Datasourceforcryptocurrency / archive /docs /HUGGINGFACE_DEPLOYMENT_PROMPT.md
Really-amin's picture
Upload 295 files
d6d843f verified
|
raw
history blame
30 kB

πŸš€ Crypto-DT-Source: Complete HuggingFace Deployment Prompt

Purpose: Complete guide to activate ALL features in the Crypto-DT-Source project for production deployment on HuggingFace Spaces Target Environment: HuggingFace Spaces + Python 3.11+ Deployment Season: Q4 2025 Status: Ready for Implementation


πŸ“‹ Executive Summary

This prompt provides a complete roadmap to transform Crypto-DT-Source from a monitoring platform into a fully-functional cryptocurrency data aggregation service. All 50+ endpoints will be connected to real data sources, database persistence will be integrated, AI models will be loaded, and the system will be optimized for HuggingFace Spaces deployment.

Expected Outcome:

  • βœ… Real crypto market data (live prices, OHLCV, trending coins)
  • βœ… Historical data storage in SQLite
  • βœ… AI-powered sentiment analysis using HuggingFace transformers
  • βœ… Authentication + rate limiting on all endpoints
  • βœ… WebSocket real-time streaming
  • βœ… Provider health monitoring with intelligent failover
  • βœ… Automatic provider discovery
  • βœ… Full diagnostic and monitoring capabilities
  • βœ… Production-ready Docker deployment to HF Spaces

🎯 Implementation Priorities (Phase 1-4)

Phase 1: Core Data Integration (CRITICAL)

Goal: Replace all mock data with real API calls

1.1 Market Data Endpoints

Files to modify:

  • api/endpoints.py - /api/market, /api/prices
  • collectors/market_data_extended.py - Real price fetching
  • api_server_extended.py - FastAPI endpoints

Requirements:

  • Remove all hardcoded mock data from endpoints
  • Implement real API calls to CoinGecko, CoinCap, Binance
  • Use async/await pattern for non-blocking calls
  • Implement caching layer (5-minute TTL for prices)
  • Add error handling with provider fallback

Implementation Steps:

# Example: Replace mock market data with real provider data
GET /api/market
β”œβ”€β”€ Call ProviderManager.get_best_provider('market_data')
β”œβ”€β”€ Execute async request to provider
β”œβ”€β”€ Cache response (5 min TTL)
β”œβ”€β”€ Return real BTC/ETH prices instead of mock
└── Fallback to secondary provider on failure

GET /api/prices?symbols=BTC,ETH,SOL
β”œβ”€β”€ Parse symbol list
β”œβ”€β”€ Call ProviderManager for each symbol
β”œβ”€β”€ Aggregate responses
β”œβ”€β”€ Return real-time price data

GET /api/trending
β”œβ”€β”€ Call CoinGecko trending endpoint
β”œβ”€β”€ Store in database
└── Return top 7 trending coins

GET /api/ohlcv?symbol=BTCUSDT&interval=1h&limit=100
β”œβ”€β”€ Call Binance OHLCV endpoint
β”œβ”€β”€ Validate symbol format
β”œβ”€β”€ Apply caching (15-min TTL)
└── Return historical OHLCV data

Success Criteria:

  • All endpoints return real data from providers
  • Caching implemented with configurable TTL
  • Provider failover working (when primary fails)
  • Response times < 2 seconds
  • No hardcoded mock data in endpoint responses

1.2 DeFi Data Endpoints

Files to modify:

  • api_server_extended.py - /api/defi endpoint
  • collectors/ - Add DeFi collector

Requirements:

  • Fetch TVL data from DeFi Llama API
  • Track top DeFi protocols
  • Cache for 1 hour (DeFi data updates less frequently)

Implementation:

GET /api/defi
β”œβ”€β”€ Call DeFi Llama: GET /protocols
β”œβ”€β”€ Filter top 20 by TVL
β”œβ”€β”€ Parse response (name, TVL, chain, symbol)
β”œβ”€β”€ Store in database (defi_protocols table)
└── Return with timestamp

GET /api/defi/tvl-chart
β”œβ”€β”€ Query historical TVL from database
β”œβ”€β”€ Aggregate by date
└── Return 30-day TVL trend

1.3 News & Sentiment Integration

Files to modify:

  • collectors/sentiment_extended.py
  • api/endpoints.py - /api/sentiment endpoint

Requirements:

  • Fetch news from RSS feeds (CoinDesk, Cointelegraph, etc.)
  • Implement real HuggingFace sentiment analysis (NOT keyword matching)
  • Store sentiment scores in database
  • Track Fear & Greed Index

Implementation:

GET /api/sentiment
β”œβ”€β”€ Query recent news from database
β”œβ”€β”€ Load HuggingFace model: distilbert-base-uncased-finetuned-sst-2-english
β”œβ”€β”€ Analyze each headline/article
β”œβ”€β”€ Calculate aggregate sentiment score
β”œβ”€β”€ Return: {overall_sentiment, fear_greed_index, top_sentiments}

GET /api/news
β”œβ”€β”€ Fetch from RSS feeds (configurable)
β”œβ”€β”€ Run through sentiment analyzer
β”œβ”€β”€ Store in database (news table with sentiment)
β”œβ”€β”€ Return paginated results

POST /api/analyze/text
β”œβ”€β”€ Accept raw text input
β”œβ”€β”€ Run HuggingFace sentiment model
β”œβ”€β”€ Return: {text, sentiment, confidence, label}

Phase 2: Database Integration (HIGH PRIORITY)

Goal: Full persistent storage of all data

2.1 Database Schema Activation

Files:

  • database/models.py - Define all tables
  • database/migrations.py - Schema setup
  • database/db_manager.py - Connection management

Tables to Activate:

-- Core tables
prices (id, symbol, price, timestamp, provider)
ohlcv (id, symbol, open, high, low, close, volume, timestamp)
news (id, title, content, sentiment, source, timestamp)
defi_protocols (id, name, tvl, chain, timestamp)
market_snapshots (id, btc_price, eth_price, market_cap, timestamp)

-- Metadata tables
providers (id, name, status, health_score, last_check)
pools (id, name, strategy, created_at)
api_calls (id, endpoint, provider, response_time, status)
user_requests (id, ip_address, endpoint, timestamp)

Implementation:

# In api_server_extended.py startup:

@app.on_event("startup")
async def startup_event():
    # Initialize database
    db_manager = DBManager()
    await db_manager.initialize()

    # Run migrations
    await db_manager.run_migrations()

    # Create tables if not exist
    await db_manager.create_all_tables()

    # Verify connectivity
    health = await db_manager.health_check()
    logger.info(f"Database initialized: {health}")

2.2 API Endpoints ↔ Database Integration

Pattern to implement:

# Write pattern: After fetching real data, store it
async def store_market_snapshot():
    # Fetch real data
    prices = await provider_manager.get_market_data()

    # Store in database
    async with db.session() as session:
        snapshot = MarketSnapshot(
            btc_price=prices['BTC'],
            eth_price=prices['ETH'],
            market_cap=prices['market_cap'],
            timestamp=datetime.now()
        )
        session.add(snapshot)
        await session.commit()

    return prices

# Read pattern: Query historical data
@app.get("/api/prices/history/{symbol}")
async def get_price_history(symbol: str, days: int = 30):
    async with db.session() as session:
        history = await session.query(Price).filter(
            Price.symbol == symbol,
            Price.timestamp >= datetime.now() - timedelta(days=days)
        ).all()

    return [{"price": p.price, "timestamp": p.timestamp} for p in history]

Success Criteria:

  • All real-time data is persisted to database
  • Historical queries return > 30 days of data
  • Database is queried for price history endpoints
  • Migrations run automatically on startup
  • No data loss on server restart

Phase 3: AI & Sentiment Analysis (MEDIUM PRIORITY)

Goal: Real ML-powered sentiment analysis

3.1 Load HuggingFace Models

Files:

  • ai_models.py - Model loading and inference
  • Update requirements.txt with torch, transformers

Models to Load:

# Sentiment Analysis
SENTIMENT_MODELS = [
    "distilbert-base-uncased-finetuned-sst-2-english",  # Fast, accurate
    "cardiffnlp/twitter-roberta-base-sentiment-latest",  # Social media optimized
    "ProsusAI/finBERT",  # Financial sentiment
]

# Crypto-specific models
CRYPTO_MODELS = [
    "EleutherAI/gpt-neo-125M",  # General purpose (lightweight)
    "facebook/opt-125m",  # Instruction following
]

# Zero-shot classification for custom sentiment
"facebook/bart-large-mnli"  # Multi-class sentiment (bullish/bearish/neutral)

Implementation:

# ai_models.py

class AIModelManager:
    def __init__(self):
        self.models = {}
        self.device = "cuda" if torch.cuda.is_available() else "cpu"

    async def initialize(self):
        """Load all models on startup"""
        logger.info("Loading HuggingFace models...")

        # Sentiment analysis
        self.models['sentiment'] = pipeline(
            "sentiment-analysis",
            model="distilbert-base-uncased-finetuned-sst-2-english",
            device=0 if self.device == "cuda" else -1
        )

        # Zero-shot for crypto sentiment
        self.models['zeroshot'] = pipeline(
            "zero-shot-classification",
            model="facebook/bart-large-mnli",
            device=0 if self.device == "cuda" else -1
        )

        logger.info("Models loaded successfully")

    async def analyze_sentiment(self, text: str) -> dict:
        """Analyze sentiment of text"""
        if not self.models.get('sentiment'):
            return {"error": "Model not loaded", "sentiment": "unknown"}

        result = self.models['sentiment'](text)[0]

        return {
            "text": text[:100],
            "label": result['label'],
            "score": result['score'],
            "timestamp": datetime.now().isoformat()
        }

    async def analyze_crypto_sentiment(self, text: str) -> dict:
        """Crypto-specific sentiment (bullish/bearish/neutral)"""
        candidate_labels = ["bullish", "bearish", "neutral"]
        result = self.models['zeroshot'](text, candidate_labels)

        return {
            "text": text[:100],
            "sentiment": result['labels'][0],
            "scores": dict(zip(result['labels'], result['scores'])),
            "timestamp": datetime.now().isoformat()
        }

# In api_server_extended.py
ai_manager = AIModelManager()

@app.on_event("startup")
async def startup():
    await ai_manager.initialize()

@app.post("/api/sentiment/analyze")
async def analyze_sentiment(request: AnalyzeRequest):
    """Real sentiment analysis endpoint"""
    result = await ai_manager.analyze_sentiment(request.text)
    return result

@app.post("/api/sentiment/crypto-analysis")
async def crypto_sentiment(request: AnalyzeRequest):
    """Crypto-specific sentiment analysis"""
    result = await ai_manager.analyze_crypto_sentiment(request.text)
    return result

3.2 News Sentiment Pipeline

Implementation:

# Background task: Analyze news sentiment continuously

async def analyze_news_sentiment():
    """Run every 30 minutes: fetch news and analyze sentiment"""
    while True:
        try:
            # 1. Fetch recent news from feeds
            news_items = await fetch_rss_feeds()

            # 2. Store news items
            for item in news_items:
                # 3. Analyze sentiment
                sentiment = await ai_manager.analyze_sentiment(item['title'])

                # 4. Store in database
                async with db.session() as session:
                    news = News(
                        title=item['title'],
                        content=item['content'],
                        source=item['source'],
                        sentiment=sentiment['label'],
                        confidence=sentiment['score'],
                        timestamp=datetime.now()
                    )
                    session.add(news)

            await session.commit()
            logger.info(f"Analyzed {len(news_items)} news items")

        except Exception as e:
            logger.error(f"News sentiment pipeline error: {e}")

        # Wait 30 minutes
        await asyncio.sleep(1800)

# Start in background on app startup
@app.on_event("startup")
async def startup():
    asyncio.create_task(analyze_news_sentiment())

Phase 4: Security & Production Setup (HIGH PRIORITY)

Goal: Production-ready authentication, rate limiting, and monitoring

4.1 Authentication Implementation

Files:

  • utils/auth.py - JWT token handling
  • api/security.py - New file for security middleware

Implementation:

# utils/auth.py

from fastapi import Depends, HTTPException, status
from fastapi.security import HTTPBearer, HTTPAuthCredentials
import jwt
from datetime import datetime, timedelta

SECRET_KEY = os.getenv("JWT_SECRET_KEY", "your-secret-key-change-in-production")
ALGORITHM = "HS256"

class AuthManager:
    @staticmethod
    def create_token(user_id: str, hours: int = 24) -> str:
        """Create JWT token"""
        payload = {
            "user_id": user_id,
            "exp": datetime.utcnow() + timedelta(hours=hours),
            "iat": datetime.utcnow()
        }
        return jwt.encode(payload, SECRET_KEY, algorithm=ALGORITHM)

    @staticmethod
    def verify_token(token: str) -> str:
        """Verify JWT token"""
        try:
            payload = jwt.decode(token, SECRET_KEY, algorithms=[ALGORITHM])
            return payload.get("user_id")
        except jwt.ExpiredSignatureError:
            raise HTTPException(status_code=401, detail="Token expired")
        except jwt.InvalidTokenError:
            raise HTTPException(status_code=401, detail="Invalid token")

security = HTTPBearer()
auth_manager = AuthManager()

async def get_current_user(credentials: HTTPAuthCredentials = Depends(security)):
    """Dependency for protected endpoints"""
    return auth_manager.verify_token(credentials.credentials)

# In api_server_extended.py
@app.post("/api/auth/token")
async def get_token(api_key: str):
    """Issue JWT token for API key"""
    # Validate API key against database
    user = await verify_api_key(api_key)
    if not user:
        raise HTTPException(status_code=401, detail="Invalid API key")

    token = auth_manager.create_token(user.id)
    return {"access_token": token, "token_type": "bearer"}

# Protected endpoint example
@app.get("/api/protected-data")
async def protected_endpoint(current_user: str = Depends(get_current_user)):
    """This endpoint requires authentication"""
    return {"user_id": current_user, "data": "sensitive"}

4.2 Rate Limiting

Files:

  • utils/rate_limiter_enhanced.py - Enhanced rate limiter

Implementation:

# In api_server_extended.py
from slowapi import Limiter
from slowapi.util import get_remote_address
from slowapi.errors import RateLimitExceeded

limiter = Limiter(key_func=get_remote_address)
app.state.limiter = limiter

# Rate limit configuration
FREE_TIER = "30/minute"  # 30 requests per minute
PRO_TIER = "300/minute"   # 300 requests per minute
ADMIN_TIER = None          # Unlimited

@app.exception_handler(RateLimitExceeded)
async def rate_limit_handler(request, exc):
    return JSONResponse(
        status_code=429,
        content={"error": "Rate limit exceeded", "retry_after": 60}
    )

# Apply to endpoints
@app.get("/api/prices")
@limiter.limit(FREE_TIER)
async def get_prices(request: Request):
    return await prices_handler()

@app.get("/api/sentiment")
@limiter.limit(FREE_TIER)
async def get_sentiment(request: Request):
    return await sentiment_handler()

# Premium endpoints
@app.get("/api/historical-data")
@limiter.limit(PRO_TIER)
async def get_historical_data(request: Request, current_user: str = Depends(get_current_user)):
    return await historical_handler()

Tier Configuration:

RATE_LIMIT_TIERS = {
    "free": {
        "requests_per_minute": 30,
        "requests_per_day": 1000,
        "max_symbols": 5,
        "data_retention_days": 7
    },
    "pro": {
        "requests_per_minute": 300,
        "requests_per_day": 50000,
        "max_symbols": 100,
        "data_retention_days": 90
    },
    "enterprise": {
        "requests_per_minute": None,  # Unlimited
        "requests_per_day": None,
        "max_symbols": None,
        "data_retention_days": None
    }
}

4.3 Monitoring & Diagnostics

Files:

  • api/endpoints.py - Diagnostic endpoints
  • monitoring/health_monitor.py - Health checks

Implementation:

@app.get("/api/health")
async def health_check():
    """Comprehensive health check"""
    return {
        "status": "healthy",
        "timestamp": datetime.now().isoformat(),
        "components": {
            "database": await check_database(),
            "providers": await check_providers(),
            "models": await check_models(),
            "websocket": await check_websocket(),
            "cache": await check_cache()
        },
        "metrics": {
            "uptime_seconds": get_uptime(),
            "active_connections": active_ws_count(),
            "request_count_1h": get_request_count("1h"),
            "average_response_time_ms": get_avg_response_time()
        }
    }

@app.post("/api/diagnostics/run")
async def run_diagnostics(auto_fix: bool = False):
    """Full system diagnostics"""
    issues = []
    fixes = []

    # Check all components
    checks = [
        check_database_integrity(),
        check_provider_health(),
        check_disk_space(),
        check_memory_usage(),
        check_model_availability(),
        check_config_files(),
        check_required_directories(),
        verify_api_connectivity()
    ]

    results = await asyncio.gather(*checks)

    for check in results:
        if check['status'] != 'ok':
            issues.append(check)
            if auto_fix:
                fix = await apply_fix(check)
                fixes.append(fix)

    return {
        "timestamp": datetime.now().isoformat(),
        "total_checks": len(checks),
        "issues_found": len(issues),
        "issues": issues,
        "fixes_applied": fixes if auto_fix else []
    }

@app.get("/api/metrics")
async def get_metrics():
    """System metrics for monitoring"""
    return {
        "cpu_percent": psutil.cpu_percent(interval=1),
        "memory_percent": psutil.virtual_memory().percent,
        "disk_percent": psutil.disk_usage('/').percent,
        "database_size_mb": get_database_size() / 1024 / 1024,
        "active_requests": active_request_count(),
        "websocket_connections": active_ws_count(),
        "provider_stats": await get_provider_statistics()
    }

Phase 5: Background Tasks & Auto-Discovery

Goal: Continuous operation with automatic provider discovery

5.1 Background Tasks

Files:

  • scheduler.py - Task scheduling
  • monitoring/scheduler_comprehensive.py - Enhanced scheduler

Tasks to Activate:

# In api_server_extended.py

@app.on_event("startup")
async def start_background_tasks():
    """Start all background tasks"""

    tasks = [
        # Data collection tasks
        asyncio.create_task(collect_prices_every_5min()),
        asyncio.create_task(collect_defi_data_every_hour()),
        asyncio.create_task(fetch_news_every_30min()),
        asyncio.create_task(analyze_sentiment_every_hour()),

        # Health & monitoring tasks
        asyncio.create_task(health_check_every_5min()),
        asyncio.create_task(broadcast_stats_every_5min()),
        asyncio.create_task(cleanup_old_logs_daily()),
        asyncio.create_task(backup_database_daily()),
        asyncio.create_task(send_diagnostics_hourly()),

        # Discovery tasks (optional)
        asyncio.create_task(discover_new_providers_daily()),
    ]

    logger.info(f"Started {len(tasks)} background tasks")

# Scheduled tasks with cron-like syntax
TASK_SCHEDULE = {
    "collect_prices": "*/5 * * * *",  # Every 5 minutes
    "collect_defi": "0 * * * *",      # Hourly
    "fetch_news": "*/30 * * * *",     # Every 30 minutes
    "sentiment_analysis": "0 * * * *", # Hourly
    "health_check": "*/5 * * * *",    # Every 5 minutes
    "backup_database": "0 2 * * *",   # Daily at 2 AM
    "cleanup_logs": "0 3 * * *",      # Daily at 3 AM
}

5.2 Auto-Discovery Service

Files:

  • backend/services/auto_discovery_service.py - Discovery logic

Implementation:

# Enable in environment
ENABLE_AUTO_DISCOVERY=true
AUTO_DISCOVERY_INTERVAL_HOURS=24

class AutoDiscoveryService:
    """Automatically discover new crypto API providers"""

    async def discover_providers(self) -> List[Provider]:
        """Scan for new providers"""
        discovered = []

        sources = [
            self.scan_github_repositories,
            self.scan_api_directories,
            self.scan_rss_feeds,
            self.query_existing_apis,
        ]

        for source in sources:
            try:
                providers = await source()
                discovered.extend(providers)
                logger.info(f"Discovered {len(providers)} from {source.__name__}")
            except Exception as e:
                logger.error(f"Discovery error in {source.__name__}: {e}")

        # Validate and store
        valid = []
        for provider in discovered:
            if await self.validate_provider(provider):
                await self.store_provider(provider)
                valid.append(provider)

        return valid

    async def scan_github_repositories(self):
        """Search GitHub for crypto API projects"""
        # Query GitHub API for relevant repos
        # Extract API endpoints
        # Return as Provider objects
        pass

    async def validate_provider(self, provider: Provider) -> bool:
        """Test if provider is actually available"""
        try:
            async with aiohttp.ClientSession() as session:
                async with session.get(
                    provider.base_url,
                    timeout=aiohttp.ClientTimeout(total=5)
                ) as resp:
                    return resp.status < 500
        except:
            return False

# Start discovery on demand
@app.post("/api/discovery/run")
async def trigger_discovery(background: bool = True):
    """Trigger provider discovery"""
    discovery_service = AutoDiscoveryService()

    if background:
        asyncio.create_task(discovery_service.discover_providers())
        return {"status": "Discovery started in background"}
    else:
        providers = await discovery_service.discover_providers()
        return {"discovered": len(providers), "providers": providers}

🐳 HuggingFace Spaces Deployment

Configuration for HF Spaces

spaces/app.py (Entry point):

import os
import sys

# Set environment for HF Spaces
os.environ['HF_SPACE'] = 'true'
os.environ['PORT'] = '7860'  # HF Spaces default port

# Import and start the main FastAPI app
from api_server_extended import app

if __name__ == "__main__":
    import uvicorn

    uvicorn.run(
        app,
        host="0.0.0.0",
        port=7860,
        log_level="info"
    )

spaces/requirements.txt:

fastapi==0.109.0
uvicorn[standard]==0.27.0
aiohttp==3.9.1
pydantic==2.5.3
websockets==12.0
sqlalchemy==2.0.23
torch==2.1.1
transformers==4.35.2
huggingface-hub==0.19.1
slowapi==0.1.9
python-jose==3.3.0
psutil==5.9.6
aiofiles==23.2.1

spaces/README.md:

# Crypto-DT-Source on HuggingFace Spaces

Real-time cryptocurrency data aggregation service with 200+ providers.

## Features
- Real-time price data
- AI sentiment analysis
- 50+ REST endpoints
- WebSocket streaming
- Provider health monitoring
- Historical data storage

## API Documentation
- Swagger UI: https://[your-space-url]/docs
- ReDoc: https://[your-space-url]/redoc

## Quick Start
```bash
curl https://[your-space-url]/api/health
curl https://[your-space-url]/api/prices?symbols=BTC,ETH
curl https://[your-space-url]/api/sentiment

WebSocket Connection

const ws = new WebSocket('wss://[your-space-url]/ws');
ws.onmessage = (event) => console.log(JSON.parse(event.data));

---

## βœ… Activation Checklist

### Phase 1: Data Integration
- [ ] Modify `/api/market` to return real CoinGecko data
- [ ] Modify `/api/prices` to fetch real provider data
- [ ] Modify `/api/trending` to return live trending coins
- [ ] Implement `/api/ohlcv` with Binance data
- [ ] Implement `/api/defi` with DeFi Llama data
- [ ] Remove all hardcoded mock data
- [ ] Test all endpoints with real data
- [ ] Add caching layer (5-30 min TTL based on endpoint)

### Phase 2: Database
- [ ] Run database migrations
- [ ] Create all required tables
- [ ] Implement write pattern for real data storage
- [ ] Implement read pattern for historical queries
- [ ] Add database health check
- [ ] Test data persistence across restarts
- [ ] Implement cleanup tasks for old data

### Phase 3: AI & Sentiment
- [ ] Install transformers and torch
- [ ] Load HuggingFace sentiment model
- [ ] Implement sentiment analysis endpoint
- [ ] Implement crypto-specific sentiment classification
- [ ] Create news sentiment pipeline
- [ ] Store sentiment scores in database
- [ ] Test model inference latency

### Phase 4: Security
- [ ] Generate JWT secret key
- [ ] Implement authentication middleware
- [ ] Create API key management system
- [ ] Implement rate limiting on all endpoints
- [ ] Add tier-based rate limits (free/pro/enterprise)
- [ ] Create `/api/auth/token` endpoint
- [ ] Test authentication on protected endpoints
- [ ] Set up HTTPS certificate for CORS

### Phase 5: Background Tasks
- [ ] Activate all scheduled tasks
- [ ] Set up price collection (every 5 min)
- [ ] Set up DeFi data collection (hourly)
- [ ] Set up news fetching (every 30 min)
- [ ] Set up sentiment analysis (hourly)
- [ ] Set up health checks (every 5 min)
- [ ] Set up database backup (daily)
- [ ] Set up log cleanup (daily)

### Phase 6: HF Spaces Deployment
- [ ] Create `spaces/` directory
- [ ] Create `spaces/app.py` entry point
- [ ] Create `spaces/requirements.txt`
- [ ] Create `spaces/README.md`
- [ ] Configure environment variables
- [ ] Test locally with Docker
- [ ] Push to HF Spaces
- [ ] Verify all endpoints accessible
- [ ] Monitor logs and metrics
- [ ] Set up auto-restart on failure

---

## πŸ”§ Environment Variables

```bash
# Core
PORT=7860
ENVIRONMENT=production
LOG_LEVEL=info

# Database
DATABASE_URL=sqlite:///data/crypto_aggregator.db
DATABASE_POOL_SIZE=20

# Security
JWT_SECRET_KEY=your-secret-key-change-in-production
API_KEY_SALT=your-salt-key

# HuggingFace Spaces
HF_SPACE=true
HF_SPACE_URL=https://huggingface.co/spaces/your-username/crypto-dt-source

# Features
ENABLE_AUTO_DISCOVERY=true
ENABLE_SENTIMENT_ANALYSIS=true
ENABLE_BACKGROUND_TASKS=true

# Rate Limiting
FREE_TIER_LIMIT=30/minute
PRO_TIER_LIMIT=300/minute

# Caching
CACHE_TTL_PRICES=300  # 5 minutes
CACHE_TTL_DEFI=3600   # 1 hour
CACHE_TTL_NEWS=1800   # 30 minutes

# Providers (optional API keys)
ETHERSCAN_API_KEY=
BSCSCAN_API_KEY=
COINGECKO_API_KEY=

πŸ“Š Expected Performance

After implementation:

Metric Target Current
Price endpoint response time < 500ms N/A
Sentiment analysis latency < 2s N/A
WebSocket update frequency Real-time βœ… Working
Database query latency < 100ms N/A
Provider failover time < 2s βœ… Working
Authentication overhead < 50ms N/A
Concurrent connections supported 1000+ βœ… Tested

🚨 Troubleshooting

Models not loading on HF Spaces

# HF Spaces has limited disk space
# Use distilbert models (smaller) instead of full models
# Or cache models in requirements
pip install --no-cache-dir transformers torch

Database file too large

# Implement cleanup task
# Keep only 90 days of data
# Archive old data to S3

Rate limiting too aggressive

# Adjust limits in environment
FREE_TIER_LIMIT=100/minute
PRO_TIER_LIMIT=500/minute

WebSocket disconnections

# Increase heartbeat frequency
WEBSOCKET_HEARTBEAT_INTERVAL=10  # seconds
WEBSOCKET_HEARTBEAT_TIMEOUT=30   # seconds

πŸ“š Next Steps

  1. Review Phase 1-2: Data integration and database
  2. Review Phase 3-4: AI and security implementations
  3. Review Phase 5-6: Background tasks and HF deployment
  4. Execute implementation following the checklist
  5. Test thoroughly before production deployment
  6. Monitor metrics and adjust configurations
  7. Collect user feedback and iterate

🎯 Success Criteria

Project is production-ready when:

βœ… All 50+ endpoints return real data βœ… Database stores 90 days of historical data βœ… Sentiment analysis runs on real ML models βœ… Authentication required on all protected endpoints βœ… Rate limiting enforced across all tiers βœ… Background tasks running without errors βœ… Health check returns all components OK βœ… WebSocket clients can stream real-time data βœ… Auto-discovery discovers new providers βœ… Deployed on HuggingFace Spaces successfully βœ… Average response time < 1 second βœ… Zero downtime during operation


Document Version: 2.0 Last Updated: 2025-11-15 Maintained by: Claude Code AI Status: Ready for Implementation