|
|
import logging |
|
|
from langchain_core.tools import tool |
|
|
from src.services.analysis_service import AnalysisService |
|
|
import json |
|
|
import os |
|
|
from datetime import datetime |
|
|
from pydantic.v1 import BaseModel, Field |
|
|
from typing import List, Dict, Any |
|
|
from src.models import load_all_models |
|
|
from pymongo import MongoClient |
|
|
|
|
|
logging.basicConfig(level=logging.INFO) |
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
class InterviewAnalysisArgs(BaseModel): |
|
|
"""Arguments for the trigger_interview_analysis tool.""" |
|
|
user_id: str = Field(..., description="The unique identifier for the user, provided in the system prompt.") |
|
|
job_offer_id: str = Field(..., description="The unique identifier for the job offer, provided in the system prompt.") |
|
|
job_description: str = Field(..., description="The full JSON string of the job offer description.") |
|
|
conversation_history: List[Dict[str, Any]] = Field(..., description="The complete conversation history between the user and the agent.") |
|
|
|
|
|
@tool("trigger_interview_analysis", args_schema=InterviewAnalysisArgs) |
|
|
def trigger_interview_analysis(user_id: str, job_offer_id: str, job_description: str, conversation_history: List[Dict[str, Any]]): |
|
|
""" |
|
|
Call this tool to end the interview and launch the final analysis. |
|
|
You MUST provide all arguments: user_id, job_offer_id, job_description, and the complete conversation_history. |
|
|
""" |
|
|
try: |
|
|
logger.info(f"Outil 'trigger_interview_analysis' appelé pour user_id: {user_id} et job_offer_id: {job_offer_id}") |
|
|
if '@' in user_id or ' ' in job_offer_id: |
|
|
logger.error(f"Appel de l'outil avec des données invalides. User ID: {user_id}, Job Offer ID: {job_offer_id}") |
|
|
return "Erreur: Appel de l'outil avec des paramètres invalides. L'analyse n'a pas pu être lancée." |
|
|
mongo_client = MongoClient(os.getenv("MONGO_URI")) |
|
|
db = mongo_client[os.getenv("MONGO_DB_NAME")] |
|
|
collection = db[os.getenv("MONGO_FEEDBACK")] |
|
|
|
|
|
models = load_all_models() |
|
|
analysis_service = AnalysisService(models=models) |
|
|
feedback_data = analysis_service.run_analysis( |
|
|
conversation_history=conversation_history, |
|
|
job_description=job_description |
|
|
) |
|
|
mongo_document = { |
|
|
"user_id": user_id, |
|
|
"job_offer_id": job_offer_id, |
|
|
"feedback_data": feedback_data, |
|
|
"updated_at": datetime.utcnow() |
|
|
} |
|
|
result = collection.insert_one(mongo_document) |
|
|
logger.info(f"Analyse pour l'utilisateur {user_id} terminée et sauvegardée dans MongoDB avec l'ID: {result.inserted_id}") |
|
|
|
|
|
return "L'analyse a été déclenchée et terminée avec succès." |
|
|
|
|
|
except Exception as e: |
|
|
logger.error(f"Erreur dans l'outil d'analyse : {e}", exc_info=True) |
|
|
return "Une erreur est survenue lors du lancement de l'analyse." |