File size: 13,491 Bytes
eebf5c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 |
#!/usr/bin/env python3
"""
هماهنگکننده جمعآوری داده
Data Collection Orchestrator - Manages all collectors
"""
import asyncio
import sys
import os
from pathlib import Path
from typing import Dict, List, Any, Optional
from datetime import datetime, timedelta
import logging
# Add parent directory to path
sys.path.insert(0, str(Path(__file__).parent.parent))
from crypto_data_bank.database import get_db
from crypto_data_bank.collectors.free_price_collector import FreePriceCollector
from crypto_data_bank.collectors.rss_news_collector import RSSNewsCollector
from crypto_data_bank.collectors.sentiment_collector import SentimentCollector
from crypto_data_bank.ai.huggingface_models import get_analyzer
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
class DataCollectionOrchestrator:
"""
هماهنگکننده اصلی جمعآوری داده
Main orchestrator for data collection from all FREE sources
"""
def __init__(self):
self.db = get_db()
self.price_collector = FreePriceCollector()
self.news_collector = RSSNewsCollector()
self.sentiment_collector = SentimentCollector()
self.ai_analyzer = get_analyzer()
self.collection_tasks = []
self.is_running = False
# Collection intervals (in seconds)
self.intervals = {
'prices': 60, # Every 1 minute
'news': 300, # Every 5 minutes
'sentiment': 180, # Every 3 minutes
}
self.last_collection = {
'prices': None,
'news': None,
'sentiment': None,
}
async def collect_and_store_prices(self):
"""جمعآوری و ذخیره قیمتها"""
try:
logger.info("💰 Collecting prices from FREE sources...")
# Collect from all free sources
all_prices = await self.price_collector.collect_all_free_sources()
# Aggregate prices
aggregated = self.price_collector.aggregate_prices(all_prices)
# Save to database
saved_count = 0
for price_data in aggregated:
try:
self.db.save_price(
symbol=price_data['symbol'],
price_data=price_data,
source='free_aggregated'
)
saved_count += 1
except Exception as e:
logger.error(f"Error saving price for {price_data.get('symbol')}: {e}")
self.last_collection['prices'] = datetime.now()
logger.info(f"✅ Saved {saved_count}/{len(aggregated)} prices to database")
return {
"success": True,
"prices_collected": len(aggregated),
"prices_saved": saved_count,
"timestamp": datetime.now().isoformat()
}
except Exception as e:
logger.error(f"❌ Error collecting prices: {e}")
return {
"success": False,
"error": str(e),
"timestamp": datetime.now().isoformat()
}
async def collect_and_store_news(self):
"""جمعآوری و ذخیره اخبار"""
try:
logger.info("📰 Collecting news from FREE RSS feeds...")
# Collect from all RSS feeds
all_news = await self.news_collector.collect_all_rss_feeds()
# Deduplicate
unique_news = self.news_collector.deduplicate_news(all_news)
# Analyze with AI (if available)
if hasattr(self.ai_analyzer, 'analyze_news_batch'):
logger.info("🤖 Analyzing news with AI...")
analyzed_news = await self.ai_analyzer.analyze_news_batch(unique_news[:50])
else:
analyzed_news = unique_news
# Save to database
saved_count = 0
for news_item in analyzed_news:
try:
# Add AI sentiment if available
if 'ai_sentiment' in news_item:
news_item['sentiment'] = news_item['ai_confidence']
self.db.save_news(news_item)
saved_count += 1
except Exception as e:
logger.error(f"Error saving news: {e}")
self.last_collection['news'] = datetime.now()
logger.info(f"✅ Saved {saved_count}/{len(analyzed_news)} news items to database")
# Store AI analysis if available
if analyzed_news and 'ai_sentiment' in analyzed_news[0]:
try:
# Get trending coins from news
trending = self.news_collector.get_trending_coins(analyzed_news)
# Save AI analysis for trending coins
for trend in trending[:10]:
symbol = trend['coin']
symbol_news = [n for n in analyzed_news if symbol in n.get('coins', [])]
if symbol_news:
agg_sentiment = await self.ai_analyzer.calculate_aggregated_sentiment(
symbol_news,
symbol
)
self.db.save_ai_analysis({
'symbol': symbol,
'analysis_type': 'news_sentiment',
'model_used': 'finbert',
'input_data': {
'news_count': len(symbol_news),
'mentions': trend['mentions']
},
'output_data': agg_sentiment,
'confidence': agg_sentiment.get('confidence', 0.0)
})
logger.info(f"✅ Saved AI analysis for {len(trending[:10])} trending coins")
except Exception as e:
logger.error(f"Error saving AI analysis: {e}")
return {
"success": True,
"news_collected": len(unique_news),
"news_saved": saved_count,
"ai_analyzed": 'ai_sentiment' in analyzed_news[0] if analyzed_news else False,
"timestamp": datetime.now().isoformat()
}
except Exception as e:
logger.error(f"❌ Error collecting news: {e}")
return {
"success": False,
"error": str(e),
"timestamp": datetime.now().isoformat()
}
async def collect_and_store_sentiment(self):
"""جمعآوری و ذخیره احساسات بازار"""
try:
logger.info("😊 Collecting market sentiment from FREE sources...")
# Collect all sentiment data
sentiment_data = await self.sentiment_collector.collect_all_sentiment_data()
# Save overall sentiment
if sentiment_data.get('overall_sentiment'):
self.db.save_sentiment(
sentiment_data['overall_sentiment'],
source='free_aggregated'
)
self.last_collection['sentiment'] = datetime.now()
logger.info(f"✅ Saved market sentiment: {sentiment_data['overall_sentiment']['overall_sentiment']}")
return {
"success": True,
"sentiment": sentiment_data['overall_sentiment'],
"timestamp": datetime.now().isoformat()
}
except Exception as e:
logger.error(f"❌ Error collecting sentiment: {e}")
return {
"success": False,
"error": str(e),
"timestamp": datetime.now().isoformat()
}
async def collect_all_data_once(self) -> Dict[str, Any]:
"""
جمعآوری همه دادهها یک بار
Collect all data once (prices, news, sentiment)
"""
logger.info("🚀 Starting full data collection cycle...")
results = await asyncio.gather(
self.collect_and_store_prices(),
self.collect_and_store_news(),
self.collect_and_store_sentiment(),
return_exceptions=True
)
return {
"prices": results[0] if not isinstance(results[0], Exception) else {"error": str(results[0])},
"news": results[1] if not isinstance(results[1], Exception) else {"error": str(results[1])},
"sentiment": results[2] if not isinstance(results[2], Exception) else {"error": str(results[2])},
"timestamp": datetime.now().isoformat()
}
async def price_collection_loop(self):
"""حلقه جمعآوری مستمر قیمتها"""
while self.is_running:
try:
await self.collect_and_store_prices()
await asyncio.sleep(self.intervals['prices'])
except Exception as e:
logger.error(f"Error in price collection loop: {e}")
await asyncio.sleep(60) # Wait 1 minute on error
async def news_collection_loop(self):
"""حلقه جمعآوری مستمر اخبار"""
while self.is_running:
try:
await self.collect_and_store_news()
await asyncio.sleep(self.intervals['news'])
except Exception as e:
logger.error(f"Error in news collection loop: {e}")
await asyncio.sleep(300) # Wait 5 minutes on error
async def sentiment_collection_loop(self):
"""حلقه جمعآوری مستمر احساسات"""
while self.is_running:
try:
await self.collect_and_store_sentiment()
await asyncio.sleep(self.intervals['sentiment'])
except Exception as e:
logger.error(f"Error in sentiment collection loop: {e}")
await asyncio.sleep(180) # Wait 3 minutes on error
async def start_background_collection(self):
"""
شروع جمعآوری پسزمینه
Start continuous background data collection
"""
logger.info("🚀 Starting background data collection...")
self.is_running = True
# Start all collection loops
self.collection_tasks = [
asyncio.create_task(self.price_collection_loop()),
asyncio.create_task(self.news_collection_loop()),
asyncio.create_task(self.sentiment_collection_loop()),
]
logger.info("✅ Background collection started!")
logger.info(f" Prices: every {self.intervals['prices']}s")
logger.info(f" News: every {self.intervals['news']}s")
logger.info(f" Sentiment: every {self.intervals['sentiment']}s")
async def stop_background_collection(self):
"""توقف جمعآوری پسزمینه"""
logger.info("🛑 Stopping background data collection...")
self.is_running = False
# Cancel all tasks
for task in self.collection_tasks:
task.cancel()
# Wait for tasks to complete
await asyncio.gather(*self.collection_tasks, return_exceptions=True)
logger.info("✅ Background collection stopped!")
def get_collection_status(self) -> Dict[str, Any]:
"""دریافت وضعیت جمعآوری"""
return {
"is_running": self.is_running,
"last_collection": {
k: v.isoformat() if v else None
for k, v in self.last_collection.items()
},
"intervals": self.intervals,
"database_stats": self.db.get_statistics(),
"timestamp": datetime.now().isoformat()
}
# Singleton instance
_orchestrator = None
def get_orchestrator() -> DataCollectionOrchestrator:
"""دریافت instance هماهنگکننده"""
global _orchestrator
if _orchestrator is None:
_orchestrator = DataCollectionOrchestrator()
return _orchestrator
async def main():
"""Test the orchestrator"""
print("\n" + "="*70)
print("🧪 Testing Data Collection Orchestrator")
print("="*70)
orchestrator = get_orchestrator()
# Test single collection cycle
print("\n1️⃣ Testing Single Collection Cycle...")
results = await orchestrator.collect_all_data_once()
print("\n📊 Results:")
print(f" Prices: {results['prices'].get('prices_saved', 0)} saved")
print(f" News: {results['news'].get('news_saved', 0)} saved")
print(f" Sentiment: {results['sentiment'].get('success', False)}")
# Show database stats
print("\n2️⃣ Database Statistics:")
stats = orchestrator.get_collection_status()
print(f" Database size: {stats['database_stats'].get('database_size', 0):,} bytes")
print(f" Prices: {stats['database_stats'].get('prices_count', 0)}")
print(f" News: {stats['database_stats'].get('news_count', 0)}")
print(f" AI Analysis: {stats['database_stats'].get('ai_analysis_count', 0)}")
print("\n✅ Orchestrator test complete!")
if __name__ == "__main__":
asyncio.run(main())
|