Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import sys | |
| import torch | |
| import numpy as np | |
| import math | |
| import cv2 | |
| from models.model import LiftFeatSPModel | |
| from models.interpolator import InterpolateSparse2d | |
| from utils.config import featureboost_config | |
| device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") | |
| MODEL_PATH = os.path.join(os.path.dirname(__file__), "../weights/LiftFeat.pth") | |
| class NonMaxSuppression(torch.nn.Module): | |
| def __init__(self, rep_thr=0.1, top_k=4096): | |
| super(NonMaxSuppression, self).__init__() | |
| self.max_filter = torch.nn.MaxPool2d(kernel_size=5, stride=1, padding=2) | |
| self.rep_thr = rep_thr | |
| self.top_k = top_k | |
| def NMS(self, x, threshold=0.05, kernel_size=5): | |
| B, _, H, W = x.shape | |
| pad = kernel_size // 2 | |
| local_max = nn.MaxPool2d(kernel_size=kernel_size, stride=1, padding=pad)(x) | |
| pos = (x == local_max) & (x > threshold) | |
| pos_batched = [k.nonzero()[..., 1:].flip(-1) for k in pos] | |
| pad_val = max([len(x) for x in pos_batched]) | |
| pos = torch.zeros((B, pad_val, 2), dtype=torch.long, device=x.device) | |
| # Pad kpts and build (B, N, 2) tensor | |
| for b in range(len(pos_batched)): | |
| pos[b, : len(pos_batched[b]), :] = pos_batched[b] | |
| return pos | |
| def forward(self, score): | |
| pos = self.NMS(score, self.rep_thr) | |
| return pos | |
| def load_model(model, weight_path): | |
| pretrained_weights = torch.load(weight_path, map_location="cpu") | |
| model_keys = set(model.state_dict().keys()) | |
| pretrained_keys = set(pretrained_weights.keys()) | |
| missing_keys = model_keys - pretrained_keys | |
| unexpected_keys = pretrained_keys - model_keys | |
| # if missing_keys: | |
| # print("Missing keys in pretrained weights:", missing_keys) | |
| # else: | |
| # print("No missing keys in pretrained weights.") | |
| # if unexpected_keys: | |
| # print("Unexpected keys in pretrained weights:", unexpected_keys) | |
| # else: | |
| # print("No unexpected keys in pretrained weights.") | |
| if not missing_keys and not unexpected_keys: | |
| model.load_state_dict(pretrained_weights) | |
| print("load weight successfully.") | |
| else: | |
| model.load_state_dict(pretrained_weights, strict=False) | |
| # print("There were issues with the keys.") | |
| return model | |
| import torch.nn as nn | |
| class LiftFeat(nn.Module): | |
| def __init__(self, weight=MODEL_PATH, top_k=4096, detect_threshold=0.1): | |
| super().__init__() | |
| self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| self.net = LiftFeatSPModel(featureboost_config).to(self.device).eval() | |
| self.top_k = top_k | |
| self.sampler = InterpolateSparse2d("bicubic") | |
| self.net = load_model(self.net, weight) | |
| self.detector = NonMaxSuppression(rep_thr=detect_threshold) | |
| self.net = self.net.to(self.device) | |
| self.detector = self.detector.to(self.device) | |
| self.sampler = self.sampler.to(self.device) | |
| def image_preprocess(self, image: np.ndarray): | |
| H, W, C = image.shape[0], image.shape[1], image.shape[2] | |
| _H = math.ceil(H / 32) * 32 | |
| _W = math.ceil(W / 32) * 32 | |
| pad_h = _H - H | |
| pad_w = _W - W | |
| image = cv2.copyMakeBorder(image, 0, pad_h, 0, pad_w, cv2.BORDER_CONSTANT, None, (0, 0, 0)) | |
| pad_info = [0, pad_h, 0, pad_w] | |
| if len(image.shape) == 3: | |
| image = image[None, ...] | |
| image = torch.tensor(image).permute(0, 3, 1, 2) / 255 | |
| image = image.to(device) | |
| return image, pad_info | |
| def extract(self, image: np.ndarray): | |
| image, pad_info = self.image_preprocess(image) | |
| B, _, _H1, _W1 = image.shape | |
| M1, K1, D1 = self.net.forward1(image) | |
| refine_M = self.net.forward2(M1, K1, D1) | |
| refine_M = refine_M.reshape(M1.shape[0], M1.shape[2], M1.shape[3], -1).permute(0, 3, 1, 2) | |
| refine_M = torch.nn.functional.normalize(refine_M, 2, dim=1) | |
| descs_map = refine_M | |
| scores = torch.softmax(K1, dim=1)[:, :64] | |
| heatmap = scores.permute(0, 2, 3, 1).reshape(scores.shape[0], scores.shape[2], scores.shape[3], 8, 8) | |
| heatmap = heatmap.permute(0, 1, 3, 2, 4).reshape(scores.shape[0], 1, scores.shape[2] * 8, scores.shape[3] * 8) | |
| pos = self.detector(heatmap) | |
| kpts = pos.squeeze(0) | |
| mask_w = kpts[..., 0] < (_W1 - pad_info[-1]) | |
| kpts = kpts[mask_w] | |
| mask_h = kpts[..., 1] < (_H1 - pad_info[1]) | |
| kpts = kpts[mask_h] | |
| scores = self.sampler(heatmap, kpts.unsqueeze(0), _H1, _W1) | |
| scores = scores.squeeze(0).reshape(-1) | |
| descs = self.sampler(descs_map, kpts.unsqueeze(0), _H1, _W1) | |
| descs = torch.nn.functional.normalize(descs, p=2, dim=1) | |
| descs = descs.squeeze(0) | |
| return {"descriptors": descs, "keypoints": kpts, "scores": scores} | |
| def match_liftfeat(self, img1, img2, min_cossim=-1): | |
| # import pdb;pdb.set_trace() | |
| data1 = self.extract(img1) | |
| data2 = self.extract(img2) | |
| kpts1, feats1 = data1["keypoints"], data1["descriptors"] | |
| kpts2, feats2 = data2["keypoints"], data2["descriptors"] | |
| cossim = feats1 @ feats2.t() | |
| cossim_t = feats2 @ feats1.t() | |
| _, match12 = cossim.max(dim=1) | |
| _, match21 = cossim_t.max(dim=1) | |
| idx0 = torch.arange(len(match12), device=match12.device) | |
| mutual = match21[match12] == idx0 | |
| if min_cossim > 0: | |
| cossim, _ = cossim.max(dim=1) | |
| good = cossim > min_cossim | |
| idx0 = idx0[mutual & good] | |
| idx1 = match12[mutual & good] | |
| else: | |
| idx0 = idx0[mutual] | |
| idx1 = match12[mutual] | |
| mkpts1, mkpts2 = kpts1[idx0], kpts2[idx1] | |
| mkpts1, mkpts2 = mkpts1.cpu().numpy(), mkpts2.cpu().numpy() | |
| return mkpts1, mkpts2 | |