import logging from langchain_core.tools import tool from src.services.analysis_service import AnalysisService import json import os from datetime import datetime from pydantic.v1 import BaseModel, Field from typing import List, Dict, Any from src.models import load_all_models from pymongo import MongoClient logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) class InterviewAnalysisArgs(BaseModel): """Arguments for the trigger_interview_analysis tool.""" user_id: str = Field(..., description="The unique identifier for the user, provided in the system prompt.") job_offer_id: str = Field(..., description="The unique identifier for the job offer, provided in the system prompt.") job_description: str = Field(..., description="The full JSON string of the job offer description.") conversation_history: List[Dict[str, Any]] = Field(..., description="The complete conversation history between the user and the agent.") @tool("trigger_interview_analysis", args_schema=InterviewAnalysisArgs) def trigger_interview_analysis(user_id: str, job_offer_id: str, job_description: str, conversation_history: List[Dict[str, Any]]): """ Call this tool to end the interview and launch the final analysis. You MUST provide all arguments: user_id, job_offer_id, job_description, and the complete conversation_history. """ try: logger.info(f"Outil 'trigger_interview_analysis' appelé pour user_id: {user_id} et job_offer_id: {job_offer_id}") if '@' in user_id or ' ' in job_offer_id: logger.error(f"Appel de l'outil avec des données invalides. User ID: {user_id}, Job Offer ID: {job_offer_id}") return "Erreur: Appel de l'outil avec des paramètres invalides. L'analyse n'a pas pu être lancée." mongo_client = MongoClient(os.getenv("MONGO_URI")) db = mongo_client[os.getenv("MONGO_DB_NAME")] collection = db[os.getenv("MONGO_FEEDBACK")] models = load_all_models() analysis_service = AnalysisService(models=models) feedback_data = analysis_service.run_analysis( conversation_history=conversation_history, job_description=job_description ) mongo_document = { "user_id": user_id, "job_offer_id": job_offer_id, "feedback_data": feedback_data, "updated_at": datetime.utcnow() } result = collection.insert_one(mongo_document) logger.info(f"Analyse pour l'utilisateur {user_id} terminée et sauvegardée dans MongoDB avec l'ID: {result.inserted_id}") return "L'analyse a été déclenchée et terminée avec succès." except Exception as e: logger.error(f"Erreur dans l'outil d'analyse : {e}", exc_info=True) return "Une erreur est survenue lors du lancement de l'analyse."