Spaces:
Running
on
Zero
Running
on
Zero
| #! /usr/bin/env python3 | |
| # | |
| # %BANNER_BEGIN% | |
| # --------------------------------------------------------------------- | |
| # %COPYRIGHT_BEGIN% | |
| # | |
| # Magic Leap, Inc. ("COMPANY") CONFIDENTIAL | |
| # | |
| # Unpublished Copyright (c) 2020 | |
| # Magic Leap, Inc., All Rights Reserved. | |
| # | |
| # NOTICE: All information contained herein is, and remains the property | |
| # of COMPANY. The intellectual and technical concepts contained herein | |
| # are proprietary to COMPANY and may be covered by U.S. and Foreign | |
| # Patents, patents in process, and are protected by trade secret or | |
| # copyright law. Dissemination of this information or reproduction of | |
| # this material is strictly forbidden unless prior written permission is | |
| # obtained from COMPANY. Access to the source code contained herein is | |
| # hereby forbidden to anyone except current COMPANY employees, managers | |
| # or contractors who have executed Confidentiality and Non-disclosure | |
| # agreements explicitly covering such access. | |
| # | |
| # The copyright notice above does not evidence any actual or intended | |
| # publication or disclosure of this source code, which includes | |
| # information that is confidential and/or proprietary, and is a trade | |
| # secret, of COMPANY. ANY REPRODUCTION, MODIFICATION, DISTRIBUTION, | |
| # PUBLIC PERFORMANCE, OR PUBLIC DISPLAY OF OR THROUGH USE OF THIS | |
| # SOURCE CODE WITHOUT THE EXPRESS WRITTEN CONSENT OF COMPANY IS | |
| # STRICTLY PROHIBITED, AND IN VIOLATION OF APPLICABLE LAWS AND | |
| # INTERNATIONAL TREATIES. THE RECEIPT OR POSSESSION OF THIS SOURCE | |
| # CODE AND/OR RELATED INFORMATION DOES NOT CONVEY OR IMPLY ANY RIGHTS | |
| # TO REPRODUCE, DISCLOSE OR DISTRIBUTE ITS CONTENTS, OR TO MANUFACTURE, | |
| # USE, OR SELL ANYTHING THAT IT MAY DESCRIBE, IN WHOLE OR IN PART. | |
| # | |
| # %COPYRIGHT_END% | |
| # ---------------------------------------------------------------------- | |
| # %AUTHORS_BEGIN% | |
| # | |
| # Originating Authors: Paul-Edouard Sarlin | |
| # Daniel DeTone | |
| # Tomasz Malisiewicz | |
| # | |
| # %AUTHORS_END% | |
| # --------------------------------------------------------------------*/ | |
| # %BANNER_END% | |
| from pathlib import Path | |
| import argparse | |
| import cv2 | |
| import matplotlib.cm as cm | |
| import torch | |
| from models.matching import Matching | |
| from models.utils import (AverageTimer, VideoStreamer, | |
| make_matching_plot_fast, frame2tensor) | |
| torch.set_grad_enabled(False) | |
| if __name__ == '__main__': | |
| parser = argparse.ArgumentParser( | |
| description='SuperGlue demo', | |
| formatter_class=argparse.ArgumentDefaultsHelpFormatter) | |
| parser.add_argument( | |
| '--input', type=str, default='0', | |
| help='ID of a USB webcam, URL of an IP camera, ' | |
| 'or path to an image directory or movie file') | |
| parser.add_argument( | |
| '--output_dir', type=str, default=None, | |
| help='Directory where to write output frames (If None, no output)') | |
| parser.add_argument( | |
| '--image_glob', type=str, nargs='+', default=['*.png', '*.jpg', '*.jpeg'], | |
| help='Glob if a directory of images is specified') | |
| parser.add_argument( | |
| '--skip', type=int, default=1, | |
| help='Images to skip if input is a movie or directory') | |
| parser.add_argument( | |
| '--max_length', type=int, default=1000000, | |
| help='Maximum length if input is a movie or directory') | |
| parser.add_argument( | |
| '--resize', type=int, nargs='+', default=[640, 480], | |
| help='Resize the input image before running inference. If two numbers, ' | |
| 'resize to the exact dimensions, if one number, resize the max ' | |
| 'dimension, if -1, do not resize') | |
| parser.add_argument( | |
| '--superglue', choices={'indoor', 'outdoor'}, default='indoor', | |
| help='SuperGlue weights') | |
| parser.add_argument( | |
| '--max_keypoints', type=int, default=-1, | |
| help='Maximum number of keypoints detected by Superpoint' | |
| ' (\'-1\' keeps all keypoints)') | |
| parser.add_argument( | |
| '--keypoint_threshold', type=float, default=0.005, | |
| help='SuperPoint keypoint detector confidence threshold') | |
| parser.add_argument( | |
| '--nms_radius', type=int, default=4, | |
| help='SuperPoint Non Maximum Suppression (NMS) radius' | |
| ' (Must be positive)') | |
| parser.add_argument( | |
| '--sinkhorn_iterations', type=int, default=20, | |
| help='Number of Sinkhorn iterations performed by SuperGlue') | |
| parser.add_argument( | |
| '--match_threshold', type=float, default=0.2, | |
| help='SuperGlue match threshold') | |
| parser.add_argument( | |
| '--show_keypoints', action='store_true', | |
| help='Show the detected keypoints') | |
| parser.add_argument( | |
| '--no_display', action='store_true', | |
| help='Do not display images to screen. Useful if running remotely') | |
| parser.add_argument( | |
| '--force_cpu', action='store_true', | |
| help='Force pytorch to run in CPU mode.') | |
| opt = parser.parse_args() | |
| print(opt) | |
| if len(opt.resize) == 2 and opt.resize[1] == -1: | |
| opt.resize = opt.resize[0:1] | |
| if len(opt.resize) == 2: | |
| print('Will resize to {}x{} (WxH)'.format( | |
| opt.resize[0], opt.resize[1])) | |
| elif len(opt.resize) == 1 and opt.resize[0] > 0: | |
| print('Will resize max dimension to {}'.format(opt.resize[0])) | |
| elif len(opt.resize) == 1: | |
| print('Will not resize images') | |
| else: | |
| raise ValueError('Cannot specify more than two integers for --resize') | |
| device = 'cuda' if torch.cuda.is_available() and not opt.force_cpu else 'cpu' | |
| print('Running inference on device \"{}\"'.format(device)) | |
| config = { | |
| 'superpoint': { | |
| 'nms_radius': opt.nms_radius, | |
| 'keypoint_threshold': opt.keypoint_threshold, | |
| 'max_keypoints': opt.max_keypoints | |
| }, | |
| 'superglue': { | |
| 'weights': opt.superglue, | |
| 'sinkhorn_iterations': opt.sinkhorn_iterations, | |
| 'match_threshold': opt.match_threshold, | |
| } | |
| } | |
| matching = Matching(config).eval().to(device) | |
| keys = ['keypoints', 'scores', 'descriptors'] | |
| vs = VideoStreamer(opt.input, opt.resize, opt.skip, | |
| opt.image_glob, opt.max_length) | |
| frame, ret = vs.next_frame() | |
| assert ret, 'Error when reading the first frame (try different --input?)' | |
| frame_tensor = frame2tensor(frame, device) | |
| last_data = matching.superpoint({'image': frame_tensor}) | |
| last_data = {k+'0': last_data[k] for k in keys} | |
| last_data['image0'] = frame_tensor | |
| last_frame = frame | |
| last_image_id = 0 | |
| if opt.output_dir is not None: | |
| print('==> Will write outputs to {}'.format(opt.output_dir)) | |
| Path(opt.output_dir).mkdir(exist_ok=True) | |
| # Create a window to display the demo. | |
| if not opt.no_display: | |
| cv2.namedWindow('SuperGlue matches', cv2.WINDOW_NORMAL) | |
| cv2.resizeWindow('SuperGlue matches', 640*2, 480) | |
| else: | |
| print('Skipping visualization, will not show a GUI.') | |
| # Print the keyboard help menu. | |
| print('==> Keyboard control:\n' | |
| '\tn: select the current frame as the anchor\n' | |
| '\te/r: increase/decrease the keypoint confidence threshold\n' | |
| '\td/f: increase/decrease the match filtering threshold\n' | |
| '\tk: toggle the visualization of keypoints\n' | |
| '\tq: quit') | |
| timer = AverageTimer() | |
| while True: | |
| frame, ret = vs.next_frame() | |
| if not ret: | |
| print('Finished demo_superglue.py') | |
| break | |
| timer.update('data') | |
| stem0, stem1 = last_image_id, vs.i - 1 | |
| frame_tensor = frame2tensor(frame, device) | |
| pred = matching({**last_data, 'image1': frame_tensor}) | |
| kpts0 = last_data['keypoints0'][0].cpu().numpy() | |
| kpts1 = pred['keypoints1'][0].cpu().numpy() | |
| matches = pred['matches0'][0].cpu().numpy() | |
| confidence = pred['matching_scores0'][0].cpu().numpy() | |
| timer.update('forward') | |
| valid = matches > -1 | |
| mkpts0 = kpts0[valid] | |
| mkpts1 = kpts1[matches[valid]] | |
| color = cm.jet(confidence[valid]) | |
| text = [ | |
| 'SuperGlue', | |
| 'Keypoints: {}:{}'.format(len(kpts0), len(kpts1)), | |
| 'Matches: {}'.format(len(mkpts0)) | |
| ] | |
| k_thresh = matching.superpoint.config['keypoint_threshold'] | |
| m_thresh = matching.superglue.config['match_threshold'] | |
| small_text = [ | |
| 'Keypoint Threshold: {:.4f}'.format(k_thresh), | |
| 'Match Threshold: {:.2f}'.format(m_thresh), | |
| 'Image Pair: {:06}:{:06}'.format(stem0, stem1), | |
| ] | |
| out = make_matching_plot_fast( | |
| last_frame, frame, kpts0, kpts1, mkpts0, mkpts1, color, text, | |
| path=None, show_keypoints=opt.show_keypoints, small_text=small_text) | |
| if not opt.no_display: | |
| cv2.imshow('SuperGlue matches', out) | |
| key = chr(cv2.waitKey(1) & 0xFF) | |
| if key == 'q': | |
| vs.cleanup() | |
| print('Exiting (via q) demo_superglue.py') | |
| break | |
| elif key == 'n': # set the current frame as anchor | |
| last_data = {k+'0': pred[k+'1'] for k in keys} | |
| last_data['image0'] = frame_tensor | |
| last_frame = frame | |
| last_image_id = (vs.i - 1) | |
| elif key in ['e', 'r']: | |
| # Increase/decrease keypoint threshold by 10% each keypress. | |
| d = 0.1 * (-1 if key == 'e' else 1) | |
| matching.superpoint.config['keypoint_threshold'] = min(max( | |
| 0.0001, matching.superpoint.config['keypoint_threshold']*(1+d)), 1) | |
| print('\nChanged the keypoint threshold to {:.4f}'.format( | |
| matching.superpoint.config['keypoint_threshold'])) | |
| elif key in ['d', 'f']: | |
| # Increase/decrease match threshold by 0.05 each keypress. | |
| d = 0.05 * (-1 if key == 'd' else 1) | |
| matching.superglue.config['match_threshold'] = min(max( | |
| 0.05, matching.superglue.config['match_threshold']+d), .95) | |
| print('\nChanged the match threshold to {:.2f}'.format( | |
| matching.superglue.config['match_threshold'])) | |
| elif key == 'k': | |
| opt.show_keypoints = not opt.show_keypoints | |
| timer.update('viz') | |
| timer.print() | |
| if opt.output_dir is not None: | |
| #stem = 'matches_{:06}_{:06}'.format(last_image_id, vs.i-1) | |
| stem = 'matches_{:06}_{:06}'.format(stem0, stem1) | |
| out_file = str(Path(opt.output_dir, stem + '.png')) | |
| print('\nWriting image to {}'.format(out_file)) | |
| cv2.imwrite(out_file, out) | |
| cv2.destroyAllWindows() | |
| vs.cleanup() | |