File size: 29,993 Bytes
d6d843f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 |
#!/usr/bin/env python3
"""
Data Collection Module for Crypto Data Aggregator
Collects price data, news, and sentiment from various sources
"""
import requests
import aiohttp
import asyncio
import json
import logging
import time
import threading
from datetime import datetime, timedelta
from typing import Dict, List, Optional, Any, Tuple
import re
# Try to import optional dependencies
try:
import feedparser
FEEDPARSER_AVAILABLE = True
except ImportError:
FEEDPARSER_AVAILABLE = False
logging.warning("feedparser not installed. RSS feed parsing will be limited.")
try:
from bs4 import BeautifulSoup
BS4_AVAILABLE = True
except ImportError:
BS4_AVAILABLE = False
logging.warning("beautifulsoup4 not installed. HTML parsing will be limited.")
# Import local modules
import config
import database
# Setup logging using config settings
logging.basicConfig(
level=getattr(logging, config.LOG_LEVEL),
format=config.LOG_FORMAT,
handlers=[
logging.FileHandler(config.LOG_FILE),
logging.StreamHandler()
]
)
logger = logging.getLogger(__name__)
# Get database instance
db = database.get_database()
# Collection state tracking
_collection_timers = []
_is_collecting = False
# ==================== AI MODEL STUB FUNCTIONS ====================
# These provide fallback functionality when ai_models.py is not available
def analyze_sentiment(text: str) -> Dict[str, Any]:
"""
Simple sentiment analysis based on keyword matching
Returns sentiment score and label
Args:
text: Text to analyze
Returns:
Dict with 'score' and 'label'
"""
if not text:
return {'score': 0.0, 'label': 'neutral'}
text_lower = text.lower()
# Positive keywords
positive_words = [
'bullish', 'moon', 'rally', 'surge', 'gain', 'profit', 'up', 'green',
'buy', 'long', 'growth', 'rise', 'pump', 'ATH', 'breakthrough',
'adoption', 'positive', 'optimistic', 'upgrade', 'partnership'
]
# Negative keywords
negative_words = [
'bearish', 'crash', 'dump', 'drop', 'loss', 'down', 'red', 'sell',
'short', 'decline', 'fall', 'fear', 'scam', 'hack', 'vulnerability',
'negative', 'pessimistic', 'concern', 'warning', 'risk'
]
# Count occurrences
positive_count = sum(1 for word in positive_words if word in text_lower)
negative_count = sum(1 for word in negative_words if word in text_lower)
# Calculate score (-1 to 1)
total = positive_count + negative_count
if total == 0:
score = 0.0
label = 'neutral'
else:
score = (positive_count - negative_count) / total
# Determine label
if score <= -0.6:
label = 'very_negative'
elif score <= -0.2:
label = 'negative'
elif score <= 0.2:
label = 'neutral'
elif score <= 0.6:
label = 'positive'
else:
label = 'very_positive'
return {'score': score, 'label': label}
def summarize_text(text: str, max_length: int = 150) -> str:
"""
Simple text summarization - takes first sentences up to max_length
Args:
text: Text to summarize
max_length: Maximum length of summary
Returns:
Summarized text
"""
if not text:
return ""
# Remove extra whitespace
text = ' '.join(text.split())
# If already short enough, return as is
if len(text) <= max_length:
return text
# Try to break at sentence boundary
sentences = re.split(r'[.!?]+', text)
summary = ""
for sentence in sentences:
sentence = sentence.strip()
if not sentence:
continue
if len(summary) + len(sentence) + 2 <= max_length:
summary += sentence + ". "
else:
break
# If no complete sentences fit, truncate
if not summary:
summary = text[:max_length-3] + "..."
return summary.strip()
# Try to import AI models if available
try:
import ai_models
# Override stub functions with real AI models if available
analyze_sentiment = ai_models.analyze_sentiment
summarize_text = ai_models.summarize_text
logger.info("Using AI models for sentiment analysis and summarization")
except ImportError:
logger.info("AI models not available, using simple keyword-based analysis")
# ==================== HELPER FUNCTIONS ====================
def safe_api_call(url: str, timeout: int = 10, headers: Optional[Dict] = None) -> Optional[Dict]:
"""
Make HTTP GET request with error handling and retry logic
Args:
url: URL to fetch
timeout: Request timeout in seconds
headers: Optional request headers
Returns:
Response JSON or None on failure
"""
if headers is None:
headers = {'User-Agent': config.USER_AGENT}
for attempt in range(config.MAX_RETRIES):
try:
logger.debug(f"API call attempt {attempt + 1}/{config.MAX_RETRIES}: {url}")
response = requests.get(url, timeout=timeout, headers=headers)
response.raise_for_status()
return response.json()
except requests.exceptions.HTTPError as e:
logger.warning(f"HTTP error on attempt {attempt + 1}: {e}")
if response.status_code == 429: # Rate limit
wait_time = (attempt + 1) * 5
logger.info(f"Rate limited, waiting {wait_time}s...")
time.sleep(wait_time)
elif response.status_code >= 500: # Server error
time.sleep(attempt + 1)
else:
break # Don't retry on 4xx errors
except requests.exceptions.Timeout:
logger.warning(f"Timeout on attempt {attempt + 1}")
time.sleep(attempt + 1)
except requests.exceptions.RequestException as e:
logger.warning(f"Request error on attempt {attempt + 1}: {e}")
time.sleep(attempt + 1)
except json.JSONDecodeError as e:
logger.error(f"JSON decode error: {e}")
break
except Exception as e:
logger.error(f"Unexpected error on attempt {attempt + 1}: {e}")
break
logger.error(f"All retry attempts failed for {url}")
return None
def extract_mentioned_coins(text: str) -> List[str]:
"""
Extract cryptocurrency symbols/names mentioned in text
Args:
text: Text to search for coin mentions
Returns:
List of coin symbols mentioned
"""
if not text:
return []
text_upper = text.upper()
mentioned = []
# Check for common symbols
common_symbols = {
'BTC': 'bitcoin', 'ETH': 'ethereum', 'BNB': 'binancecoin',
'XRP': 'ripple', 'ADA': 'cardano', 'SOL': 'solana',
'DOT': 'polkadot', 'DOGE': 'dogecoin', 'AVAX': 'avalanche-2',
'MATIC': 'polygon', 'LINK': 'chainlink', 'UNI': 'uniswap',
'LTC': 'litecoin', 'ATOM': 'cosmos', 'ALGO': 'algorand'
}
# Check coin symbols
for symbol, coin_id in common_symbols.items():
# Look for symbol as whole word or with $ prefix
pattern = r'\b' + symbol + r'\b|\$' + symbol + r'\b'
if re.search(pattern, text_upper):
mentioned.append(symbol)
# Check for full coin names (case insensitive)
coin_names = {
'bitcoin': 'BTC', 'ethereum': 'ETH', 'binance': 'BNB',
'ripple': 'XRP', 'cardano': 'ADA', 'solana': 'SOL',
'polkadot': 'DOT', 'dogecoin': 'DOGE'
}
text_lower = text.lower()
for name, symbol in coin_names.items():
if name in text_lower and symbol not in mentioned:
mentioned.append(symbol)
return list(set(mentioned)) # Remove duplicates
# ==================== PRICE DATA COLLECTION ====================
def collect_price_data() -> Tuple[bool, int]:
"""
Fetch price data from CoinGecko API, fallback to CoinCap if needed
Returns:
Tuple of (success: bool, count: int)
"""
logger.info("Starting price data collection...")
try:
# Try CoinGecko first
url = f"{config.COINGECKO_BASE_URL}{config.COINGECKO_ENDPOINTS['coins_markets']}"
params = {
'vs_currency': 'usd',
'order': 'market_cap_desc',
'per_page': config.TOP_COINS_LIMIT,
'page': 1,
'sparkline': 'false',
'price_change_percentage': '1h,24h,7d'
}
# Add params to URL
param_str = '&'.join([f"{k}={v}" for k, v in params.items()])
full_url = f"{url}?{param_str}"
data = safe_api_call(full_url, timeout=config.REQUEST_TIMEOUT)
if data is None:
logger.warning("CoinGecko API failed, trying CoinCap backup...")
return collect_price_data_coincap()
# Parse and validate data
prices = []
for item in data:
try:
price = item.get('current_price', 0)
# Validate price
if not config.MIN_PRICE <= price <= config.MAX_PRICE:
logger.warning(f"Invalid price for {item.get('symbol')}: {price}")
continue
price_data = {
'symbol': item.get('symbol', '').upper(),
'name': item.get('name', ''),
'price_usd': price,
'volume_24h': item.get('total_volume', 0),
'market_cap': item.get('market_cap', 0),
'percent_change_1h': item.get('price_change_percentage_1h_in_currency'),
'percent_change_24h': item.get('price_change_percentage_24h'),
'percent_change_7d': item.get('price_change_percentage_7d'),
'rank': item.get('market_cap_rank', 999)
}
# Validate market cap and volume
if price_data['market_cap'] and price_data['market_cap'] < config.MIN_MARKET_CAP:
continue
if price_data['volume_24h'] and price_data['volume_24h'] < config.MIN_VOLUME:
continue
prices.append(price_data)
except Exception as e:
logger.error(f"Error parsing price data item: {e}")
continue
# Save to database
if prices:
count = db.save_prices_batch(prices)
logger.info(f"Successfully collected and saved {count} price records from CoinGecko")
return True, count
else:
logger.warning("No valid price data to save")
return False, 0
except Exception as e:
logger.error(f"Error in collect_price_data: {e}")
return False, 0
def collect_price_data_coincap() -> Tuple[bool, int]:
"""
Backup function using CoinCap API
Returns:
Tuple of (success: bool, count: int)
"""
logger.info("Starting CoinCap price data collection...")
try:
url = f"{config.COINCAP_BASE_URL}{config.COINCAP_ENDPOINTS['assets']}"
params = {
'limit': config.TOP_COINS_LIMIT
}
param_str = '&'.join([f"{k}={v}" for k, v in params.items()])
full_url = f"{url}?{param_str}"
response = safe_api_call(full_url, timeout=config.REQUEST_TIMEOUT)
if response is None or 'data' not in response:
logger.error("CoinCap API failed")
return False, 0
data = response['data']
# Parse and validate data
prices = []
for idx, item in enumerate(data):
try:
price = float(item.get('priceUsd', 0))
# Validate price
if not config.MIN_PRICE <= price <= config.MAX_PRICE:
logger.warning(f"Invalid price for {item.get('symbol')}: {price}")
continue
price_data = {
'symbol': item.get('symbol', '').upper(),
'name': item.get('name', ''),
'price_usd': price,
'volume_24h': float(item.get('volumeUsd24Hr', 0)) if item.get('volumeUsd24Hr') else None,
'market_cap': float(item.get('marketCapUsd', 0)) if item.get('marketCapUsd') else None,
'percent_change_1h': None, # CoinCap doesn't provide 1h change
'percent_change_24h': float(item.get('changePercent24Hr', 0)) if item.get('changePercent24Hr') else None,
'percent_change_7d': None, # CoinCap doesn't provide 7d change
'rank': int(item.get('rank', idx + 1))
}
# Validate market cap and volume
if price_data['market_cap'] and price_data['market_cap'] < config.MIN_MARKET_CAP:
continue
if price_data['volume_24h'] and price_data['volume_24h'] < config.MIN_VOLUME:
continue
prices.append(price_data)
except Exception as e:
logger.error(f"Error parsing CoinCap data item: {e}")
continue
# Save to database
if prices:
count = db.save_prices_batch(prices)
logger.info(f"Successfully collected and saved {count} price records from CoinCap")
return True, count
else:
logger.warning("No valid price data to save from CoinCap")
return False, 0
except Exception as e:
logger.error(f"Error in collect_price_data_coincap: {e}")
return False, 0
# ==================== NEWS DATA COLLECTION ====================
def collect_news_data() -> int:
"""
Parse RSS feeds and Reddit posts, analyze sentiment and save to database
Returns:
Count of articles collected
"""
logger.info("Starting news data collection...")
articles_collected = 0
# Collect from RSS feeds
if FEEDPARSER_AVAILABLE:
articles_collected += _collect_rss_feeds()
else:
logger.warning("Feedparser not available, skipping RSS feeds")
# Collect from Reddit
articles_collected += _collect_reddit_posts()
logger.info(f"News collection completed. Total articles: {articles_collected}")
return articles_collected
def _collect_rss_feeds() -> int:
"""Collect articles from RSS feeds"""
count = 0
for source_name, feed_url in config.RSS_FEEDS.items():
try:
logger.debug(f"Parsing RSS feed: {source_name}")
feed = feedparser.parse(feed_url)
for entry in feed.entries[:20]: # Limit to 20 most recent per feed
try:
# Extract article data
title = entry.get('title', '')
url = entry.get('link', '')
# Skip if no URL
if not url:
continue
# Get published date
published_date = None
if hasattr(entry, 'published_parsed') and entry.published_parsed:
try:
published_date = datetime(*entry.published_parsed[:6]).isoformat()
except:
pass
# Get summary/description
summary = entry.get('summary', '') or entry.get('description', '')
if summary and BS4_AVAILABLE:
# Strip HTML tags
soup = BeautifulSoup(summary, 'html.parser')
summary = soup.get_text()
# Combine title and summary for analysis
full_text = f"{title} {summary}"
# Extract mentioned coins
related_coins = extract_mentioned_coins(full_text)
# Analyze sentiment
sentiment_result = analyze_sentiment(full_text)
# Summarize text
summary_text = summarize_text(summary or title, max_length=200)
# Prepare news data
news_data = {
'title': title,
'summary': summary_text,
'url': url,
'source': source_name,
'sentiment_score': sentiment_result['score'],
'sentiment_label': sentiment_result['label'],
'related_coins': related_coins,
'published_date': published_date
}
# Save to database
if db.save_news(news_data):
count += 1
except Exception as e:
logger.error(f"Error processing RSS entry from {source_name}: {e}")
continue
except Exception as e:
logger.error(f"Error parsing RSS feed {source_name}: {e}")
continue
logger.info(f"Collected {count} articles from RSS feeds")
return count
def _collect_reddit_posts() -> int:
"""Collect posts from Reddit"""
count = 0
for subreddit_name, endpoint_url in config.REDDIT_ENDPOINTS.items():
try:
logger.debug(f"Fetching Reddit posts from r/{subreddit_name}")
# Reddit API requires .json extension
if not endpoint_url.endswith('.json'):
endpoint_url = endpoint_url.rstrip('/') + '.json'
headers = {'User-Agent': config.USER_AGENT}
data = safe_api_call(endpoint_url, headers=headers)
if not data or 'data' not in data or 'children' not in data['data']:
logger.warning(f"Invalid response from Reddit: {subreddit_name}")
continue
posts = data['data']['children']
for post_data in posts[:15]: # Limit to 15 posts per subreddit
try:
post = post_data.get('data', {})
# Extract post data
title = post.get('title', '')
url = post.get('url', '')
permalink = f"https://reddit.com{post.get('permalink', '')}"
selftext = post.get('selftext', '')
# Skip if no title
if not title:
continue
# Use permalink as primary URL (actual Reddit post)
article_url = permalink
# Get timestamp
created_utc = post.get('created_utc')
published_date = None
if created_utc:
try:
published_date = datetime.fromtimestamp(created_utc).isoformat()
except:
pass
# Combine title and text for analysis
full_text = f"{title} {selftext}"
# Extract mentioned coins
related_coins = extract_mentioned_coins(full_text)
# Analyze sentiment
sentiment_result = analyze_sentiment(full_text)
# Summarize text
summary_text = summarize_text(selftext or title, max_length=200)
# Prepare news data
news_data = {
'title': title,
'summary': summary_text,
'url': article_url,
'source': f"reddit_{subreddit_name}",
'sentiment_score': sentiment_result['score'],
'sentiment_label': sentiment_result['label'],
'related_coins': related_coins,
'published_date': published_date
}
# Save to database
if db.save_news(news_data):
count += 1
except Exception as e:
logger.error(f"Error processing Reddit post from {subreddit_name}: {e}")
continue
except Exception as e:
logger.error(f"Error fetching Reddit posts from {subreddit_name}: {e}")
continue
logger.info(f"Collected {count} posts from Reddit")
return count
# ==================== SENTIMENT DATA COLLECTION ====================
def collect_sentiment_data() -> Optional[Dict[str, Any]]:
"""
Fetch Fear & Greed Index from Alternative.me
Returns:
Sentiment data or None on failure
"""
logger.info("Starting sentiment data collection...")
try:
# Fetch Fear & Greed Index
data = safe_api_call(config.ALTERNATIVE_ME_URL, timeout=config.REQUEST_TIMEOUT)
if data is None or 'data' not in data:
logger.error("Failed to fetch Fear & Greed Index")
return None
# Parse response
fng_data = data['data'][0] if data['data'] else {}
value = fng_data.get('value')
classification = fng_data.get('value_classification', 'Unknown')
timestamp = fng_data.get('timestamp')
if value is None:
logger.warning("No value in Fear & Greed response")
return None
# Convert to sentiment score (-1 to 1)
# Fear & Greed is 0-100, convert to -1 to 1
sentiment_score = (int(value) - 50) / 50.0
# Determine label
if int(value) <= 25:
sentiment_label = 'extreme_fear'
elif int(value) <= 45:
sentiment_label = 'fear'
elif int(value) <= 55:
sentiment_label = 'neutral'
elif int(value) <= 75:
sentiment_label = 'greed'
else:
sentiment_label = 'extreme_greed'
sentiment_data = {
'value': int(value),
'classification': classification,
'sentiment_score': sentiment_score,
'sentiment_label': sentiment_label,
'timestamp': timestamp
}
# Save to news table as market-wide sentiment
news_data = {
'title': f"Market Sentiment: {classification}",
'summary': f"Fear & Greed Index: {value}/100 - {classification}",
'url': config.ALTERNATIVE_ME_URL,
'source': 'alternative_me',
'sentiment_score': sentiment_score,
'sentiment_label': sentiment_label,
'related_coins': ['BTC', 'ETH'], # Market-wide
'published_date': datetime.now().isoformat()
}
db.save_news(news_data)
logger.info(f"Sentiment collected: {classification} ({value}/100)")
return sentiment_data
except Exception as e:
logger.error(f"Error in collect_sentiment_data: {e}")
return None
# ==================== SCHEDULING ====================
def schedule_data_collection():
"""
Schedule periodic data collection using threading.Timer
Runs collection tasks in background at configured intervals
"""
global _is_collecting, _collection_timers
if _is_collecting:
logger.warning("Data collection already running")
return
_is_collecting = True
logger.info("Starting scheduled data collection...")
def run_price_collection():
"""Wrapper for price collection with rescheduling"""
try:
collect_price_data()
except Exception as e:
logger.error(f"Error in scheduled price collection: {e}")
finally:
# Reschedule
if _is_collecting:
timer = threading.Timer(
config.COLLECTION_INTERVALS['price_data'],
run_price_collection
)
timer.daemon = True
timer.start()
_collection_timers.append(timer)
def run_news_collection():
"""Wrapper for news collection with rescheduling"""
try:
collect_news_data()
except Exception as e:
logger.error(f"Error in scheduled news collection: {e}")
finally:
# Reschedule
if _is_collecting:
timer = threading.Timer(
config.COLLECTION_INTERVALS['news_data'],
run_news_collection
)
timer.daemon = True
timer.start()
_collection_timers.append(timer)
def run_sentiment_collection():
"""Wrapper for sentiment collection with rescheduling"""
try:
collect_sentiment_data()
except Exception as e:
logger.error(f"Error in scheduled sentiment collection: {e}")
finally:
# Reschedule
if _is_collecting:
timer = threading.Timer(
config.COLLECTION_INTERVALS['sentiment_data'],
run_sentiment_collection
)
timer.daemon = True
timer.start()
_collection_timers.append(timer)
# Initial run immediately
logger.info("Running initial data collection...")
# Run initial collections in separate threads
threading.Thread(target=run_price_collection, daemon=True).start()
time.sleep(2) # Stagger starts
threading.Thread(target=run_news_collection, daemon=True).start()
time.sleep(2)
threading.Thread(target=run_sentiment_collection, daemon=True).start()
logger.info("Scheduled data collection started successfully")
logger.info(f"Price data: every {config.COLLECTION_INTERVALS['price_data']}s")
logger.info(f"News data: every {config.COLLECTION_INTERVALS['news_data']}s")
logger.info(f"Sentiment data: every {config.COLLECTION_INTERVALS['sentiment_data']}s")
def stop_scheduled_collection():
"""Stop all scheduled collection tasks"""
global _is_collecting, _collection_timers
logger.info("Stopping scheduled data collection...")
_is_collecting = False
# Cancel all timers
for timer in _collection_timers:
try:
timer.cancel()
except:
pass
_collection_timers.clear()
logger.info("Scheduled data collection stopped")
# ==================== ASYNC COLLECTION (BONUS) ====================
async def collect_price_data_async() -> Tuple[bool, int]:
"""
Async version of price data collection using aiohttp
Returns:
Tuple of (success: bool, count: int)
"""
logger.info("Starting async price data collection...")
try:
url = f"{config.COINGECKO_BASE_URL}{config.COINGECKO_ENDPOINTS['coins_markets']}"
params = {
'vs_currency': 'usd',
'order': 'market_cap_desc',
'per_page': config.TOP_COINS_LIMIT,
'page': 1,
'sparkline': 'false',
'price_change_percentage': '1h,24h,7d'
}
async with aiohttp.ClientSession() as session:
async with session.get(url, params=params, timeout=config.REQUEST_TIMEOUT) as response:
if response.status != 200:
logger.error(f"API returned status {response.status}")
return False, 0
data = await response.json()
# Parse and validate data (same as sync version)
prices = []
for item in data:
try:
price = item.get('current_price', 0)
if not config.MIN_PRICE <= price <= config.MAX_PRICE:
continue
price_data = {
'symbol': item.get('symbol', '').upper(),
'name': item.get('name', ''),
'price_usd': price,
'volume_24h': item.get('total_volume', 0),
'market_cap': item.get('market_cap', 0),
'percent_change_1h': item.get('price_change_percentage_1h_in_currency'),
'percent_change_24h': item.get('price_change_percentage_24h'),
'percent_change_7d': item.get('price_change_percentage_7d'),
'rank': item.get('market_cap_rank', 999)
}
if price_data['market_cap'] and price_data['market_cap'] < config.MIN_MARKET_CAP:
continue
if price_data['volume_24h'] and price_data['volume_24h'] < config.MIN_VOLUME:
continue
prices.append(price_data)
except Exception as e:
logger.error(f"Error parsing price data item: {e}")
continue
# Save to database
if prices:
count = db.save_prices_batch(prices)
logger.info(f"Async collected and saved {count} price records")
return True, count
else:
return False, 0
except Exception as e:
logger.error(f"Error in collect_price_data_async: {e}")
return False, 0
# ==================== MAIN ENTRY POINT ====================
if __name__ == "__main__":
logger.info("=" * 60)
logger.info("Crypto Data Collector - Manual Test Run")
logger.info("=" * 60)
# Test price collection
logger.info("\n--- Testing Price Collection ---")
success, count = collect_price_data()
print(f"Price collection: {'SUCCESS' if success else 'FAILED'} - {count} records")
# Test news collection
logger.info("\n--- Testing News Collection ---")
news_count = collect_news_data()
print(f"News collection: {news_count} articles collected")
# Test sentiment collection
logger.info("\n--- Testing Sentiment Collection ---")
sentiment = collect_sentiment_data()
if sentiment:
print(f"Sentiment: {sentiment['classification']} ({sentiment['value']}/100)")
else:
print("Sentiment collection: FAILED")
logger.info("\n" + "=" * 60)
logger.info("Manual test run completed")
logger.info("=" * 60)
|