import os from pathlib import Path import cv2 import kornia.feature as KF import matplotlib.pyplot as plt import numpy as np import poselib import torch from tqdm import tqdm from ripe import utils from ripe.data.data_transforms import Compose, Normalize, Resize from ripe.data.datasets.disk_imw import DISK_IMW from ripe.utils.pose_error import AUCMetric, relative_pose_error from ripe.utils.utils import ( cv2_matches_from_kornia, cv_resize_and_pad_to_shape, to_cv_kpts, ) log = utils.get_pylogger(__name__) class IMW_2020_Benchmark: def __init__( self, use_predefined_subset: bool = True, conf_inference=None, edge_input_divisible_by=None, ): data_dir = os.getenv("DATA_DIR") if data_dir is None: raise ValueError("Environment variable DATA_DIR is not set.") root_path = Path(data_dir) / "disk-data" self.data = DISK_IMW( str( root_path ), # Resize only to ensure that the input size is divisible the value of edge_input_divisible_by transforms=Compose( [ Resize(None, edge_input_divisible_by), Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ] ), ) self.ids_subset = None self.results = [] self.conf_inference = conf_inference # fmt: off if use_predefined_subset: self.ids_subset = [4921, 3561, 3143, 6040, 802, 6828, 5338, 9275, 10764, 10085, 5124, 11355, 7, 10027, 2161, 4433, 6887, 3311, 10766, 11451, 11433, 8539, 2581, 10300, 10562, 1723, 8803, 6275, 10140, 11487, 6238, 638, 8092, 9979, 201, 10394, 3414, 9002, 7456, 2431, 632, 6589, 9265, 9889, 3139, 7890, 10619, 4899, 675, 176, 4309, 4814, 3833, 3519, 148, 4560, 10705, 3744, 1441, 4049, 1791, 5106, 575, 1540, 1105, 6791, 1383, 9344, 501, 2504, 4335, 8992, 10970, 10786, 10405, 9317, 5279, 1396, 5044, 9408, 11125, 10417, 7627, 7480, 1358, 7738, 5461, 10178, 9226, 8106, 2766, 6216, 4032, 7298, 259, 3021, 2645, 8756, 7513, 3163, 2510, 6701, 6684, 3159, 9689, 7425, 6066, 1904, 6382, 3052, 777, 6277, 7409, 5997, 2987, 11316, 2894, 4528, 1927, 10366, 8605, 2726, 1886, 2416, 2164, 3352, 2997, 6636, 6765, 5609, 3679, 76, 10956, 3612, 6699, 1741, 8811, 3755, 1285, 9520, 2476, 3977, 370, 9823, 1834, 7551, 6227, 7303, 6399, 4758, 10713, 5050, 380, 11056, 7620, 4826, 6090, 9011, 7523, 7355, 8021, 9801, 1801, 6522, 7138, 10017, 8732, 6402, 3116, 4031, 6088, 3975, 9841, 9082, 9412, 5406, 217, 2385, 8791, 8361, 494, 4319, 5275, 3274, 335, 6731, 207, 10095, 3068, 5996, 3951, 2808, 5877, 6134, 7772, 10042, 8574, 5501, 10885, 7871] # self.ids_subset = self.ids_subset[:10] # fmt: on def evaluate_sample(self, model, sample, dev): img_1 = sample["src_image"].unsqueeze(0).to(dev) img_2 = sample["trg_image"].unsqueeze(0).to(dev) scale_h_1, scale_w_1 = ( sample["orig_size_src"][0] / img_1.shape[2], sample["orig_size_src"][1] / img_1.shape[3], ) scale_h_2, scale_w_2 = ( sample["orig_size_trg"][0] / img_2.shape[2], sample["orig_size_trg"][1] / img_2.shape[3], ) M = None info = {} kpts_1, desc_1, score_1 = None, None, None kpts_2, desc_2, score_2 = None, None, None match_dists, match_idxs = None, None try: kpts_1, desc_1, score_1 = model.detectAndCompute(img_1, **self.conf_inference) kpts_2, desc_2, score_2 = model.detectAndCompute(img_2, **self.conf_inference) if kpts_1.dim() == 3: assert kpts_1.shape[0] == 1 and kpts_2.shape[0] == 1, "Batch size must be 1" kpts_1, desc_1, score_1 = ( kpts_1.squeeze(0), desc_1[0].squeeze(0), score_1[0].squeeze(0), ) kpts_2, desc_2, score_2 = ( kpts_2.squeeze(0), desc_2[0].squeeze(0), score_2[0].squeeze(0), ) scale_1 = torch.tensor([scale_w_1, scale_h_1], dtype=torch.float).to(dev) scale_2 = torch.tensor([scale_w_2, scale_h_2], dtype=torch.float).to(dev) kpts_1 = kpts_1 * scale_1 kpts_2 = kpts_2 * scale_2 matcher = KF.DescriptorMatcher("mnn") # threshold is not used with mnn match_dists, match_idxs = matcher(desc_1, desc_2) matched_pts_1 = kpts_1[match_idxs[:, 0]] matched_pts_2 = kpts_2[match_idxs[:, 1]] camera_1 = sample["src_camera"] camera_2 = sample["trg_camera"] M, info = poselib.estimate_relative_pose( matched_pts_1.cpu().numpy(), matched_pts_2.cpu().numpy(), camera_1.to_cameradict(), camera_2.to_cameradict(), { "max_epipolar_error": 0.5, }, {}, ) except RuntimeError as e: if "No keypoints detected" in str(e): pass else: raise e success = M is not None if success: M = { "R": torch.tensor(M.R, dtype=torch.float), "t": torch.tensor(M.t, dtype=torch.float), } inl = info["inliers"] else: M = { "R": torch.eye(3, dtype=torch.float), "t": torch.zeros((3), dtype=torch.float), } inl = np.zeros((0,)).astype(bool) t_err, r_err = relative_pose_error(sample["s2t_R"].cpu(), sample["s2t_T"].cpu(), M["R"], M["t"]) rel_pose_error = max(t_err.item(), r_err.item()) if success else np.inf ransac_inl = np.sum(inl) ransac_inl_ratio = np.mean(inl) if success: assert match_dists is not None and match_idxs is not None, "Matches must be computed" cv_keypoints_src = to_cv_kpts(kpts_1, score_1) cv_keypoints_trg = to_cv_kpts(kpts_2, score_2) cv_matches = cv2_matches_from_kornia(match_dists, match_idxs) cv_mask = [int(m) for m in inl] else: cv_keypoints_src, cv_keypoints_trg = [], [] cv_matches, cv_mask = [], [] estimation = { "success": success, "M_0to1": M, "inliers": torch.tensor(inl).to(img_1), "rel_pose_error": rel_pose_error, "ransac_inl": ransac_inl, "ransac_inl_ratio": ransac_inl_ratio, "path_src_image": sample["src_path"], "path_trg_image": sample["trg_path"], "cv_keypoints_src": cv_keypoints_src, "cv_keypoints_trg": cv_keypoints_trg, "cv_matches": cv_matches, "cv_mask": cv_mask, } return estimation def evaluate(self, model, dev, progress_bar=False): model.eval() # reset results self.results = [] for idx in tqdm( self.ids_subset if self.ids_subset is not None else range(len(self.data)), disable=not progress_bar, ): sample = self.data[idx] self.results.append(self.evaluate_sample(model, sample, dev)) def get_auc(self, threshold=5, downsampled=False): if len(self.results) == 0: raise ValueError("No results to log. Run evaluate first.") summary_results = self.calc_auc(downsampled=downsampled) return summary_results[f"rel_pose_error@{threshold}°{'__original' if not downsampled else '__downsampled'}"] def plot_results(self, num_samples=10, logger=None, step=None, downsampled=False): if len(self.results) == 0: raise ValueError("No results to plot. Run evaluate first.") plot_data = [] for result in self.results[:num_samples]: img1 = cv2.imread(result["path_src_image"]) img2 = cv2.imread(result["path_trg_image"]) # from BGR to RGB img1 = cv2.cvtColor(img1, cv2.COLOR_BGR2RGB) img2 = cv2.cvtColor(img2, cv2.COLOR_BGR2RGB) plt_matches = cv2.drawMatches( img1, result["cv_keypoints_src"], img2, result["cv_keypoints_trg"], result["cv_matches"], None, matchColor=None, matchesMask=result["cv_mask"], flags=cv2.DrawMatchesFlags_DEFAULT, ) file_name = ( Path(result["path_src_image"]).parent.parent.name + "_" + Path(result["path_src_image"]).stem + Path(result["path_trg_image"]).stem + ("_downsampled" if downsampled else "") + ".png" ) # print rel_pose_error on image plt_matches = cv2.putText( plt_matches, f"rel_pose_error: {result['rel_pose_error']:.2f} num_inliers: {result['ransac_inl']} inl_ratio: {result['ransac_inl_ratio']:.2f} num_matches: {len(result['cv_matches'])} num_keypoints: {len(result['cv_keypoints_src'])}/{len(result['cv_keypoints_trg'])}", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 2, cv2.LINE_8, ) plot_data.append({"file_name": file_name, "image": plt_matches}) if logger is None: log.info("No logger provided. Using plt to plot results.") for image in plot_data: plt.imsave( image["file_name"], cv_resize_and_pad_to_shape(image["image"], (1024, 2048)), ) plt.close() else: import wandb log.info(f"Logging images to wandb with step={step}") if not downsampled: logger.log( { "examples": [ wandb.Image(cv_resize_and_pad_to_shape(image["image"], (1024, 2048))) for image in plot_data ] }, step=step, ) else: logger.log( { "examples_downsampled": [ wandb.Image(cv_resize_and_pad_to_shape(image["image"], (1024, 2048))) for image in plot_data ] }, step=step, ) def log_results(self, logger=None, step=None, downsampled=False): if len(self.results) == 0: raise ValueError("No results to log. Run evaluate first.") summary_results = self.calc_auc(downsampled=downsampled) if logger is not None: logger.log(summary_results, step=step) else: log.warning("No logger provided. Printing results instead.") print(self.calc_auc()) def print_results(self): if len(self.results) == 0: raise ValueError("No results to print. Run evaluate first.") print(self.calc_auc()) def calc_auc(self, auc_thresholds=None, downsampled=False): if auc_thresholds is None: auc_thresholds = [5, 10, 20] if not isinstance(auc_thresholds, list): auc_thresholds = [auc_thresholds] if len(self.results) == 0: raise ValueError("No results to calculate auc. Run evaluate first.") rel_pose_errors = [r["rel_pose_error"] for r in self.results] pose_aucs = AUCMetric(auc_thresholds, rel_pose_errors).compute() assert isinstance(pose_aucs, list) and len(pose_aucs) == len(auc_thresholds) ext = "_downsampled" if downsampled else "_original" summary = {} for i, ath in enumerate(auc_thresholds): summary[f"rel_pose_error@{ath}°_{ext}"] = pose_aucs[i] return summary