Spaces:
Sleeping
Sleeping
| import logging | |
| from langchain_core.tools import tool | |
| from src.services.analysis_service import AnalysisService | |
| import json | |
| import os | |
| from datetime import datetime | |
| from pydantic.v1 import BaseModel, Field | |
| from typing import List, Dict, Any | |
| from src.models import load_all_models | |
| from pymongo import MongoClient | |
| logging.basicConfig(level=logging.INFO) | |
| logger = logging.getLogger(__name__) | |
| class InterviewAnalysisArgs(BaseModel): | |
| """Arguments for the trigger_interview_analysis tool.""" | |
| user_id: str = Field(..., description="The unique identifier for the user, provided in the system prompt.") | |
| job_offer_id: str = Field(..., description="The unique identifier for the job offer, provided in the system prompt.") | |
| job_description: str = Field(..., description="The full JSON string of the job offer description.") | |
| conversation_history: List[Dict[str, Any]] = Field(..., description="The complete conversation history between the user and the agent.") | |
| def trigger_interview_analysis(user_id: str, job_offer_id: str, job_description: str, conversation_history: List[Dict[str, Any]]): | |
| """ | |
| Call this tool to end the interview and launch the final analysis. | |
| You MUST provide all arguments: user_id, job_offer_id, job_description, and the complete conversation_history. | |
| """ | |
| try: | |
| logger.info(f"Outil 'trigger_interview_analysis' appelé pour user_id: {user_id} et job_offer_id: {job_offer_id}") | |
| if '@' in user_id or ' ' in job_offer_id: | |
| logger.error(f"Appel de l'outil avec des données invalides. User ID: {user_id}, Job Offer ID: {job_offer_id}") | |
| return "Erreur: Appel de l'outil avec des paramètres invalides. L'analyse n'a pas pu être lancée." | |
| mongo_client = MongoClient(os.getenv("MONGO_URI")) | |
| db = mongo_client[os.getenv("MONGO_DB_NAME")] | |
| collection = db[os.getenv("MONGO_FEEDBACK")] | |
| models = load_all_models() | |
| analysis_service = AnalysisService(models=models) | |
| feedback_data = analysis_service.run_analysis( | |
| conversation_history=conversation_history, | |
| job_description=job_description | |
| ) | |
| mongo_document = { | |
| "user_id": user_id, | |
| "job_offer_id": job_offer_id, | |
| "feedback_data": feedback_data, | |
| "updated_at": datetime.utcnow() | |
| } | |
| result = collection.insert_one(mongo_document) | |
| logger.info(f"Analyse pour l'utilisateur {user_id} terminée et sauvegardée dans MongoDB avec l'ID: {result.inserted_id}") | |
| return "L'analyse a été déclenchée et terminée avec succès." | |
| except Exception as e: | |
| logger.error(f"Erreur dans l'outil d'analyse : {e}", exc_info=True) | |
| return "Une erreur est survenue lors du lancement de l'analyse." |