler",
|
| 1057 |
+
revision=args.revision,
|
| 1058 |
+
variant=args.variant,
|
| 1059 |
+
)
|
| 1060 |
+
|
| 1061 |
+
pipe = UnifiedPipeline(
|
| 1062 |
+
transformer=accelerator.unwrap_model(model),
|
| 1063 |
+
tokenizer=tokenizer,
|
| 1064 |
+
text_encoder=text_encoder,
|
| 1065 |
+
vqvae=vq_model,
|
| 1066 |
+
scheduler=scheduler,
|
| 1067 |
+
tokenizer_2=tokenizer_2,
|
| 1068 |
+
text_encoder_2=text_encoder_2,
|
| 1069 |
+
)
|
| 1070 |
+
|
| 1071 |
+
if not args.image_to_text_only:
|
| 1072 |
+
output = pipe(
|
| 1073 |
+
prompt=args.validation_prompts,
|
| 1074 |
+
height=args.resolution,
|
| 1075 |
+
width=args.resolution,
|
| 1076 |
+
guidance_scale=9,
|
| 1077 |
+
num_inference_steps=64,
|
| 1078 |
+
)
|
| 1079 |
+
pil_images = output.images
|
| 1080 |
+
|
| 1081 |
+
result=[]
|
| 1082 |
+
for img in pil_images:
|
| 1083 |
+
if not isinstance(img, torch.Tensor):
|
| 1084 |
+
img = transforms.ToTensor()(img)
|
| 1085 |
+
result.append(img.unsqueeze(0))
|
| 1086 |
+
result = torch.cat(result,dim=0)
|
| 1087 |
+
result = make_grid(result, nrow=3)
|
| 1088 |
+
save_image(result,os.path.join(args.output_dir, str(global_step)+'_text2image_1024_CFG-9.png'))
|
| 1089 |
+
|
| 1090 |
+
output_data = {
|
| 1091 |
+
"step": global_step,
|
| 1092 |
+
"prompts": args.validation_prompts,
|
| 1093 |
+
"images": [f"{global_step}_text2image_1024_CFG-9_{i}.png" for i in range(len(pil_images))]
|
| 1094 |
+
}
|
| 1095 |
+
|
| 1096 |
+
with open(os.path.join(args.output_dir, f"text2image_{global_step}.json"), "w") as f:
|
| 1097 |
+
json.dump(output_data, f, indent=2)
|
| 1098 |
+
|
| 1099 |
+
image = load_images_to_tensor(args.validation_images, target_size=(args.resolution, args.resolution))
|
| 1100 |
+
output = pipe(
|
| 1101 |
+
prompt=args.validation_prompts,
|
| 1102 |
+
height=args.resolution,
|
| 1103 |
+
width=args.resolution,
|
| 1104 |
+
guidance_scale=9,
|
| 1105 |
+
image=image,
|
| 1106 |
+
num_inference_steps=64
|
| 1107 |
+
)
|
| 1108 |
+
prompts = output.prompts
|
| 1109 |
+
|
| 1110 |
+
output_data = {
|
| 1111 |
+
"step": global_step,
|
| 1112 |
+
"prompts": prompts,
|
| 1113 |
+
}
|
| 1114 |
+
|
| 1115 |
+
with open(os.path.join(args.output_dir, f"image2text_{global_step}.json"), "w") as f:
|
| 1116 |
+
json.dump(output_data, f, indent=2)
|
| 1117 |
+
|
| 1118 |
+
model.train()
|
| 1119 |
+
|
| 1120 |
+
global_step += 1
|
| 1121 |
+
|
| 1122 |
+
# Stop training if max steps is reached
|
| 1123 |
+
if global_step >= args.max_train_steps:
|
| 1124 |
+
break
|
| 1125 |
+
# End for
|
| 1126 |
+
|
| 1127 |
+
accelerator.wait_for_everyone()
|
| 1128 |
+
|
| 1129 |
+
# Evaluate and save checkpoint at the end of training
|
| 1130 |
+
save_checkpoint(args, accelerator, global_step, logger)
|
| 1131 |
+
|
| 1132 |
+
# Save the final trained checkpoint
|
| 1133 |
+
if accelerator.is_main_process:
|
| 1134 |
+
model = accelerator.unwrap_model(model)
|
| 1135 |
+
model.save_pretrained(args.output_dir)
|
| 1136 |
+
|
| 1137 |
+
accelerator.end_training()
|
| 1138 |
+
|
| 1139 |
+
|
| 1140 |
+
if __name__ == "__main__":
|
| 1141 |
+
main(parse_args())
|
train/train_unified.sh
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# bash it in root path
|
| 2 |
+
PYTHON_PATH='./' accelerate launch --multi_gpu --gpu_ids '0,1,2,3,4,5,6,7' --main_process_port 25000 --num_processes 8 train/train_unified.py \
|
| 3 |
+
--output_dir "/path/to/output/dir" \
|
| 4 |
+
--train_batch_size 8 \
|
| 5 |
+
--gradient_accumulation_steps 8 \
|
| 6 |
+
--learning_rate 1e-4 \
|
| 7 |
+
--text_loss_weight 0 \
|
| 8 |
+
--max_grad_norm 10 \
|
| 9 |
+
--pretrained_model_name_or_path "MeissonFlow/Meissonic" \
|
| 10 |
+
--pretrained_transformer_path "MeissonFlow/Meissonic" \
|
| 11 |
+
--text_encoder_architecture 'open_clip' \
|
| 12 |
+
--instance_dataset 'ImageCaptionLargeDataset' \
|
| 13 |
+
--instance_data_dir '/path/to/data/' \
|
| 14 |
+
--resolution 512 \
|
| 15 |
+
--mixed_precision fp16 \
|
| 16 |
+
--lr_scheduler constant \
|
| 17 |
+
--use_8bit_adam \
|
| 18 |
+
--dataloader_num_workers 4 \
|
| 19 |
+
--validation_prompts \
|
| 20 |
+
'a boy' \
|
| 21 |
+
'A serene mountain landscape with towering snow-capped peaks, a crystal-clear blue lake reflecting the mountains, dense pine forests, and a vibrant orange sunrise illuminating the sky.' \
|
| 22 |
+
'A playful golden retriever puppy with a shiny coat, bounding through a meadow filled with colorful wildflowers, under a bright, clear blue sky.' \
|
| 23 |
+
'A bustling city street at night, illuminated by vibrant neon signs in various colors, with busy pedestrians, street vendors, and a light rain creating reflective puddles on the pavement.' \
|
| 24 |
+
'A majestic, medieval castle perched on a rugged cliffside, overlooking a vast, calm ocean at sunset, with the sky painted in hues of pink, orange, and purple.' \
|
| 25 |
+
'An elegant ballerina in a white tutu, dancing gracefully on a grand stage with ornate, gold-trimmed curtains, under a spotlight that casts a soft glow.' \
|
| 26 |
+
'A cozy, rustic log cabin nestled in a snow-covered forest, with smoke rising from the stone chimney, warm lights glowing from the windows, and a path of footprints leading to the front door.'\
|
| 27 |
+
'A Cute Cat' \
|
| 28 |
+
'A Snow Mountain'\
|
| 29 |
+
--max_train_steps 100000 \
|
| 30 |
+
--checkpointing_steps 1000 \
|
| 31 |
+
--validation_steps 100 \
|
| 32 |
+
--report_to 'wandb' \
|
| 33 |
+
--logging_steps 10
|
train/train_unified_new.py
ADDED
|
@@ -0,0 +1,1078 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2024 The HuggingFace Team and The MeissonFlow Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
import argparse
|
| 16 |
+
import copy
|
| 17 |
+
import logging
|
| 18 |
+
import math
|
| 19 |
+
import os
|
| 20 |
+
from pathlib import Path
|
| 21 |
+
import sys
|
| 22 |
+
sys.path.append(os.getcwd())
|
| 23 |
+
import json
|
| 24 |
+
import gc
|
| 25 |
+
|
| 26 |
+
import torch
|
| 27 |
+
import torch.nn.functional as F
|
| 28 |
+
from torch import nn
|
| 29 |
+
|
| 30 |
+
from accelerate import Accelerator
|
| 31 |
+
from accelerate.logging import get_logger
|
| 32 |
+
from accelerate.utils import ProjectConfiguration, set_seed
|
| 33 |
+
from peft import LoraConfig
|
| 34 |
+
from peft.utils import get_peft_model_state_dict
|
| 35 |
+
from torch.utils.data import DataLoader
|
| 36 |
+
from torchvision import transforms
|
| 37 |
+
|
| 38 |
+
from transformers.models.gemma2.modeling_gemma2 import Gemma2Model
|
| 39 |
+
from transformers.models.gemma.tokenization_gemma_fast import GemmaTokenizerFast
|
| 40 |
+
from transformers import (
|
| 41 |
+
CLIPTextModelWithProjection,
|
| 42 |
+
CLIPTokenizer,
|
| 43 |
+
CLIPImageProcessor,
|
| 44 |
+
CLIPVisionModelWithProjection,
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
import diffusers.optimization
|
| 48 |
+
from diffusers import VQModel
|
| 49 |
+
|
| 50 |
+
from src.scheduler import Scheduler
|
| 51 |
+
from diffusers.loaders import LoraLoaderMixin
|
| 52 |
+
from diffusers.utils import is_wandb_available
|
| 53 |
+
from src.pipeline import UnifiedPipeline_new
|
| 54 |
+
from torchvision.utils import save_image, make_grid
|
| 55 |
+
from train.trainer_utils import save_checkpoint
|
| 56 |
+
from train.dataset_utils import ImageCaptionLargeDataset
|
| 57 |
+
from train.dataset_utils import encode_prompt
|
| 58 |
+
from src.transformer import SymmetricTransformer2DModel
|
| 59 |
+
from train.trainer_utils import load_images_to_tensor
|
| 60 |
+
|
| 61 |
+
if is_wandb_available():
|
| 62 |
+
import wandb
|
| 63 |
+
# wandb.login(key="")
|
| 64 |
+
|
| 65 |
+
logger = get_logger(__name__, log_level="INFO")
|
| 66 |
+
|
| 67 |
+
import torch._dynamo
|
| 68 |
+
torch._dynamo.config.verbose = True
|
| 69 |
+
|
| 70 |
+
# Optionally suppress errors to fall back to eager execution
|
| 71 |
+
torch._dynamo.config.suppress_errors = True
|
| 72 |
+
|
| 73 |
+
def parse_args():
|
| 74 |
+
parser = argparse.ArgumentParser()
|
| 75 |
+
parser.add_argument(
|
| 76 |
+
"--pretrained_model_name_or_path",
|
| 77 |
+
type=str,
|
| 78 |
+
default=None,
|
| 79 |
+
required=True,
|
| 80 |
+
help="Path to pretrained model or model identifier from huggingface.co/models.",
|
| 81 |
+
)
|
| 82 |
+
parser.add_argument(
|
| 83 |
+
"--pretrained_transformer_path",
|
| 84 |
+
type=str,
|
| 85 |
+
default=None,
|
| 86 |
+
required=True,
|
| 87 |
+
help="Path to pretrained model or model identifier from huggingface.co/models.",
|
| 88 |
+
)
|
| 89 |
+
parser.add_argument(
|
| 90 |
+
"--text_encoder_architecture",
|
| 91 |
+
type=str,
|
| 92 |
+
default="open_clip",
|
| 93 |
+
required=False,
|
| 94 |
+
help="The architecture of the text encoder. One of ['open_clip', 'gemma']",
|
| 95 |
+
)
|
| 96 |
+
parser.add_argument(
|
| 97 |
+
"--clip_model_name_or_path",
|
| 98 |
+
type=str,
|
| 99 |
+
default=None,
|
| 100 |
+
required=True,
|
| 101 |
+
help="Path to pretrained model or model identifier from huggingface.co/models.",
|
| 102 |
+
)
|
| 103 |
+
parser.add_argument(
|
| 104 |
+
"--text_encoder_2_name_or_path",
|
| 105 |
+
type=str,
|
| 106 |
+
default=None,
|
| 107 |
+
required=False,
|
| 108 |
+
help="Path to pretrained model or model identifier from huggingface.co/models.",
|
| 109 |
+
)
|
| 110 |
+
parser.add_argument(
|
| 111 |
+
"--instance_dataset",
|
| 112 |
+
type=str,
|
| 113 |
+
default=None,
|
| 114 |
+
required=False,
|
| 115 |
+
help="The dataset to use for training. One of ['MSCOCO600K', 'PickaPicV2']",
|
| 116 |
+
)
|
| 117 |
+
parser.add_argument(
|
| 118 |
+
"--instance_data_dir",
|
| 119 |
+
type=str,
|
| 120 |
+
default=None,
|
| 121 |
+
required=False,
|
| 122 |
+
help="A folder containing the training data of instance images.",
|
| 123 |
+
)
|
| 124 |
+
parser.add_argument(
|
| 125 |
+
"--training_from_scratch",
|
| 126 |
+
type=bool,
|
| 127 |
+
default=False,
|
| 128 |
+
required=False
|
| 129 |
+
)
|
| 130 |
+
parser.add_argument(
|
| 131 |
+
"--revision",
|
| 132 |
+
type=str,
|
| 133 |
+
default=None,
|
| 134 |
+
required=False,
|
| 135 |
+
help="Revision of pretrained model identifier from huggingface.co/models.",
|
| 136 |
+
)
|
| 137 |
+
parser.add_argument(
|
| 138 |
+
"--variant",
|
| 139 |
+
type=str,
|
| 140 |
+
default=None,
|
| 141 |
+
help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16",
|
| 142 |
+
)
|
| 143 |
+
parser.add_argument(
|
| 144 |
+
"--instance_data_image", type=str, default=None, required=False, help="A single training image"
|
| 145 |
+
)
|
| 146 |
+
parser.add_argument(
|
| 147 |
+
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
|
| 148 |
+
)
|
| 149 |
+
parser.add_argument(
|
| 150 |
+
"--dataloader_num_workers",
|
| 151 |
+
type=int,
|
| 152 |
+
default=0,
|
| 153 |
+
help=(
|
| 154 |
+
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
|
| 155 |
+
),
|
| 156 |
+
)
|
| 157 |
+
parser.add_argument(
|
| 158 |
+
"--allow_tf32",
|
| 159 |
+
action="store_true",
|
| 160 |
+
help=(
|
| 161 |
+
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
|
| 162 |
+
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
|
| 163 |
+
),
|
| 164 |
+
)
|
| 165 |
+
parser.add_argument("--use_ema", action="store_true", help="Whether to use EMA model.")
|
| 166 |
+
parser.add_argument("--ema_decay", type=float, default=0.9999)
|
| 167 |
+
parser.add_argument("--ema_update_after_step", type=int, default=0)
|
| 168 |
+
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
|
| 169 |
+
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
|
| 170 |
+
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
|
| 171 |
+
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
|
| 172 |
+
parser.add_argument(
|
| 173 |
+
"--output_dir",
|
| 174 |
+
type=str,
|
| 175 |
+
default="muse_training",
|
| 176 |
+
help="The output directory where the model predictions and checkpoints will be written.",
|
| 177 |
+
)
|
| 178 |
+
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
|
| 179 |
+
parser.add_argument(
|
| 180 |
+
"--logging_dir",
|
| 181 |
+
type=str,
|
| 182 |
+
default="logs",
|
| 183 |
+
help=(
|
| 184 |
+
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
|
| 185 |
+
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
|
| 186 |
+
),
|
| 187 |
+
)
|
| 188 |
+
parser.add_argument(
|
| 189 |
+
"--max_train_steps",
|
| 190 |
+
type=int,
|
| 191 |
+
default=None,
|
| 192 |
+
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
|
| 193 |
+
)
|
| 194 |
+
parser.add_argument(
|
| 195 |
+
"--checkpointing_steps",
|
| 196 |
+
type=int,
|
| 197 |
+
default=500,
|
| 198 |
+
help=(
|
| 199 |
+
"Save a checkpoint of the training state every X updates. Checkpoints can be used for resuming training via `--resume_from_checkpoint`. "
|
| 200 |
+
"In the case that the checkpoint is better than the final trained model, the checkpoint can also be used for inference."
|
| 201 |
+
"Using a checkpoint for inference requires separate loading of the original pipeline and the individual checkpointed model components."
|
| 202 |
+
"See https://huggingface.co/docs/diffusers/main/en/training/dreambooth#performing-inference-using-a-saved-checkpoint for step by step"
|
| 203 |
+
"instructions."
|
| 204 |
+
),
|
| 205 |
+
)
|
| 206 |
+
parser.add_argument(
|
| 207 |
+
"--logging_steps",
|
| 208 |
+
type=int,
|
| 209 |
+
default=50,
|
| 210 |
+
)
|
| 211 |
+
parser.add_argument(
|
| 212 |
+
"--checkpoints_total_limit",
|
| 213 |
+
type=int,
|
| 214 |
+
default=None,
|
| 215 |
+
help=(
|
| 216 |
+
"Max number of checkpoints to store. Passed as `total_limit` to the `Accelerator` `ProjectConfiguration`."
|
| 217 |
+
" See Accelerator::save_state https://huggingface.co/docs/accelerate/package_reference/accelerator#accelerate.Accelerator.save_state"
|
| 218 |
+
" for more details"
|
| 219 |
+
),
|
| 220 |
+
)
|
| 221 |
+
parser.add_argument(
|
| 222 |
+
"--resume_from_checkpoint",
|
| 223 |
+
type=str,
|
| 224 |
+
default=None,
|
| 225 |
+
help=(
|
| 226 |
+
"Whether training should be resumed from a previous checkpoint. Use a path saved by"
|
| 227 |
+
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
|
| 228 |
+
),
|
| 229 |
+
)
|
| 230 |
+
parser.add_argument(
|
| 231 |
+
"--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader."
|
| 232 |
+
)
|
| 233 |
+
parser.add_argument(
|
| 234 |
+
"--gradient_accumulation_steps",
|
| 235 |
+
type=int,
|
| 236 |
+
default=1,
|
| 237 |
+
help="Number of updates steps to accumulate before performing a backward/update pass.",
|
| 238 |
+
)
|
| 239 |
+
parser.add_argument(
|
| 240 |
+
"--text_loss_reduction",
|
| 241 |
+
type=str,
|
| 242 |
+
default="mean",
|
| 243 |
+
help="The reduction method for the text loss. One of ['mean', 'reweighted']",
|
| 244 |
+
)
|
| 245 |
+
parser.add_argument(
|
| 246 |
+
"--text_loss_weight",
|
| 247 |
+
type=float,
|
| 248 |
+
default=0.2,
|
| 249 |
+
)
|
| 250 |
+
parser.add_argument(
|
| 251 |
+
"--learning_rate",
|
| 252 |
+
type=float,
|
| 253 |
+
default=0.0003,
|
| 254 |
+
help="Initial learning rate (after the potential warmup period) to use.",
|
| 255 |
+
)
|
| 256 |
+
parser.add_argument(
|
| 257 |
+
"--scale_lr",
|
| 258 |
+
action="store_true",
|
| 259 |
+
default=False,
|
| 260 |
+
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
|
| 261 |
+
)
|
| 262 |
+
parser.add_argument(
|
| 263 |
+
"--lr_scheduler",
|
| 264 |
+
type=str,
|
| 265 |
+
default="constant",
|
| 266 |
+
help=(
|
| 267 |
+
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
|
| 268 |
+
' "constant", "constant_with_warmup"]'
|
| 269 |
+
),
|
| 270 |
+
)
|
| 271 |
+
parser.add_argument(
|
| 272 |
+
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
|
| 273 |
+
)
|
| 274 |
+
parser.add_argument(
|
| 275 |
+
"--validation_steps",
|
| 276 |
+
type=int,
|
| 277 |
+
default=100,
|
| 278 |
+
help=(
|
| 279 |
+
"Run validation every X steps. Validation consists of running the prompt"
|
| 280 |
+
" `args.validation_prompt` multiple times: `args.num_validation_images`"
|
| 281 |
+
" and logging the images."
|
| 282 |
+
),
|
| 283 |
+
)
|
| 284 |
+
parser.add_argument(
|
| 285 |
+
"--mixed_precision",
|
| 286 |
+
type=str,
|
| 287 |
+
default=None,
|
| 288 |
+
choices=["no", "fp16", "bf16"],
|
| 289 |
+
help=(
|
| 290 |
+
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
|
| 291 |
+
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
|
| 292 |
+
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
|
| 293 |
+
),
|
| 294 |
+
)
|
| 295 |
+
parser.add_argument(
|
| 296 |
+
"--report_to",
|
| 297 |
+
type=str,
|
| 298 |
+
default="wandb",
|
| 299 |
+
help=(
|
| 300 |
+
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
|
| 301 |
+
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
|
| 302 |
+
),
|
| 303 |
+
)
|
| 304 |
+
parser.add_argument("--validation_prompts", type=str, nargs="*")
|
| 305 |
+
parser.add_argument("--validation_images", type=str, default="./assets")
|
| 306 |
+
parser.add_argument(
|
| 307 |
+
"--resolution",
|
| 308 |
+
type=int,
|
| 309 |
+
default=512,
|
| 310 |
+
help=(
|
| 311 |
+
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
|
| 312 |
+
" resolution"
|
| 313 |
+
),
|
| 314 |
+
)
|
| 315 |
+
parser.add_argument("--split_vae_encode", type=int, required=False, default=None)
|
| 316 |
+
parser.add_argument("--min_masking_rate", type=float, default=0.0)
|
| 317 |
+
parser.add_argument("--cond_dropout_prob", type=float, default=0.0)
|
| 318 |
+
parser.add_argument("--max_grad_norm", default=50.0, type=float, help="Max gradient norm.", required=False)
|
| 319 |
+
parser.add_argument("--use_lora", action="store_true", help="Fine tune the model using LoRa")
|
| 320 |
+
parser.add_argument("--text_encoder_use_lora", action="store_true", help="Fine tune the model using LoRa")
|
| 321 |
+
parser.add_argument("--lora_r", default=16, type=int)
|
| 322 |
+
parser.add_argument("--lora_alpha", default=32, type=int)
|
| 323 |
+
parser.add_argument("--lora_target_modules", default=["to_q", "to_k", "to_v"], type=str, nargs="+")
|
| 324 |
+
parser.add_argument("--text_encoder_lora_r", default=16, type=int)
|
| 325 |
+
parser.add_argument("--text_encoder_lora_alpha", default=32, type=int)
|
| 326 |
+
parser.add_argument("--text_encoder_lora_target_modules", default=["to_q", "to_k", "to_v"], type=str, nargs="+")
|
| 327 |
+
parser.add_argument("--train_text_encoder", action="store_true")
|
| 328 |
+
parser.add_argument("--image_to_text_only", action="store_true")
|
| 329 |
+
parser.add_argument("--image_key", type=str, required=False)
|
| 330 |
+
parser.add_argument("--prompt_key", type=str, required=False)
|
| 331 |
+
parser.add_argument(
|
| 332 |
+
"--gradient_checkpointing",
|
| 333 |
+
action="store_true",
|
| 334 |
+
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
|
| 335 |
+
)
|
| 336 |
+
parser.add_argument("--prompt_prefix", type=str, required=False, default=None)
|
| 337 |
+
|
| 338 |
+
args = parser.parse_args()
|
| 339 |
+
|
| 340 |
+
if args.report_to == "wandb":
|
| 341 |
+
if not is_wandb_available():
|
| 342 |
+
raise ImportError("Make sure to install wandb if you want to use it for logging during training.")
|
| 343 |
+
|
| 344 |
+
num_datasources = sum(
|
| 345 |
+
[x is not None for x in [args.instance_data_dir, args.instance_data_image]]
|
| 346 |
+
)
|
| 347 |
+
|
| 348 |
+
if num_datasources != 1:
|
| 349 |
+
raise ValueError(
|
| 350 |
+
"provide one and only one of `--instance_data_dir`, `--instance_data_image`, or `--instance_data_dataset`"
|
| 351 |
+
)
|
| 352 |
+
|
| 353 |
+
if args.instance_data_dir is not None:
|
| 354 |
+
if not os.path.exists(args.instance_data_dir):
|
| 355 |
+
raise ValueError(f"Does not exist: `--args.instance_data_dir` {args.instance_data_dir}")
|
| 356 |
+
|
| 357 |
+
if args.instance_data_image is not None:
|
| 358 |
+
if not os.path.exists(args.instance_data_image):
|
| 359 |
+
raise ValueError(f"Does not exist: `--args.instance_data_image` {args.instance_data_image}")
|
| 360 |
+
|
| 361 |
+
return args
|
| 362 |
+
|
| 363 |
+
def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
|
| 364 |
+
latent_image_ids = torch.zeros(height // 2, width // 2, 3)
|
| 365 |
+
latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2)[:, None]
|
| 366 |
+
latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2)[None, :]
|
| 367 |
+
|
| 368 |
+
latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
|
| 369 |
+
|
| 370 |
+
latent_image_ids = latent_image_ids.reshape(
|
| 371 |
+
latent_image_id_height * latent_image_id_width, latent_image_id_channels
|
| 372 |
+
)
|
| 373 |
+
|
| 374 |
+
return latent_image_ids.to(device=device, dtype=dtype)
|
| 375 |
+
|
| 376 |
+
def main(args):
|
| 377 |
+
if args.allow_tf32:
|
| 378 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 379 |
+
|
| 380 |
+
logging_dir = Path(args.output_dir, args.logging_dir)
|
| 381 |
+
|
| 382 |
+
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
|
| 383 |
+
|
| 384 |
+
accelerator = Accelerator(
|
| 385 |
+
gradient_accumulation_steps=args.gradient_accumulation_steps,
|
| 386 |
+
mixed_precision=args.mixed_precision,
|
| 387 |
+
log_with=args.report_to,
|
| 388 |
+
project_config=accelerator_project_config,
|
| 389 |
+
)
|
| 390 |
+
|
| 391 |
+
if accelerator.is_main_process:
|
| 392 |
+
os.makedirs(args.output_dir, exist_ok=True)
|
| 393 |
+
|
| 394 |
+
# Make one log on every process with the configuration for debugging.
|
| 395 |
+
logging.basicConfig(
|
| 396 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
| 397 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
| 398 |
+
level=logging.INFO,
|
| 399 |
+
)
|
| 400 |
+
logger.info(accelerator.state, main_process_only=False)
|
| 401 |
+
|
| 402 |
+
# if accelerator.is_main_process:
|
| 403 |
+
# accelerator.init_trackers("meissonic", config=vars(copy.deepcopy(args)))
|
| 404 |
+
|
| 405 |
+
if args.seed is not None:
|
| 406 |
+
set_seed(args.seed)
|
| 407 |
+
|
| 408 |
+
# Initialize image processor and image encoder (CLIP Vision Model with Projection)
|
| 409 |
+
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
|
| 410 |
+
args.clip_model_name_or_path
|
| 411 |
+
)
|
| 412 |
+
image_processor = CLIPImageProcessor.from_pretrained(
|
| 413 |
+
args.clip_model_name_or_path
|
| 414 |
+
)
|
| 415 |
+
|
| 416 |
+
# Freeze image encoder parameters
|
| 417 |
+
image_encoder.requires_grad_(False)
|
| 418 |
+
|
| 419 |
+
text_encoder = CLIPTextModelWithProjection.from_pretrained(
|
| 420 |
+
args.clip_model_name_or_path
|
| 421 |
+
)
|
| 422 |
+
tokenizer = CLIPTokenizer.from_pretrained(
|
| 423 |
+
args.clip_model_name_or_path
|
| 424 |
+
)
|
| 425 |
+
|
| 426 |
+
text_encoder.requires_grad_(False)
|
| 427 |
+
|
| 428 |
+
if args.text_encoder_architecture == "open_clip":
|
| 429 |
+
tokenizer_2 = None
|
| 430 |
+
text_encoder_2 = None
|
| 431 |
+
|
| 432 |
+
mask_token = "<mask>"
|
| 433 |
+
num_new_tokens = tokenizer.add_tokens(mask_token)
|
| 434 |
+
mask_id_1 = tokenizer.convert_tokens_to_ids(mask_token)
|
| 435 |
+
if num_new_tokens > 0:
|
| 436 |
+
text_encoder.resize_token_embeddings(len(tokenizer))
|
| 437 |
+
mask_token_embedding = text_encoder.get_input_embeddings().weight[mask_id_1]
|
| 438 |
+
mask_token_embedding = mask_token_embedding.clone().detach().cpu().float()
|
| 439 |
+
if accelerator.is_main_process:
|
| 440 |
+
print("Saving masked token embedding...")
|
| 441 |
+
torch.save(mask_token_embedding, os.path.join(args.output_dir, "mask_token_embedding.pth"))
|
| 442 |
+
|
| 443 |
+
elif args.text_encoder_architecture == "gemma":
|
| 444 |
+
tokenizer_2 = GemmaTokenizerFast.from_pretrained(
|
| 445 |
+
args.text_encoder_name_or_path,
|
| 446 |
+
)
|
| 447 |
+
text_encoder_2 = Gemma2Model.from_pretrained(
|
| 448 |
+
args.text_encoder_name_or_path,
|
| 449 |
+
)
|
| 450 |
+
|
| 451 |
+
mask_token = "<mask>"
|
| 452 |
+
|
| 453 |
+
num_new_tokens = tokenizer_2.add_tokens(mask_token)
|
| 454 |
+
mask_id_2 = tokenizer_2.convert_tokens_to_ids(mask_token)
|
| 455 |
+
|
| 456 |
+
if num_new_tokens > 0:
|
| 457 |
+
text_encoder_2.resize_token_embeddings(len(tokenizer_2))
|
| 458 |
+
mask_token_embedding = text_encoder_2.get_input_embeddings().weight[mask_id_2]
|
| 459 |
+
mask_token_embedding = mask_token_embedding.clone().detach().cpu().float()
|
| 460 |
+
if accelerator.is_main_process:
|
| 461 |
+
print("Saving masked token embedding...")
|
| 462 |
+
torch.save(mask_token_embedding, os.path.join(args.output_dir, "mask_token_embedding.pth"))
|
| 463 |
+
|
| 464 |
+
text_encoder_2.requires_grad_(False)
|
| 465 |
+
else:
|
| 466 |
+
raise ValueError(f"Unknown text encoder architecture: {args.text_encoder_architecture}")
|
| 467 |
+
|
| 468 |
+
vq_model = VQModel.from_pretrained(
|
| 469 |
+
args.pretrained_model_name_or_path, subfolder="vqvae", revision=args.revision, variant=args.variant
|
| 470 |
+
)
|
| 471 |
+
vq_model.requires_grad_(False)
|
| 472 |
+
|
| 473 |
+
model = SymmetricTransformer2DModel.from_pretrained(
|
| 474 |
+
args.pretrained_transformer_path,
|
| 475 |
+
subfolder="transformer",
|
| 476 |
+
low_cpu_mem_usage=False,
|
| 477 |
+
device_map=None
|
| 478 |
+
)
|
| 479 |
+
|
| 480 |
+
if model.config.tokenizer_vocab_size is None:
|
| 481 |
+
if args.text_encoder_architecture == "open_clip":
|
| 482 |
+
model.register_to_config(tokenizer_vocab_size=len(tokenizer))
|
| 483 |
+
elif args.text_encoder_architecture == "gemma":
|
| 484 |
+
model.register_to_config(tokenizer_vocab_size=len(tokenizer_2))
|
| 485 |
+
else:
|
| 486 |
+
raise ValueError(f"Unknown text encoder architecture!")
|
| 487 |
+
|
| 488 |
+
if accelerator.is_main_process:
|
| 489 |
+
print(f"model's tokenizer vocab size is {model.config.tokenizer_vocab_size}")
|
| 490 |
+
|
| 491 |
+
model.text_decoder = nn.Sequential(
|
| 492 |
+
nn.LayerNorm(model.inner_dim, elementwise_affine=False, eps=1e-6),
|
| 493 |
+
nn.Linear(model.inner_dim, model.config.tokenizer_vocab_size, bias=False)
|
| 494 |
+
)
|
| 495 |
+
|
| 496 |
+
model = torch.compile(model)
|
| 497 |
+
|
| 498 |
+
if args.use_lora:
|
| 499 |
+
lora_config = LoraConfig(
|
| 500 |
+
r=args.lora_r,
|
| 501 |
+
lora_alpha=args.lora_alpha,
|
| 502 |
+
target_modules=args.lora_target_modules,
|
| 503 |
+
)
|
| 504 |
+
model.add_adapter(lora_config)
|
| 505 |
+
|
| 506 |
+
model.train()
|
| 507 |
+
|
| 508 |
+
if args.image_to_text_only:
|
| 509 |
+
frozen_keys = ["project_from_hidden", "up_block", "mlm_layer"]
|
| 510 |
+
for n, p in model.named_parameters():
|
| 511 |
+
if any([frozen_key in n for frozen_key in frozen_keys]):
|
| 512 |
+
p.requires_grad_(False)
|
| 513 |
+
else:
|
| 514 |
+
p.requires_grad_(True)
|
| 515 |
+
else:
|
| 516 |
+
model.requires_grad_(True)
|
| 517 |
+
|
| 518 |
+
if args.gradient_checkpointing:
|
| 519 |
+
model.enable_gradient_checkpointing()
|
| 520 |
+
|
| 521 |
+
def save_model_hook(models, weights, output_dir):
|
| 522 |
+
if accelerator.is_main_process:
|
| 523 |
+
transformer_lora_layers_to_save = None
|
| 524 |
+
text_encoder_lora_layers_to_save = None
|
| 525 |
+
|
| 526 |
+
for model_ in models:
|
| 527 |
+
if isinstance(model_, type(accelerator.unwrap_model(model))):
|
| 528 |
+
if args.use_lora:
|
| 529 |
+
transformer_lora_layers_to_save = get_peft_model_state_dict(model_)
|
| 530 |
+
else:
|
| 531 |
+
model_.save_pretrained(os.path.join(output_dir, "transformer"))
|
| 532 |
+
elif isinstance(model_, type(accelerator.unwrap_model(text_encoder))):
|
| 533 |
+
if args.text_encoder_use_lora:
|
| 534 |
+
text_encoder_lora_layers_to_save = get_peft_model_state_dict(model_)
|
| 535 |
+
else:
|
| 536 |
+
model_.save_pretrained(os.path.join(output_dir, "text_encoder"))
|
| 537 |
+
else:
|
| 538 |
+
raise ValueError(f"unexpected save model: {model_.__class__}")
|
| 539 |
+
|
| 540 |
+
# make sure to pop weight so that corresponding model is not saved again
|
| 541 |
+
weights.pop()
|
| 542 |
+
|
| 543 |
+
if transformer_lora_layers_to_save is not None or text_encoder_lora_layers_to_save is not None:
|
| 544 |
+
LoraLoaderMixin.save_lora_weights(
|
| 545 |
+
output_dir,
|
| 546 |
+
unet_lora_layers=transformer_lora_layers_to_save,
|
| 547 |
+
text_encoder_lora_layers=text_encoder_lora_layers_to_save,
|
| 548 |
+
)
|
| 549 |
+
|
| 550 |
+
|
| 551 |
+
def load_model_hook(models, input_dir):
|
| 552 |
+
transformer = None
|
| 553 |
+
text_encoder_ = None
|
| 554 |
+
|
| 555 |
+
# this part is added for keep consistency when add model.compile() in the model
|
| 556 |
+
def adap_compile(ori_dict):#add '_orig_mod.' to each key
|
| 557 |
+
new_dict = {}
|
| 558 |
+
for k,v in ori_dict.items():
|
| 559 |
+
new_dict['_orig_mod.' + k] = v
|
| 560 |
+
return new_dict
|
| 561 |
+
|
| 562 |
+
while len(models) > 0:
|
| 563 |
+
model_ = models.pop()
|
| 564 |
+
|
| 565 |
+
if isinstance(model_, type(accelerator.unwrap_model(model))):
|
| 566 |
+
if args.use_lora:
|
| 567 |
+
transformer = model_
|
| 568 |
+
else:
|
| 569 |
+
load_model = SymmetricTransformer2DModel.from_pretrained(os.path.join(input_dir, "transformer"), low_cpu_mem_usage=False, device_map=None)
|
| 570 |
+
model_.load_state_dict(adap_compile(load_model.state_dict()))
|
| 571 |
+
del load_model
|
| 572 |
+
elif isinstance(model_, type(accelerator.unwrap_model(text_encoder))):
|
| 573 |
+
if args.text_encoder_use_lora:
|
| 574 |
+
text_encoder_ = model_
|
| 575 |
+
else:
|
| 576 |
+
try:
|
| 577 |
+
load_model = CLIPTextModelWithProjection.from_pretrained(os.path.join(input_dir, "text_encoder"))
|
| 578 |
+
model_.load_state_dict(load_model.state_dict())
|
| 579 |
+
# print('finished loading text encoder!')
|
| 580 |
+
except:
|
| 581 |
+
print('Not found text-encoder model in current folder. So we download one text encoder from Internet.')
|
| 582 |
+
load_model = CLIPTextModelWithProjection.from_pretrained("laion/CLIP-ViT-H-14-laion2B-s32B-b79K")
|
| 583 |
+
model_.load_state_dict(load_model.state_dict())
|
| 584 |
+
del load_model
|
| 585 |
+
else:
|
| 586 |
+
raise ValueError(f"unexpected save model: {model.__class__}")
|
| 587 |
+
|
| 588 |
+
if transformer is not None or text_encoder_ is not None:
|
| 589 |
+
lora_state_dict, network_alphas = LoraLoaderMixin.lora_state_dict(input_dir)
|
| 590 |
+
LoraLoaderMixin.load_lora_into_text_encoder(
|
| 591 |
+
lora_state_dict, network_alphas=network_alphas, text_encoder=text_encoder_
|
| 592 |
+
)
|
| 593 |
+
LoraLoaderMixin.load_lora_into_transformer(
|
| 594 |
+
lora_state_dict, network_alphas=network_alphas, transformer=transformer
|
| 595 |
+
)
|
| 596 |
+
|
| 597 |
+
accelerator.register_load_state_pre_hook(load_model_hook)
|
| 598 |
+
accelerator.register_save_state_pre_hook(save_model_hook)
|
| 599 |
+
|
| 600 |
+
if args.scale_lr:
|
| 601 |
+
args.learning_rate = (
|
| 602 |
+
args.learning_rate * args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
|
| 603 |
+
)
|
| 604 |
+
|
| 605 |
+
if args.use_8bit_adam:
|
| 606 |
+
try:
|
| 607 |
+
import bitsandbytes as bnb
|
| 608 |
+
except ImportError:
|
| 609 |
+
raise ImportError(
|
| 610 |
+
"Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`"
|
| 611 |
+
)
|
| 612 |
+
|
| 613 |
+
optimizer_cls = bnb.optim.AdamW8bit
|
| 614 |
+
else:
|
| 615 |
+
optimizer_cls = torch.optim.AdamW
|
| 616 |
+
|
| 617 |
+
optimizer_grouped_parameters = [
|
| 618 |
+
{
|
| 619 |
+
"params": [p for p in model.parameters() if p.requires_grad],
|
| 620 |
+
"weight_decay": args.adam_weight_decay,
|
| 621 |
+
}
|
| 622 |
+
]
|
| 623 |
+
optimizer = optimizer_cls(
|
| 624 |
+
optimizer_grouped_parameters,
|
| 625 |
+
lr=args.learning_rate,
|
| 626 |
+
betas=(args.adam_beta1, args.adam_beta2),
|
| 627 |
+
weight_decay=args.adam_weight_decay,
|
| 628 |
+
eps=args.adam_epsilon,
|
| 629 |
+
)
|
| 630 |
+
|
| 631 |
+
logger.info("Creating dataloaders and lr_scheduler")
|
| 632 |
+
|
| 633 |
+
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
|
| 634 |
+
|
| 635 |
+
if args.text_encoder_architecture in ("t5_clip", "gemma"):
|
| 636 |
+
tokenizer_for_dataset = [tokenizer, tokenizer_2]
|
| 637 |
+
else:
|
| 638 |
+
tokenizer_for_dataset = tokenizer
|
| 639 |
+
|
| 640 |
+
if args.instance_dataset == "ImageCaptionLargeDataset":
|
| 641 |
+
dataset = ImageCaptionLargeDataset(
|
| 642 |
+
root_dir=args.instance_data_dir,
|
| 643 |
+
tokenizer=tokenizer_for_dataset,
|
| 644 |
+
size=args.resolution,
|
| 645 |
+
text_encoder_architecture=args.text_encoder_architecture
|
| 646 |
+
)
|
| 647 |
+
elif args.instance_dataset == "DATA_TYPE":
|
| 648 |
+
raise NotImplementedError("DATA_TYPE is not yet supported")
|
| 649 |
+
else:
|
| 650 |
+
assert False
|
| 651 |
+
|
| 652 |
+
def collate_fn(samples):
|
| 653 |
+
images = [sample["image"] for sample in samples]
|
| 654 |
+
micro_conds = [sample["micro_conds"] for sample in samples]
|
| 655 |
+
|
| 656 |
+
images = torch.stack(images, dim=0)
|
| 657 |
+
micro_conds = torch.stack(micro_conds, dim=0)
|
| 658 |
+
|
| 659 |
+
if isinstance(samples[0]["prompt_input_ids"], list):
|
| 660 |
+
input_ids = [sample["prompt_input_ids"][0] for sample in samples]
|
| 661 |
+
input_ids_2 = [sample["prompt_input_ids"][1] for sample in samples]
|
| 662 |
+
|
| 663 |
+
input_ids = torch.cat(input_ids, dim=0)
|
| 664 |
+
input_ids_2 = torch.cat(input_ids_2, dim=0)
|
| 665 |
+
prompt_input_ids = [input_ids, input_ids_2]
|
| 666 |
+
else:
|
| 667 |
+
input_ids = [sample["prompt_input_ids"] for sample in samples]
|
| 668 |
+
|
| 669 |
+
input_ids = torch.cat(input_ids, dim=0)
|
| 670 |
+
prompt_input_ids = input_ids
|
| 671 |
+
|
| 672 |
+
ret = dict(
|
| 673 |
+
images=images,
|
| 674 |
+
micro_conds=micro_conds,
|
| 675 |
+
prompt_input_ids=prompt_input_ids,
|
| 676 |
+
)
|
| 677 |
+
|
| 678 |
+
return ret
|
| 679 |
+
|
| 680 |
+
train_dataloader = DataLoader(
|
| 681 |
+
dataset,
|
| 682 |
+
batch_size=args.train_batch_size,
|
| 683 |
+
shuffle=True,
|
| 684 |
+
num_workers=args.dataloader_num_workers,
|
| 685 |
+
collate_fn=collate_fn,
|
| 686 |
+
pin_memory=True,
|
| 687 |
+
)
|
| 688 |
+
train_dataloader.num_batches = len(train_dataloader)
|
| 689 |
+
|
| 690 |
+
lr_scheduler = diffusers.optimization.get_scheduler(
|
| 691 |
+
args.lr_scheduler,
|
| 692 |
+
optimizer=optimizer,
|
| 693 |
+
num_training_steps=args.max_train_steps * accelerator.num_processes,
|
| 694 |
+
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
|
| 695 |
+
)
|
| 696 |
+
|
| 697 |
+
logger.info("Preparing model, optimizer and dataloaders")
|
| 698 |
+
|
| 699 |
+
model, optimizer, lr_scheduler, train_dataloader = accelerator.prepare(
|
| 700 |
+
model, optimizer, lr_scheduler, train_dataloader
|
| 701 |
+
)
|
| 702 |
+
|
| 703 |
+
train_dataloader.num_batches = len(train_dataloader)
|
| 704 |
+
|
| 705 |
+
weight_dtype = torch.float32
|
| 706 |
+
if accelerator.mixed_precision == "fp16":
|
| 707 |
+
weight_dtype = torch.float16
|
| 708 |
+
elif accelerator.mixed_precision == "bf16":
|
| 709 |
+
weight_dtype = torch.bfloat16
|
| 710 |
+
|
| 711 |
+
image_encoder.to(device=accelerator.device, dtype=weight_dtype)
|
| 712 |
+
|
| 713 |
+
if args.text_encoder_architecture in ("t5_clip", "gemma"):
|
| 714 |
+
text_encoder.to(device=accelerator.device, dtype=weight_dtype)
|
| 715 |
+
text_encoder_2.to(device=accelerator.device, dtype=weight_dtype)
|
| 716 |
+
else:
|
| 717 |
+
text_encoder.to(device=accelerator.device, dtype=weight_dtype)
|
| 718 |
+
|
| 719 |
+
vq_model.to(device=accelerator.device)
|
| 720 |
+
|
| 721 |
+
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
|
| 722 |
+
num_update_steps_per_epoch = math.ceil(train_dataloader.num_batches / args.gradient_accumulation_steps)
|
| 723 |
+
# Afterwards we recalculate our number of training epochs.
|
| 724 |
+
# Note: We are not doing epoch based training here, but just using this for book keeping and being able to
|
| 725 |
+
# reuse the same training loop with other datasets/loaders.
|
| 726 |
+
num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
|
| 727 |
+
|
| 728 |
+
# Train!
|
| 729 |
+
logger.info("***** Running training *****")
|
| 730 |
+
logger.info(f" Num training steps = {args.max_train_steps}")
|
| 731 |
+
logger.info(f" Instantaneous batch size per device = { args.train_batch_size}")
|
| 732 |
+
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
|
| 733 |
+
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
|
| 734 |
+
|
| 735 |
+
resume_from_checkpoint = args.resume_from_checkpoint
|
| 736 |
+
if resume_from_checkpoint:
|
| 737 |
+
if resume_from_checkpoint == "latest":
|
| 738 |
+
# Get the most recent checkpoint
|
| 739 |
+
dirs = os.listdir(args.output_dir)
|
| 740 |
+
dirs = [d for d in dirs if d.startswith("checkpoint")]
|
| 741 |
+
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
|
| 742 |
+
if len(dirs) > 0:
|
| 743 |
+
resume_from_checkpoint = os.path.join(args.output_dir, dirs[-1])
|
| 744 |
+
else:
|
| 745 |
+
resume_from_checkpoint = None
|
| 746 |
+
|
| 747 |
+
if resume_from_checkpoint is None:
|
| 748 |
+
accelerator.print(
|
| 749 |
+
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
|
| 750 |
+
)
|
| 751 |
+
else:
|
| 752 |
+
accelerator.print(f"Resuming from checkpoint {resume_from_checkpoint}")
|
| 753 |
+
|
| 754 |
+
if resume_from_checkpoint is None:
|
| 755 |
+
global_step = 0
|
| 756 |
+
first_epoch = 0
|
| 757 |
+
else:
|
| 758 |
+
accelerator.load_state(resume_from_checkpoint)
|
| 759 |
+
global_step = int(os.path.basename(resume_from_checkpoint).split("-")[1])
|
| 760 |
+
first_epoch = global_step // num_update_steps_per_epoch
|
| 761 |
+
|
| 762 |
+
# As stated above, we are not doing epoch based training here, but just using this for book keeping and being able to
|
| 763 |
+
# reuse the same training loop with other datasets/loaders.
|
| 764 |
+
for epoch in range(first_epoch, num_train_epochs):
|
| 765 |
+
for batch in train_dataloader:
|
| 766 |
+
torch.cuda.empty_cache()
|
| 767 |
+
with torch.no_grad():
|
| 768 |
+
micro_conds = batch["micro_conds"].to(accelerator.device, non_blocking=True)
|
| 769 |
+
gen_micro_conds, und_micro_conds = micro_conds.chunk(2, dim=0)
|
| 770 |
+
|
| 771 |
+
pixel_values = batch["images"].to(accelerator.device, non_blocking=True) # [b, 3, res, res]
|
| 772 |
+
batch_size = pixel_values.shape[0]
|
| 773 |
+
half_batch_size = batch_size // 2
|
| 774 |
+
|
| 775 |
+
# ====================== tokenize images ======================
|
| 776 |
+
image_tokens = vq_model.quantize(
|
| 777 |
+
vq_model.encode(pixel_values).latents
|
| 778 |
+
)[2][2].reshape(batch_size, -1) # [b, seq_len]
|
| 779 |
+
# ====================== tokenize images ======================
|
| 780 |
+
|
| 781 |
+
|
| 782 |
+
# ====================== tokenize text prompts ======================
|
| 783 |
+
if args.text_encoder_architecture == "gemma":
|
| 784 |
+
prompt_input_ids_1 = batch["prompt_input_ids"][0].to(accelerator.device, non_blocking=True)
|
| 785 |
+
prompt_input_ids_2 = batch["prompt_input_ids"][1].to(accelerator.device, non_blocking=True)
|
| 786 |
+
|
| 787 |
+
prompt_input_ids_gen_1, prompt_input_ids_und_1 = prompt_input_ids_1.chunk(2, dim=0)
|
| 788 |
+
prompt_input_ids_gen_2, prompt_input_ids_und_2 = prompt_input_ids_2.chunk(2, dim=0)
|
| 789 |
+
else:
|
| 790 |
+
prompt_input_ids = batch["prompt_input_ids"].to(accelerator.device, non_blocking=True)
|
| 791 |
+
prompt_input_ids_gen, prompt_input_ids_und = prompt_input_ids.chunk(2, dim=0)
|
| 792 |
+
# ====================== tokenize text prompts ======================
|
| 793 |
+
|
| 794 |
+
|
| 795 |
+
# ====================== image perturbation ======================
|
| 796 |
+
image_tokens_gen, image_tokens_und = image_tokens.chunk(2, dim=0) # (b // 2, seq_len)
|
| 797 |
+
_, seq_len = image_tokens_gen.shape
|
| 798 |
+
sigma = torch.rand(half_batch_size, device=image_tokens_gen.device)
|
| 799 |
+
gen_mask_prob = torch.cos(sigma * math.pi * 0.5)
|
| 800 |
+
gen_mask_prob = gen_mask_prob.clip(args.min_masking_rate)
|
| 801 |
+
|
| 802 |
+
num_token_masked = (seq_len * gen_mask_prob).round().clamp(min=1)
|
| 803 |
+
batch_randperm = torch.rand(half_batch_size, seq_len, device=image_tokens_gen.device).argsort(dim=-1)
|
| 804 |
+
mask = batch_randperm < num_token_masked.unsqueeze(-1)
|
| 805 |
+
|
| 806 |
+
mask_id = accelerator.unwrap_model(model).config.vocab_size - 1
|
| 807 |
+
masked_image_ids = torch.where(mask, mask_id, image_tokens_gen)
|
| 808 |
+
image_labels = torch.where(mask, image_tokens_gen, -100)
|
| 809 |
+
# ====================== image perturbation ======================
|
| 810 |
+
|
| 811 |
+
|
| 812 |
+
# ====================== text perturbation ======================
|
| 813 |
+
if args.text_encoder_architecture in ("t5_clip", "gemma"):
|
| 814 |
+
half_batch_size, seq_len = prompt_input_ids_und_2.shape
|
| 815 |
+
sigma = torch.rand(half_batch_size, device=image_tokens_gen.device)
|
| 816 |
+
text_mask_prob = torch.cos(sigma * math.pi * 0.5)
|
| 817 |
+
text_mask_prob = text_mask_prob.clip(args.min_masking_rate)
|
| 818 |
+
text_timestep = text_mask_prob.clone()
|
| 819 |
+
|
| 820 |
+
num_token_masked = (seq_len * text_mask_prob).round().clamp(min=1)
|
| 821 |
+
batch_randperm = torch.rand(half_batch_size, seq_len, device=image_tokens_gen.device).argsort(dim=-1)
|
| 822 |
+
mask = batch_randperm < num_token_masked.unsqueeze(-1)
|
| 823 |
+
|
| 824 |
+
masked_prompt_input_ids_und = torch.where(mask, mask_id_2, prompt_input_ids_und_2)
|
| 825 |
+
text_labels = torch.where(mask, prompt_input_ids_und_2, -100)
|
| 826 |
+
|
| 827 |
+
else:
|
| 828 |
+
half_batch_size, seq_len = prompt_input_ids_und.shape
|
| 829 |
+
sigma = torch.rand(half_batch_size, device=image_tokens_gen.device)
|
| 830 |
+
text_mask_prob = torch.cos(sigma * math.pi * 0.5)
|
| 831 |
+
text_mask_prob = text_mask_prob.clip(args.min_masking_rate)
|
| 832 |
+
text_timestep = text_mask_prob.clone().clamp(min=1e-3)
|
| 833 |
+
|
| 834 |
+
num_token_masked = (seq_len * text_mask_prob).round().clamp(min=1)
|
| 835 |
+
batch_randperm = torch.rand(half_batch_size, seq_len, device=image_tokens_gen.device).argsort(dim=-1)
|
| 836 |
+
mask = batch_randperm < num_token_masked.unsqueeze(-1)
|
| 837 |
+
|
| 838 |
+
masked_prompt_input_ids_und = torch.where(mask, mask_id_1, prompt_input_ids_und)
|
| 839 |
+
text_labels = torch.where(mask, prompt_input_ids_und, -100)
|
| 840 |
+
# ====================== text perturbation ======================
|
| 841 |
+
|
| 842 |
+
|
| 843 |
+
# ====================== encode text prompts ======================
|
| 844 |
+
if args.text_encoder_architecture == "gemma":
|
| 845 |
+
masked_encoder_hidden_states, _ = encode_prompt(
|
| 846 |
+
[text_encoder, text_encoder_2],
|
| 847 |
+
[prompt_input_ids_und_1, masked_prompt_input_ids_und],
|
| 848 |
+
args.text_encoder_architecture
|
| 849 |
+
)
|
| 850 |
+
encoder_hidden_states, text_pooled_embeds = encode_prompt(
|
| 851 |
+
[text_encoder, text_encoder_2],
|
| 852 |
+
[prompt_input_ids_gen_1, prompt_input_ids_gen_2],
|
| 853 |
+
args.text_encoder_architecture
|
| 854 |
+
)
|
| 855 |
+
else:
|
| 856 |
+
masked_encoder_hidden_states, _ = encode_prompt(
|
| 857 |
+
text_encoder,
|
| 858 |
+
masked_prompt_input_ids_und,
|
| 859 |
+
args.text_encoder_architecture
|
| 860 |
+
)
|
| 861 |
+
encoder_hidden_states, text_pooled_embeds = encode_prompt(
|
| 862 |
+
text_encoder,
|
| 863 |
+
prompt_input_ids_gen,
|
| 864 |
+
args.text_encoder_architecture
|
| 865 |
+
)
|
| 866 |
+
# obtain the cond_embeds through send pixel_values[half_batch_size:] to image_encoder, we use the clip pooled embedding as cond_embeds
|
| 867 |
+
# pixel_values need image process, the value of pixel values arange from 0 to 1
|
| 868 |
+
with torch.no_grad():
|
| 869 |
+
processed_pixel_values = image_processor(
|
| 870 |
+
pixel_values[half_batch_size:],
|
| 871 |
+
do_rescale=False,
|
| 872 |
+
do_resize=True,
|
| 873 |
+
do_normalize=True,
|
| 874 |
+
return_tensors="pt"
|
| 875 |
+
)["pixel_values"].to(image_encoder.device, dtype=image_encoder.dtype)
|
| 876 |
+
image_pooled_embeds = image_encoder(processed_pixel_values).image_embeds
|
| 877 |
+
|
| 878 |
+
# for text-to-image
|
| 879 |
+
encoder_hidden_states = encoder_hidden_states.to(accelerator.device, dtype=accelerator.unwrap_model(model).dtype)
|
| 880 |
+
text_pooled_embeds = text_pooled_embeds.to(accelerator.device, dtype=accelerator.unwrap_model(model).dtype)
|
| 881 |
+
# for image-to-text
|
| 882 |
+
masked_encoder_hidden_states = masked_encoder_hidden_states.to(accelerator.device, dtype=accelerator.unwrap_model(model).dtype)
|
| 883 |
+
image_pooled_embeds = image_pooled_embeds.to(accelerator.device, dtype=accelerator.unwrap_model(model).dtype)
|
| 884 |
+
# ====================== encode text prompts ======================
|
| 885 |
+
|
| 886 |
+
vae_scale_factor = 2 ** (len(vq_model.config.block_out_channels) - 1)
|
| 887 |
+
resolution = args.resolution // vae_scale_factor
|
| 888 |
+
masked_image_ids = masked_image_ids.reshape(half_batch_size, resolution, resolution)
|
| 889 |
+
image_ids = image_tokens_und.reshape(half_batch_size, resolution, resolution)
|
| 890 |
+
|
| 891 |
+
# Train Step
|
| 892 |
+
with accelerator.accumulate(model):
|
| 893 |
+
codebook_size = accelerator.unwrap_model(model).config.codebook_size
|
| 894 |
+
img_ids = _prepare_latent_image_ids(
|
| 895 |
+
masked_image_ids.shape[0],
|
| 896 |
+
masked_image_ids.shape[-2],
|
| 897 |
+
masked_image_ids.shape[-1],
|
| 898 |
+
masked_image_ids.device,
|
| 899 |
+
masked_image_ids.dtype
|
| 900 |
+
)
|
| 901 |
+
|
| 902 |
+
txt_ids = torch.zeros(encoder_hidden_states.shape[1], 3).to(device=masked_image_ids.device, dtype=masked_image_ids.dtype)
|
| 903 |
+
|
| 904 |
+
image_logits = (
|
| 905 |
+
model(
|
| 906 |
+
hidden_states=masked_image_ids, # should be (batch size, channel, height, width)
|
| 907 |
+
encoder_hidden_states=encoder_hidden_states, # should be (batch size, sequence_len, embed_dims)
|
| 908 |
+
micro_conds=gen_micro_conds,
|
| 909 |
+
pooled_projections=text_pooled_embeds, # should be (batch_size, projection_dim)
|
| 910 |
+
img_ids=img_ids,
|
| 911 |
+
txt_ids=txt_ids,
|
| 912 |
+
timestep=gen_mask_prob,
|
| 913 |
+
)[0]
|
| 914 |
+
.reshape(half_batch_size, codebook_size, -1)
|
| 915 |
+
.permute(0, 2, 1)
|
| 916 |
+
.reshape(-1, codebook_size)
|
| 917 |
+
)
|
| 918 |
+
|
| 919 |
+
image_loss = F.cross_entropy(
|
| 920 |
+
image_logits,
|
| 921 |
+
image_labels.view(-1),
|
| 922 |
+
ignore_index=-100,
|
| 923 |
+
reduction="mean",
|
| 924 |
+
)
|
| 925 |
+
|
| 926 |
+
text_logits = model(
|
| 927 |
+
hidden_states=image_ids, # should be (batch size, channel, height, width)
|
| 928 |
+
encoder_hidden_states=masked_encoder_hidden_states, # should be (batch size, sequence_len, embed_dims)
|
| 929 |
+
micro_conds=und_micro_conds,
|
| 930 |
+
pooled_projections=image_pooled_embeds, # should be (batch_size, projection_dim)
|
| 931 |
+
img_ids=img_ids,
|
| 932 |
+
txt_ids=txt_ids,
|
| 933 |
+
timestep=text_mask_prob,
|
| 934 |
+
)[1]
|
| 935 |
+
text_logits = text_logits.reshape(-1, accelerator.unwrap_model(model).config.tokenizer_vocab_size)
|
| 936 |
+
|
| 937 |
+
if args.text_loss_reduction == "mean":
|
| 938 |
+
text_loss = F.cross_entropy(
|
| 939 |
+
text_logits,
|
| 940 |
+
text_labels.view(-1),
|
| 941 |
+
ignore_index=-100,
|
| 942 |
+
reduction="mean",
|
| 943 |
+
)
|
| 944 |
+
elif args.text_loss_reduction == "reweighted":
|
| 945 |
+
text_loss = F.cross_entropy(
|
| 946 |
+
text_logits,
|
| 947 |
+
text_labels.view(-1),
|
| 948 |
+
ignore_index=-100,
|
| 949 |
+
reduction="none",
|
| 950 |
+
)
|
| 951 |
+
text_loss = text_loss.reshape(half_batch_size, -1).mean(-1)
|
| 952 |
+
text_loss = text_loss / text_timestep
|
| 953 |
+
text_loss = text_loss.mean()
|
| 954 |
+
else:
|
| 955 |
+
raise ValueError(f"Unknown text_loss_reduction: {args.text_loss_reduction}")
|
| 956 |
+
|
| 957 |
+
loss = image_loss + args.text_loss_weight * text_loss
|
| 958 |
+
|
| 959 |
+
# Gather the losses across all processes for logging (if we use distributed training).
|
| 960 |
+
avg_loss = accelerator.gather(loss.repeat(args.train_batch_size)).mean()
|
| 961 |
+
avg_masking_rate = accelerator.gather(gen_mask_prob.repeat(args.train_batch_size)).mean()
|
| 962 |
+
|
| 963 |
+
accelerator.backward(loss)
|
| 964 |
+
|
| 965 |
+
if args.max_grad_norm is not None and accelerator.sync_gradients:
|
| 966 |
+
accelerator.clip_grad_norm_(model.parameters(), args.max_grad_norm)
|
| 967 |
+
|
| 968 |
+
optimizer.step()
|
| 969 |
+
lr_scheduler.step()
|
| 970 |
+
|
| 971 |
+
optimizer.zero_grad(set_to_none=True)
|
| 972 |
+
|
| 973 |
+
# Checks if the accelerator has performed an optimization step behind the scenes
|
| 974 |
+
if accelerator.sync_gradients:
|
| 975 |
+
if (global_step + 1) % args.logging_steps == 0:
|
| 976 |
+
logs = {
|
| 977 |
+
"step_loss": avg_loss.item(),
|
| 978 |
+
"lr": lr_scheduler.get_last_lr()[0],
|
| 979 |
+
"avg_masking_rate": avg_masking_rate.item(),
|
| 980 |
+
}
|
| 981 |
+
accelerator.log(logs, step=global_step + 1)
|
| 982 |
+
|
| 983 |
+
logger.info(
|
| 984 |
+
f"Step: {global_step + 1} "
|
| 985 |
+
f"Loss: {avg_loss.item():0.4f} "
|
| 986 |
+
f"LR: {lr_scheduler.get_last_lr()[0]:0.6f}"
|
| 987 |
+
)
|
| 988 |
+
|
| 989 |
+
if (global_step + 1) % args.checkpointing_steps == 0:
|
| 990 |
+
save_checkpoint(args, accelerator, global_step + 1, logger)
|
| 991 |
+
|
| 992 |
+
if (global_step + 1) % args.validation_steps == 0 and accelerator.is_main_process:
|
| 993 |
+
|
| 994 |
+
with torch.no_grad():
|
| 995 |
+
logger.info("Evaluating...")
|
| 996 |
+
|
| 997 |
+
model.eval()
|
| 998 |
+
|
| 999 |
+
scheduler = Scheduler.from_pretrained(
|
| 1000 |
+
args.pretrained_model_name_or_path,
|
| 1001 |
+
subfolder="scheduler",
|
| 1002 |
+
revision=args.revision,
|
| 1003 |
+
variant=args.variant,
|
| 1004 |
+
)
|
| 1005 |
+
|
| 1006 |
+
pipe = UnifiedPipeline_new(
|
| 1007 |
+
transformer=accelerator.unwrap_model(model),
|
| 1008 |
+
tokenizer=tokenizer,
|
| 1009 |
+
text_encoder=text_encoder,
|
| 1010 |
+
vqvae=vq_model,
|
| 1011 |
+
scheduler=scheduler,
|
| 1012 |
+
tokenizer_2=tokenizer_2,
|
| 1013 |
+
text_encoder_2=text_encoder_2,
|
| 1014 |
+
clip_image_processor=image_processor,
|
| 1015 |
+
image_encoder=image_encoder,
|
| 1016 |
+
)
|
| 1017 |
+
|
| 1018 |
+
if not args.image_to_text_only:
|
| 1019 |
+
output = pipe(
|
| 1020 |
+
prompt=args.validation_prompts,
|
| 1021 |
+
height=args.resolution,
|
| 1022 |
+
width=args.resolution,
|
| 1023 |
+
guidance_scale=9,
|
| 1024 |
+
num_inference_steps=64,
|
| 1025 |
+
)
|
| 1026 |
+
pil_images = output.images
|
| 1027 |
+
|
| 1028 |
+
result=[]
|
| 1029 |
+
for img in pil_images:
|
| 1030 |
+
if not isinstance(img, torch.Tensor):
|
| 1031 |
+
img = transforms.ToTensor()(img)
|
| 1032 |
+
result.append(img.unsqueeze(0))
|
| 1033 |
+
result = torch.cat(result,dim=0)
|
| 1034 |
+
result = make_grid(result, nrow=3)
|
| 1035 |
+
save_image(result,os.path.join(args.output_dir, str(global_step)+'_text2image_1024_CFG-9.png'))
|
| 1036 |
+
|
| 1037 |
+
image = load_images_to_tensor(args.validation_images, target_size=(args.resolution, args.resolution))
|
| 1038 |
+
output = pipe(
|
| 1039 |
+
height=args.resolution,
|
| 1040 |
+
width=args.resolution,
|
| 1041 |
+
guidance_scale=9,
|
| 1042 |
+
image=image,
|
| 1043 |
+
num_inference_steps=64
|
| 1044 |
+
)
|
| 1045 |
+
prompts = output.prompts
|
| 1046 |
+
|
| 1047 |
+
output_data = {
|
| 1048 |
+
"step": global_step,
|
| 1049 |
+
"prompts": prompts,
|
| 1050 |
+
}
|
| 1051 |
+
|
| 1052 |
+
with open(os.path.join(args.output_dir, f"image2text_{global_step}.json"), "w") as f:
|
| 1053 |
+
json.dump(output_data, f, indent=2)
|
| 1054 |
+
|
| 1055 |
+
model.train()
|
| 1056 |
+
|
| 1057 |
+
global_step += 1
|
| 1058 |
+
|
| 1059 |
+
# Stop training if max steps is reached
|
| 1060 |
+
if global_step >= args.max_train_steps:
|
| 1061 |
+
break
|
| 1062 |
+
# End for
|
| 1063 |
+
|
| 1064 |
+
accelerator.wait_for_everyone()
|
| 1065 |
+
|
| 1066 |
+
# Evaluate and save checkpoint at the end of training
|
| 1067 |
+
save_checkpoint(args, accelerator, global_step, logger)
|
| 1068 |
+
|
| 1069 |
+
# Save the final trained checkpoint
|
| 1070 |
+
if accelerator.is_main_process:
|
| 1071 |
+
model = accelerator.unwrap_model(model)
|
| 1072 |
+
model.save_pretrained(args.output_dir)
|
| 1073 |
+
|
| 1074 |
+
accelerator.end_training()
|
| 1075 |
+
|
| 1076 |
+
|
| 1077 |
+
if __name__ == "__main__":
|
| 1078 |
+
main(parse_args())
|
train/trainer_utils.py
ADDED
|
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2024 The HuggingFace Team and The MeissonFlow Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
import os
|
| 16 |
+
import shutil
|
| 17 |
+
from pathlib import Path, PosixPath
|
| 18 |
+
|
| 19 |
+
import torch
|
| 20 |
+
from PIL import Image
|
| 21 |
+
from torchvision import transforms
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def save_checkpoint(args, accelerator, global_step, logger):
|
| 25 |
+
output_dir = args.output_dir
|
| 26 |
+
|
| 27 |
+
# _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
|
| 28 |
+
if accelerator.is_main_process and args.checkpoints_total_limit is not None:
|
| 29 |
+
checkpoints = os.listdir(output_dir)
|
| 30 |
+
checkpoints = [d for d in checkpoints if d.startswith("checkpoint")]
|
| 31 |
+
checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1]))
|
| 32 |
+
|
| 33 |
+
# before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints
|
| 34 |
+
if len(checkpoints) >= args.checkpoints_total_limit:
|
| 35 |
+
num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1
|
| 36 |
+
removing_checkpoints = checkpoints[0:num_to_remove]
|
| 37 |
+
|
| 38 |
+
logger.info(
|
| 39 |
+
f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints"
|
| 40 |
+
)
|
| 41 |
+
logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}")
|
| 42 |
+
|
| 43 |
+
for removing_checkpoint in removing_checkpoints:
|
| 44 |
+
removing_checkpoint = os.path.join(output_dir, removing_checkpoint)
|
| 45 |
+
shutil.rmtree(removing_checkpoint)
|
| 46 |
+
|
| 47 |
+
save_path = Path(output_dir) / f"checkpoint-{global_step}"
|
| 48 |
+
accelerator.save_state(save_path)
|
| 49 |
+
logger.info(f"Saved state to {save_path}")
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def load_images_to_tensor(path, target_size=(1024, 1024)):
|
| 53 |
+
"""
|
| 54 |
+
Args:
|
| 55 |
+
folder_path
|
| 56 |
+
target_size: (height, width)
|
| 57 |
+
|
| 58 |
+
Return:
|
| 59 |
+
torch.Tensor: [B, 3, H, W] in [0, 1]
|
| 60 |
+
"""
|
| 61 |
+
valid_extensions = ('.jpg', '.jpeg', '.png', '.bmp', '.tiff', '.webp')
|
| 62 |
+
|
| 63 |
+
if isinstance(path, list):
|
| 64 |
+
image_files = path
|
| 65 |
+
elif isinstance(path, str) and os.path.isdir(path):
|
| 66 |
+
image_files = [f for f in os.listdir(path) if f.lower().endswith(valid_extensions)]
|
| 67 |
+
elif isinstance(path, str):
|
| 68 |
+
image_files = [path]
|
| 69 |
+
else:
|
| 70 |
+
raise ValueError(f"Unsupported folder_path type: {type(path)}")
|
| 71 |
+
|
| 72 |
+
if not image_files:
|
| 73 |
+
raise ValueError(f"No valid images found in {path}")
|
| 74 |
+
|
| 75 |
+
transform = transforms.Compose([
|
| 76 |
+
transforms.Resize(target_size),
|
| 77 |
+
transforms.ToTensor(),
|
| 78 |
+
])
|
| 79 |
+
|
| 80 |
+
tensors = []
|
| 81 |
+
for img_file in image_files:
|
| 82 |
+
try:
|
| 83 |
+
if isinstance(path, str) and os.path.isdir(path):
|
| 84 |
+
img_path = os.path.join(path, img_file)
|
| 85 |
+
else:
|
| 86 |
+
img_path = img_file
|
| 87 |
+
img = Image.open(img_path).convert('RGB')
|
| 88 |
+
tensor = transform(img)
|
| 89 |
+
tensors.append(tensor)
|
| 90 |
+
except Exception as e:
|
| 91 |
+
print(f"Error processing {img_file}: {e}")
|
| 92 |
+
|
| 93 |
+
if not tensors:
|
| 94 |
+
raise ValueError("No images could be loaded")
|
| 95 |
+
|
| 96 |
+
batch_tensor = torch.stack(tensors)
|
| 97 |
+
|
| 98 |
+
assert batch_tensor.shape[1:] == (3, *target_size), \
|
| 99 |
+
f"Output shape is {batch_tensor.shape}, expected (B, 3, {target_size[0]}, {target_size[1]})"
|
| 100 |
+
|
| 101 |
+
return batch_tensor
|