|  | import spaces | 
					
						
						|  | import torch | 
					
						
						|  | import torchaudio | 
					
						
						|  | import librosa | 
					
						
						|  | import numpy as np | 
					
						
						|  | from pydub import AudioSegment | 
					
						
						|  | import yaml | 
					
						
						|  | from modules.commons import build_model, load_checkpoint, recursive_munch | 
					
						
						|  | from hf_utils import load_custom_model_from_hf | 
					
						
						|  | from modules.campplus.DTDNN import CAMPPlus | 
					
						
						|  | from modules.bigvgan import bigvgan | 
					
						
						|  | from modules.audio import mel_spectrogram | 
					
						
						|  | from modules.rmvpe import RMVPE | 
					
						
						|  | from transformers import AutoFeatureExtractor, WhisperModel | 
					
						
						|  |  | 
					
						
						|  | class SeedVCWrapper: | 
					
						
						|  | def __init__(self, device=None): | 
					
						
						|  | """ | 
					
						
						|  | Initialize the Seed-VC wrapper with all necessary models and configurations. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | device: torch device to use. If None, will be automatically determined. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | if device is None: | 
					
						
						|  | if torch.cuda.is_available(): | 
					
						
						|  | self.device = torch.device("cuda") | 
					
						
						|  | elif torch.backends.mps.is_available(): | 
					
						
						|  | self.device = torch.device("mps") | 
					
						
						|  | else: | 
					
						
						|  | self.device = torch.device("cpu") | 
					
						
						|  | else: | 
					
						
						|  | self.device = device | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self._load_base_model() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self._load_f0_model() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self._load_additional_modules() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.overlap_frame_len = 16 | 
					
						
						|  | self.bitrate = "320k" | 
					
						
						|  |  | 
					
						
						|  | def _load_base_model(self): | 
					
						
						|  | """Load the base DiT model for voice conversion.""" | 
					
						
						|  | dit_checkpoint_path, dit_config_path = load_custom_model_from_hf( | 
					
						
						|  | "Plachta/Seed-VC", | 
					
						
						|  | "DiT_seed_v2_uvit_whisper_small_wavenet_bigvgan_pruned.pth", | 
					
						
						|  | "config_dit_mel_seed_uvit_whisper_small_wavenet.yml" | 
					
						
						|  | ) | 
					
						
						|  | config = yaml.safe_load(open(dit_config_path, 'r')) | 
					
						
						|  | model_params = recursive_munch(config['model_params']) | 
					
						
						|  | self.model = build_model(model_params, stage='DiT') | 
					
						
						|  | self.hop_length = config['preprocess_params']['spect_params']['hop_length'] | 
					
						
						|  | self.sr = config['preprocess_params']['sr'] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.model, _, _, _ = load_checkpoint( | 
					
						
						|  | self.model, None, dit_checkpoint_path, | 
					
						
						|  | load_only_params=True, ignore_modules=[], is_distributed=False | 
					
						
						|  | ) | 
					
						
						|  | for key in self.model: | 
					
						
						|  | self.model[key].eval() | 
					
						
						|  | self.model[key].to(self.device) | 
					
						
						|  | self.model.cfm.estimator.setup_caches(max_batch_size=1, max_seq_length=8192) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | mel_fn_args = { | 
					
						
						|  | "n_fft": config['preprocess_params']['spect_params']['n_fft'], | 
					
						
						|  | "win_size": config['preprocess_params']['spect_params']['win_length'], | 
					
						
						|  | "hop_size": config['preprocess_params']['spect_params']['hop_length'], | 
					
						
						|  | "num_mels": config['preprocess_params']['spect_params']['n_mels'], | 
					
						
						|  | "sampling_rate": self.sr, | 
					
						
						|  | "fmin": 0, | 
					
						
						|  | "fmax": None, | 
					
						
						|  | "center": False | 
					
						
						|  | } | 
					
						
						|  | self.to_mel = lambda x: mel_spectrogram(x, **mel_fn_args) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | whisper_name = model_params.speech_tokenizer.whisper_name if hasattr(model_params.speech_tokenizer, 'whisper_name') else "openai/whisper-small" | 
					
						
						|  | self.whisper_model = WhisperModel.from_pretrained(whisper_name, torch_dtype=torch.float16).to(self.device) | 
					
						
						|  | del self.whisper_model.decoder | 
					
						
						|  | self.whisper_feature_extractor = AutoFeatureExtractor.from_pretrained(whisper_name) | 
					
						
						|  |  | 
					
						
						|  | def _load_f0_model(self): | 
					
						
						|  | """Load the F0 conditioned model for voice conversion.""" | 
					
						
						|  | dit_checkpoint_path, dit_config_path = load_custom_model_from_hf( | 
					
						
						|  | "Plachta/Seed-VC", | 
					
						
						|  | "DiT_seed_v2_uvit_whisper_base_f0_44k_bigvgan_pruned_ft_ema.pth", | 
					
						
						|  | "config_dit_mel_seed_uvit_whisper_base_f0_44k.yml" | 
					
						
						|  | ) | 
					
						
						|  | config = yaml.safe_load(open(dit_config_path, 'r')) | 
					
						
						|  | model_params = recursive_munch(config['model_params']) | 
					
						
						|  | self.model_f0 = build_model(model_params, stage='DiT') | 
					
						
						|  | self.hop_length_f0 = config['preprocess_params']['spect_params']['hop_length'] | 
					
						
						|  | self.sr_f0 = config['preprocess_params']['sr'] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.model_f0, _, _, _ = load_checkpoint( | 
					
						
						|  | self.model_f0, None, dit_checkpoint_path, | 
					
						
						|  | load_only_params=True, ignore_modules=[], is_distributed=False | 
					
						
						|  | ) | 
					
						
						|  | for key in self.model_f0: | 
					
						
						|  | self.model_f0[key].eval() | 
					
						
						|  | self.model_f0[key].to(self.device) | 
					
						
						|  | self.model_f0.cfm.estimator.setup_caches(max_batch_size=1, max_seq_length=8192) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | mel_fn_args_f0 = { | 
					
						
						|  | "n_fft": config['preprocess_params']['spect_params']['n_fft'], | 
					
						
						|  | "win_size": config['preprocess_params']['spect_params']['win_length'], | 
					
						
						|  | "hop_size": config['preprocess_params']['spect_params']['hop_length'], | 
					
						
						|  | "num_mels": config['preprocess_params']['spect_params']['n_mels'], | 
					
						
						|  | "sampling_rate": self.sr_f0, | 
					
						
						|  | "fmin": 0, | 
					
						
						|  | "fmax": None, | 
					
						
						|  | "center": False | 
					
						
						|  | } | 
					
						
						|  | self.to_mel_f0 = lambda x: mel_spectrogram(x, **mel_fn_args_f0) | 
					
						
						|  |  | 
					
						
						|  | def _load_additional_modules(self): | 
					
						
						|  | """Load additional modules like CAMPPlus, BigVGAN, and RMVPE.""" | 
					
						
						|  |  | 
					
						
						|  | campplus_ckpt_path = load_custom_model_from_hf("funasr/campplus", "campplus_cn_common.bin", config_filename=None) | 
					
						
						|  | self.campplus_model = CAMPPlus(feat_dim=80, embedding_size=192) | 
					
						
						|  | self.campplus_model.load_state_dict(torch.load(campplus_ckpt_path, map_location="cpu")) | 
					
						
						|  | self.campplus_model.eval() | 
					
						
						|  | self.campplus_model.to(self.device) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.bigvgan_model = bigvgan.BigVGAN.from_pretrained('nvidia/bigvgan_v2_22khz_80band_256x', use_cuda_kernel=False) | 
					
						
						|  | self.bigvgan_model.remove_weight_norm() | 
					
						
						|  | self.bigvgan_model = self.bigvgan_model.eval().to(self.device) | 
					
						
						|  |  | 
					
						
						|  | self.bigvgan_44k_model = bigvgan.BigVGAN.from_pretrained('nvidia/bigvgan_v2_44khz_128band_512x', use_cuda_kernel=False) | 
					
						
						|  | self.bigvgan_44k_model.remove_weight_norm() | 
					
						
						|  | self.bigvgan_44k_model = self.bigvgan_44k_model.eval().to(self.device) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | model_path = load_custom_model_from_hf("lj1995/VoiceConversionWebUI", "rmvpe.pt", None) | 
					
						
						|  | self.rmvpe = RMVPE(model_path, is_half=False, device=self.device) | 
					
						
						|  |  | 
					
						
						|  | @staticmethod | 
					
						
						|  | def adjust_f0_semitones(f0_sequence, n_semitones): | 
					
						
						|  | """Adjust F0 values by a number of semitones.""" | 
					
						
						|  | factor = 2 ** (n_semitones / 12) | 
					
						
						|  | return f0_sequence * factor | 
					
						
						|  |  | 
					
						
						|  | @staticmethod | 
					
						
						|  | def crossfade(chunk1, chunk2, overlap): | 
					
						
						|  | """Apply crossfade between two audio chunks.""" | 
					
						
						|  | fade_out = np.cos(np.linspace(0, np.pi / 2, overlap)) ** 2 | 
					
						
						|  | fade_in = np.cos(np.linspace(np.pi / 2, 0, overlap)) ** 2 | 
					
						
						|  | if len(chunk2) < overlap: | 
					
						
						|  | chunk2[:overlap] = chunk2[:overlap] * fade_in[:len(chunk2)] + (chunk1[-overlap:] * fade_out)[:len(chunk2)] | 
					
						
						|  | else: | 
					
						
						|  | chunk2[:overlap] = chunk2[:overlap] * fade_in + chunk1[-overlap:] * fade_out | 
					
						
						|  | return chunk2 | 
					
						
						|  |  | 
					
						
						|  | def _stream_wave_chunks(self, vc_wave, processed_frames, vc_target, overlap_wave_len, | 
					
						
						|  | generated_wave_chunks, previous_chunk, is_last_chunk, stream_output, sr): | 
					
						
						|  | """ | 
					
						
						|  | Helper method to handle streaming wave chunks. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | vc_wave: The current wave chunk | 
					
						
						|  | processed_frames: Number of frames processed so far | 
					
						
						|  | vc_target: The target mel spectrogram | 
					
						
						|  | overlap_wave_len: Length of overlap between chunks | 
					
						
						|  | generated_wave_chunks: List of generated wave chunks | 
					
						
						|  | previous_chunk: Previous wave chunk for crossfading | 
					
						
						|  | is_last_chunk: Whether this is the last chunk | 
					
						
						|  | stream_output: Whether to stream the output | 
					
						
						|  | sr: Sample rate | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | Tuple of (processed_frames, previous_chunk, should_break, mp3_bytes, full_audio) | 
					
						
						|  | where should_break indicates if processing should stop | 
					
						
						|  | mp3_bytes is the MP3 bytes if streaming, None otherwise | 
					
						
						|  | full_audio is the full audio if this is the last chunk, None otherwise | 
					
						
						|  | """ | 
					
						
						|  | mp3_bytes = None | 
					
						
						|  | full_audio = None | 
					
						
						|  |  | 
					
						
						|  | if processed_frames == 0: | 
					
						
						|  | if is_last_chunk: | 
					
						
						|  | output_wave = vc_wave[0].cpu().numpy() | 
					
						
						|  | generated_wave_chunks.append(output_wave) | 
					
						
						|  |  | 
					
						
						|  | if stream_output: | 
					
						
						|  | output_wave_int16 = (output_wave * 32768.0).astype(np.int16) | 
					
						
						|  | mp3_bytes = AudioSegment( | 
					
						
						|  | output_wave_int16.tobytes(), frame_rate=sr, | 
					
						
						|  | sample_width=output_wave_int16.dtype.itemsize, channels=1 | 
					
						
						|  | ).export(format="mp3", bitrate=self.bitrate).read() | 
					
						
						|  | full_audio = (sr, np.concatenate(generated_wave_chunks)) | 
					
						
						|  | else: | 
					
						
						|  | return processed_frames, previous_chunk, True, None, np.concatenate(generated_wave_chunks) | 
					
						
						|  |  | 
					
						
						|  | return processed_frames, previous_chunk, True, mp3_bytes, full_audio | 
					
						
						|  |  | 
					
						
						|  | output_wave = vc_wave[0, :-overlap_wave_len].cpu().numpy() | 
					
						
						|  | generated_wave_chunks.append(output_wave) | 
					
						
						|  | previous_chunk = vc_wave[0, -overlap_wave_len:] | 
					
						
						|  | processed_frames += vc_target.size(2) - self.overlap_frame_len | 
					
						
						|  |  | 
					
						
						|  | if stream_output: | 
					
						
						|  | output_wave_int16 = (output_wave * 32768.0).astype(np.int16) | 
					
						
						|  | mp3_bytes = AudioSegment( | 
					
						
						|  | output_wave_int16.tobytes(), frame_rate=sr, | 
					
						
						|  | sample_width=output_wave_int16.dtype.itemsize, channels=1 | 
					
						
						|  | ).export(format="mp3", bitrate=self.bitrate).read() | 
					
						
						|  |  | 
					
						
						|  | elif is_last_chunk: | 
					
						
						|  | output_wave = self.crossfade(previous_chunk.cpu().numpy(), vc_wave[0].cpu().numpy(), overlap_wave_len) | 
					
						
						|  | generated_wave_chunks.append(output_wave) | 
					
						
						|  | processed_frames += vc_target.size(2) - self.overlap_frame_len | 
					
						
						|  |  | 
					
						
						|  | if stream_output: | 
					
						
						|  | output_wave_int16 = (output_wave * 32768.0).astype(np.int16) | 
					
						
						|  | mp3_bytes = AudioSegment( | 
					
						
						|  | output_wave_int16.tobytes(), frame_rate=sr, | 
					
						
						|  | sample_width=output_wave_int16.dtype.itemsize, channels=1 | 
					
						
						|  | ).export(format="mp3", bitrate=self.bitrate).read() | 
					
						
						|  | full_audio = (sr, np.concatenate(generated_wave_chunks)) | 
					
						
						|  | else: | 
					
						
						|  | return processed_frames, previous_chunk, True, None, np.concatenate(generated_wave_chunks) | 
					
						
						|  |  | 
					
						
						|  | return processed_frames, previous_chunk, True, mp3_bytes, full_audio | 
					
						
						|  |  | 
					
						
						|  | else: | 
					
						
						|  | output_wave = self.crossfade(previous_chunk.cpu().numpy(), vc_wave[0, :-overlap_wave_len].cpu().numpy(), overlap_wave_len) | 
					
						
						|  | generated_wave_chunks.append(output_wave) | 
					
						
						|  | previous_chunk = vc_wave[0, -overlap_wave_len:] | 
					
						
						|  | processed_frames += vc_target.size(2) - self.overlap_frame_len | 
					
						
						|  |  | 
					
						
						|  | if stream_output: | 
					
						
						|  | output_wave_int16 = (output_wave * 32768.0).astype(np.int16) | 
					
						
						|  | mp3_bytes = AudioSegment( | 
					
						
						|  | output_wave_int16.tobytes(), frame_rate=sr, | 
					
						
						|  | sample_width=output_wave_int16.dtype.itemsize, channels=1 | 
					
						
						|  | ).export(format="mp3", bitrate=self.bitrate).read() | 
					
						
						|  |  | 
					
						
						|  | return processed_frames, previous_chunk, False, mp3_bytes, full_audio | 
					
						
						|  |  | 
					
						
						|  | def _process_whisper_features(self, audio_16k, is_source=True): | 
					
						
						|  | """Process audio through Whisper model to extract features.""" | 
					
						
						|  | if audio_16k.size(-1) <= 16000 * 30: | 
					
						
						|  |  | 
					
						
						|  | inputs = self.whisper_feature_extractor( | 
					
						
						|  | [audio_16k.squeeze(0).cpu().numpy()], | 
					
						
						|  | return_tensors="pt", | 
					
						
						|  | return_attention_mask=True, | 
					
						
						|  | sampling_rate=16000 | 
					
						
						|  | ) | 
					
						
						|  | input_features = self.whisper_model._mask_input_features( | 
					
						
						|  | inputs.input_features, attention_mask=inputs.attention_mask | 
					
						
						|  | ).to(self.device) | 
					
						
						|  | outputs = self.whisper_model.encoder( | 
					
						
						|  | input_features.to(self.whisper_model.encoder.dtype), | 
					
						
						|  | head_mask=None, | 
					
						
						|  | output_attentions=False, | 
					
						
						|  | output_hidden_states=False, | 
					
						
						|  | return_dict=True, | 
					
						
						|  | ) | 
					
						
						|  | features = outputs.last_hidden_state.to(torch.float32) | 
					
						
						|  | features = features[:, :audio_16k.size(-1) // 320 + 1] | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | overlapping_time = 5 | 
					
						
						|  | features_list = [] | 
					
						
						|  | buffer = None | 
					
						
						|  | traversed_time = 0 | 
					
						
						|  | while traversed_time < audio_16k.size(-1): | 
					
						
						|  | if buffer is None: | 
					
						
						|  | chunk = audio_16k[:, traversed_time:traversed_time + 16000 * 30] | 
					
						
						|  | else: | 
					
						
						|  | chunk = torch.cat([ | 
					
						
						|  | buffer, | 
					
						
						|  | audio_16k[:, traversed_time:traversed_time + 16000 * (30 - overlapping_time)] | 
					
						
						|  | ], dim=-1) | 
					
						
						|  | inputs = self.whisper_feature_extractor( | 
					
						
						|  | [chunk.squeeze(0).cpu().numpy()], | 
					
						
						|  | return_tensors="pt", | 
					
						
						|  | return_attention_mask=True, | 
					
						
						|  | sampling_rate=16000 | 
					
						
						|  | ) | 
					
						
						|  | input_features = self.whisper_model._mask_input_features( | 
					
						
						|  | inputs.input_features, attention_mask=inputs.attention_mask | 
					
						
						|  | ).to(self.device) | 
					
						
						|  | outputs = self.whisper_model.encoder( | 
					
						
						|  | input_features.to(self.whisper_model.encoder.dtype), | 
					
						
						|  | head_mask=None, | 
					
						
						|  | output_attentions=False, | 
					
						
						|  | output_hidden_states=False, | 
					
						
						|  | return_dict=True, | 
					
						
						|  | ) | 
					
						
						|  | chunk_features = outputs.last_hidden_state.to(torch.float32) | 
					
						
						|  | chunk_features = chunk_features[:, :chunk.size(-1) // 320 + 1] | 
					
						
						|  | if traversed_time == 0: | 
					
						
						|  | features_list.append(chunk_features) | 
					
						
						|  | else: | 
					
						
						|  | features_list.append(chunk_features[:, 50 * overlapping_time:]) | 
					
						
						|  | buffer = chunk[:, -16000 * overlapping_time:] | 
					
						
						|  | traversed_time += 30 * 16000 if traversed_time == 0 else chunk.size(-1) - 16000 * overlapping_time | 
					
						
						|  | features = torch.cat(features_list, dim=1) | 
					
						
						|  |  | 
					
						
						|  | return features | 
					
						
						|  |  | 
					
						
						|  | @spaces.GPU | 
					
						
						|  | @torch.no_grad() | 
					
						
						|  | @torch.inference_mode() | 
					
						
						|  | def convert_voice(self, source, target, diffusion_steps=10, length_adjust=1.0, | 
					
						
						|  | inference_cfg_rate=0.7, f0_condition=False, auto_f0_adjust=True, | 
					
						
						|  | pitch_shift=0, stream_output=True): | 
					
						
						|  | """ | 
					
						
						|  | Convert both timbre and voice from source to target. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | source: Path to source audio file | 
					
						
						|  | target: Path to target audio file | 
					
						
						|  | diffusion_steps: Number of diffusion steps (default: 10) | 
					
						
						|  | length_adjust: Length adjustment factor (default: 1.0) | 
					
						
						|  | inference_cfg_rate: Inference CFG rate (default: 0.7) | 
					
						
						|  | f0_condition: Whether to use F0 conditioning (default: False) | 
					
						
						|  | auto_f0_adjust: Whether to automatically adjust F0 (default: True) | 
					
						
						|  | pitch_shift: Pitch shift in semitones (default: 0) | 
					
						
						|  | stream_output: Whether to stream the output (default: True) | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | If stream_output is True, yields (mp3_bytes, full_audio) tuples | 
					
						
						|  | If stream_output is False, returns the full audio as a numpy array | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | inference_module = self.model if not f0_condition else self.model_f0 | 
					
						
						|  | mel_fn = self.to_mel if not f0_condition else self.to_mel_f0 | 
					
						
						|  | bigvgan_fn = self.bigvgan_model if not f0_condition else self.bigvgan_44k_model | 
					
						
						|  | sr = 22050 if not f0_condition else 44100 | 
					
						
						|  | hop_length = 256 if not f0_condition else 512 | 
					
						
						|  | max_context_window = sr // hop_length * 30 | 
					
						
						|  | overlap_wave_len = self.overlap_frame_len * hop_length | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | source_audio = librosa.load(source, sr=sr)[0] | 
					
						
						|  | ref_audio = librosa.load(target, sr=sr)[0] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | source_audio = torch.tensor(source_audio).unsqueeze(0).float().to(self.device) | 
					
						
						|  | ref_audio = torch.tensor(ref_audio[:sr * 25]).unsqueeze(0).float().to(self.device) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | ref_waves_16k = torchaudio.functional.resample(ref_audio, sr, 16000) | 
					
						
						|  | converted_waves_16k = torchaudio.functional.resample(source_audio, sr, 16000) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | S_alt = self._process_whisper_features(converted_waves_16k, is_source=True) | 
					
						
						|  | S_ori = self._process_whisper_features(ref_waves_16k, is_source=False) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | mel = mel_fn(source_audio.to(self.device).float()) | 
					
						
						|  | mel2 = mel_fn(ref_audio.to(self.device).float()) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | target_lengths = torch.LongTensor([int(mel.size(2) * length_adjust)]).to(mel.device) | 
					
						
						|  | target2_lengths = torch.LongTensor([mel2.size(2)]).to(mel2.device) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | feat2 = torchaudio.compliance.kaldi.fbank( | 
					
						
						|  | ref_waves_16k, | 
					
						
						|  | num_mel_bins=80, | 
					
						
						|  | dither=0, | 
					
						
						|  | sample_frequency=16000 | 
					
						
						|  | ) | 
					
						
						|  | feat2 = feat2 - feat2.mean(dim=0, keepdim=True) | 
					
						
						|  | style2 = self.campplus_model(feat2.unsqueeze(0)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if f0_condition: | 
					
						
						|  | F0_ori = self.rmvpe.infer_from_audio(ref_waves_16k[0], thred=0.03) | 
					
						
						|  | F0_alt = self.rmvpe.infer_from_audio(converted_waves_16k[0], thred=0.03) | 
					
						
						|  |  | 
					
						
						|  | if self.device == "mps": | 
					
						
						|  | F0_ori = torch.from_numpy(F0_ori).float().to(self.device)[None] | 
					
						
						|  | F0_alt = torch.from_numpy(F0_alt).float().to(self.device)[None] | 
					
						
						|  | else: | 
					
						
						|  | F0_ori = torch.from_numpy(F0_ori).to(self.device)[None] | 
					
						
						|  | F0_alt = torch.from_numpy(F0_alt).to(self.device)[None] | 
					
						
						|  |  | 
					
						
						|  | voiced_F0_ori = F0_ori[F0_ori > 1] | 
					
						
						|  | voiced_F0_alt = F0_alt[F0_alt > 1] | 
					
						
						|  |  | 
					
						
						|  | log_f0_alt = torch.log(F0_alt + 1e-5) | 
					
						
						|  | voiced_log_f0_ori = torch.log(voiced_F0_ori + 1e-5) | 
					
						
						|  | voiced_log_f0_alt = torch.log(voiced_F0_alt + 1e-5) | 
					
						
						|  | median_log_f0_ori = torch.median(voiced_log_f0_ori) | 
					
						
						|  | median_log_f0_alt = torch.median(voiced_log_f0_alt) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | shifted_log_f0_alt = log_f0_alt.clone() | 
					
						
						|  | if auto_f0_adjust: | 
					
						
						|  | shifted_log_f0_alt[F0_alt > 1] = log_f0_alt[F0_alt > 1] - median_log_f0_alt + median_log_f0_ori | 
					
						
						|  | shifted_f0_alt = torch.exp(shifted_log_f0_alt) | 
					
						
						|  | if pitch_shift != 0: | 
					
						
						|  | shifted_f0_alt[F0_alt > 1] = self.adjust_f0_semitones(shifted_f0_alt[F0_alt > 1], pitch_shift) | 
					
						
						|  | else: | 
					
						
						|  | F0_ori = None | 
					
						
						|  | F0_alt = None | 
					
						
						|  | shifted_f0_alt = None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | cond, _, codes, commitment_loss, codebook_loss = inference_module.length_regulator( | 
					
						
						|  | S_alt, ylens=target_lengths, n_quantizers=3, f0=shifted_f0_alt | 
					
						
						|  | ) | 
					
						
						|  | prompt_condition, _, codes, commitment_loss, codebook_loss = inference_module.length_regulator( | 
					
						
						|  | S_ori, ylens=target2_lengths, n_quantizers=3, f0=F0_ori | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | max_source_window = max_context_window - mel2.size(2) | 
					
						
						|  | processed_frames = 0 | 
					
						
						|  | generated_wave_chunks = [] | 
					
						
						|  | previous_chunk = None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | while processed_frames < cond.size(1): | 
					
						
						|  | chunk_cond = cond[:, processed_frames:processed_frames + max_source_window] | 
					
						
						|  | is_last_chunk = processed_frames + max_source_window >= cond.size(1) | 
					
						
						|  | cat_condition = torch.cat([prompt_condition, chunk_cond], dim=1) | 
					
						
						|  |  | 
					
						
						|  | with torch.autocast(device_type=self.device.type, dtype=torch.float16): | 
					
						
						|  |  | 
					
						
						|  | vc_target = inference_module.cfm.inference( | 
					
						
						|  | cat_condition, | 
					
						
						|  | torch.LongTensor([cat_condition.size(1)]).to(mel2.device), | 
					
						
						|  | mel2, style2, None, diffusion_steps, | 
					
						
						|  | inference_cfg_rate=inference_cfg_rate | 
					
						
						|  | ) | 
					
						
						|  | vc_target = vc_target[:, :, mel2.size(-1):] | 
					
						
						|  |  | 
					
						
						|  | vc_wave = bigvgan_fn(vc_target.float())[0] | 
					
						
						|  |  | 
					
						
						|  | processed_frames, previous_chunk, should_break, mp3_bytes, full_audio = self._stream_wave_chunks( | 
					
						
						|  | vc_wave, processed_frames, vc_target, overlap_wave_len, | 
					
						
						|  | generated_wave_chunks, previous_chunk, is_last_chunk, stream_output, sr | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if stream_output and mp3_bytes is not None: | 
					
						
						|  | yield mp3_bytes, full_audio | 
					
						
						|  |  | 
					
						
						|  | if should_break: | 
					
						
						|  | if not stream_output: | 
					
						
						|  | return full_audio | 
					
						
						|  | break | 
					
						
						|  |  | 
					
						
						|  | if not stream_output: | 
					
						
						|  | return np.concatenate(generated_wave_chunks) | 
					
						
						|  |  | 
					
						
						|  | return None, None |