π Crypto-DT-Source: Complete HuggingFace Deployment Prompt
Purpose: Complete guide to activate ALL features in the Crypto-DT-Source project for production deployment on HuggingFace Spaces Target Environment: HuggingFace Spaces + Python 3.11+ Deployment Season: Q4 2025 Status: Ready for Implementation
π Executive Summary
This prompt provides a complete roadmap to transform Crypto-DT-Source from a monitoring platform into a fully-functional cryptocurrency data aggregation service. All 50+ endpoints will be connected to real data sources, database persistence will be integrated, AI models will be loaded, and the system will be optimized for HuggingFace Spaces deployment.
Expected Outcome:
- β Real crypto market data (live prices, OHLCV, trending coins)
- β Historical data storage in SQLite
- β AI-powered sentiment analysis using HuggingFace transformers
- β Authentication + rate limiting on all endpoints
- β WebSocket real-time streaming
- β Provider health monitoring with intelligent failover
- β Automatic provider discovery
- β Full diagnostic and monitoring capabilities
- β Production-ready Docker deployment to HF Spaces
π― Implementation Priorities (Phase 1-4)
Phase 1: Core Data Integration (CRITICAL)
Goal: Replace all mock data with real API calls
1.1 Market Data Endpoints
Files to modify:
api/endpoints.py-/api/market,/api/pricescollectors/market_data_extended.py- Real price fetchingapi_server_extended.py- FastAPI endpoints
Requirements:
- Remove all hardcoded mock data from endpoints
- Implement real API calls to CoinGecko, CoinCap, Binance
- Use async/await pattern for non-blocking calls
- Implement caching layer (5-minute TTL for prices)
- Add error handling with provider fallback
Implementation Steps:
# Example: Replace mock market data with real provider data
GET /api/market
βββ Call ProviderManager.get_best_provider('market_data')
βββ Execute async request to provider
βββ Cache response (5 min TTL)
βββ Return real BTC/ETH prices instead of mock
βββ Fallback to secondary provider on failure
GET /api/prices?symbols=BTC,ETH,SOL
βββ Parse symbol list
βββ Call ProviderManager for each symbol
βββ Aggregate responses
βββ Return real-time price data
GET /api/trending
βββ Call CoinGecko trending endpoint
βββ Store in database
βββ Return top 7 trending coins
GET /api/ohlcv?symbol=BTCUSDT&interval=1h&limit=100
βββ Call Binance OHLCV endpoint
βββ Validate symbol format
βββ Apply caching (15-min TTL)
βββ Return historical OHLCV data
Success Criteria:
- All endpoints return real data from providers
- Caching implemented with configurable TTL
- Provider failover working (when primary fails)
- Response times < 2 seconds
- No hardcoded mock data in endpoint responses
1.2 DeFi Data Endpoints
Files to modify:
api_server_extended.py-/api/defiendpointcollectors/- Add DeFi collector
Requirements:
- Fetch TVL data from DeFi Llama API
- Track top DeFi protocols
- Cache for 1 hour (DeFi data updates less frequently)
Implementation:
GET /api/defi
βββ Call DeFi Llama: GET /protocols
βββ Filter top 20 by TVL
βββ Parse response (name, TVL, chain, symbol)
βββ Store in database (defi_protocols table)
βββ Return with timestamp
GET /api/defi/tvl-chart
βββ Query historical TVL from database
βββ Aggregate by date
βββ Return 30-day TVL trend
1.3 News & Sentiment Integration
Files to modify:
collectors/sentiment_extended.pyapi/endpoints.py-/api/sentimentendpoint
Requirements:
- Fetch news from RSS feeds (CoinDesk, Cointelegraph, etc.)
- Implement real HuggingFace sentiment analysis (NOT keyword matching)
- Store sentiment scores in database
- Track Fear & Greed Index
Implementation:
GET /api/sentiment
βββ Query recent news from database
βββ Load HuggingFace model: distilbert-base-uncased-finetuned-sst-2-english
βββ Analyze each headline/article
βββ Calculate aggregate sentiment score
βββ Return: {overall_sentiment, fear_greed_index, top_sentiments}
GET /api/news
βββ Fetch from RSS feeds (configurable)
βββ Run through sentiment analyzer
βββ Store in database (news table with sentiment)
βββ Return paginated results
POST /api/analyze/text
βββ Accept raw text input
βββ Run HuggingFace sentiment model
βββ Return: {text, sentiment, confidence, label}
Phase 2: Database Integration (HIGH PRIORITY)
Goal: Full persistent storage of all data
2.1 Database Schema Activation
Files:
database/models.py- Define all tablesdatabase/migrations.py- Schema setupdatabase/db_manager.py- Connection management
Tables to Activate:
-- Core tables
prices (id, symbol, price, timestamp, provider)
ohlcv (id, symbol, open, high, low, close, volume, timestamp)
news (id, title, content, sentiment, source, timestamp)
defi_protocols (id, name, tvl, chain, timestamp)
market_snapshots (id, btc_price, eth_price, market_cap, timestamp)
-- Metadata tables
providers (id, name, status, health_score, last_check)
pools (id, name, strategy, created_at)
api_calls (id, endpoint, provider, response_time, status)
user_requests (id, ip_address, endpoint, timestamp)
Implementation:
# In api_server_extended.py startup:
@app.on_event("startup")
async def startup_event():
# Initialize database
db_manager = DBManager()
await db_manager.initialize()
# Run migrations
await db_manager.run_migrations()
# Create tables if not exist
await db_manager.create_all_tables()
# Verify connectivity
health = await db_manager.health_check()
logger.info(f"Database initialized: {health}")
2.2 API Endpoints β Database Integration
Pattern to implement:
# Write pattern: After fetching real data, store it
async def store_market_snapshot():
# Fetch real data
prices = await provider_manager.get_market_data()
# Store in database
async with db.session() as session:
snapshot = MarketSnapshot(
btc_price=prices['BTC'],
eth_price=prices['ETH'],
market_cap=prices['market_cap'],
timestamp=datetime.now()
)
session.add(snapshot)
await session.commit()
return prices
# Read pattern: Query historical data
@app.get("/api/prices/history/{symbol}")
async def get_price_history(symbol: str, days: int = 30):
async with db.session() as session:
history = await session.query(Price).filter(
Price.symbol == symbol,
Price.timestamp >= datetime.now() - timedelta(days=days)
).all()
return [{"price": p.price, "timestamp": p.timestamp} for p in history]
Success Criteria:
- All real-time data is persisted to database
- Historical queries return > 30 days of data
- Database is queried for price history endpoints
- Migrations run automatically on startup
- No data loss on server restart
Phase 3: AI & Sentiment Analysis (MEDIUM PRIORITY)
Goal: Real ML-powered sentiment analysis
3.1 Load HuggingFace Models
Files:
ai_models.py- Model loading and inference- Update
requirements.txtwith torch, transformers
Models to Load:
# Sentiment Analysis
SENTIMENT_MODELS = [
"distilbert-base-uncased-finetuned-sst-2-english", # Fast, accurate
"cardiffnlp/twitter-roberta-base-sentiment-latest", # Social media optimized
"ProsusAI/finBERT", # Financial sentiment
]
# Crypto-specific models
CRYPTO_MODELS = [
"EleutherAI/gpt-neo-125M", # General purpose (lightweight)
"facebook/opt-125m", # Instruction following
]
# Zero-shot classification for custom sentiment
"facebook/bart-large-mnli" # Multi-class sentiment (bullish/bearish/neutral)
Implementation:
# ai_models.py
class AIModelManager:
def __init__(self):
self.models = {}
self.device = "cuda" if torch.cuda.is_available() else "cpu"
async def initialize(self):
"""Load all models on startup"""
logger.info("Loading HuggingFace models...")
# Sentiment analysis
self.models['sentiment'] = pipeline(
"sentiment-analysis",
model="distilbert-base-uncased-finetuned-sst-2-english",
device=0 if self.device == "cuda" else -1
)
# Zero-shot for crypto sentiment
self.models['zeroshot'] = pipeline(
"zero-shot-classification",
model="facebook/bart-large-mnli",
device=0 if self.device == "cuda" else -1
)
logger.info("Models loaded successfully")
async def analyze_sentiment(self, text: str) -> dict:
"""Analyze sentiment of text"""
if not self.models.get('sentiment'):
return {"error": "Model not loaded", "sentiment": "unknown"}
result = self.models['sentiment'](text)[0]
return {
"text": text[:100],
"label": result['label'],
"score": result['score'],
"timestamp": datetime.now().isoformat()
}
async def analyze_crypto_sentiment(self, text: str) -> dict:
"""Crypto-specific sentiment (bullish/bearish/neutral)"""
candidate_labels = ["bullish", "bearish", "neutral"]
result = self.models['zeroshot'](text, candidate_labels)
return {
"text": text[:100],
"sentiment": result['labels'][0],
"scores": dict(zip(result['labels'], result['scores'])),
"timestamp": datetime.now().isoformat()
}
# In api_server_extended.py
ai_manager = AIModelManager()
@app.on_event("startup")
async def startup():
await ai_manager.initialize()
@app.post("/api/sentiment/analyze")
async def analyze_sentiment(request: AnalyzeRequest):
"""Real sentiment analysis endpoint"""
result = await ai_manager.analyze_sentiment(request.text)
return result
@app.post("/api/sentiment/crypto-analysis")
async def crypto_sentiment(request: AnalyzeRequest):
"""Crypto-specific sentiment analysis"""
result = await ai_manager.analyze_crypto_sentiment(request.text)
return result
3.2 News Sentiment Pipeline
Implementation:
# Background task: Analyze news sentiment continuously
async def analyze_news_sentiment():
"""Run every 30 minutes: fetch news and analyze sentiment"""
while True:
try:
# 1. Fetch recent news from feeds
news_items = await fetch_rss_feeds()
# 2. Store news items
for item in news_items:
# 3. Analyze sentiment
sentiment = await ai_manager.analyze_sentiment(item['title'])
# 4. Store in database
async with db.session() as session:
news = News(
title=item['title'],
content=item['content'],
source=item['source'],
sentiment=sentiment['label'],
confidence=sentiment['score'],
timestamp=datetime.now()
)
session.add(news)
await session.commit()
logger.info(f"Analyzed {len(news_items)} news items")
except Exception as e:
logger.error(f"News sentiment pipeline error: {e}")
# Wait 30 minutes
await asyncio.sleep(1800)
# Start in background on app startup
@app.on_event("startup")
async def startup():
asyncio.create_task(analyze_news_sentiment())
Phase 4: Security & Production Setup (HIGH PRIORITY)
Goal: Production-ready authentication, rate limiting, and monitoring
4.1 Authentication Implementation
Files:
utils/auth.py- JWT token handlingapi/security.py- New file for security middleware
Implementation:
# utils/auth.py
from fastapi import Depends, HTTPException, status
from fastapi.security import HTTPBearer, HTTPAuthCredentials
import jwt
from datetime import datetime, timedelta
SECRET_KEY = os.getenv("JWT_SECRET_KEY", "your-secret-key-change-in-production")
ALGORITHM = "HS256"
class AuthManager:
@staticmethod
def create_token(user_id: str, hours: int = 24) -> str:
"""Create JWT token"""
payload = {
"user_id": user_id,
"exp": datetime.utcnow() + timedelta(hours=hours),
"iat": datetime.utcnow()
}
return jwt.encode(payload, SECRET_KEY, algorithm=ALGORITHM)
@staticmethod
def verify_token(token: str) -> str:
"""Verify JWT token"""
try:
payload = jwt.decode(token, SECRET_KEY, algorithms=[ALGORITHM])
return payload.get("user_id")
except jwt.ExpiredSignatureError:
raise HTTPException(status_code=401, detail="Token expired")
except jwt.InvalidTokenError:
raise HTTPException(status_code=401, detail="Invalid token")
security = HTTPBearer()
auth_manager = AuthManager()
async def get_current_user(credentials: HTTPAuthCredentials = Depends(security)):
"""Dependency for protected endpoints"""
return auth_manager.verify_token(credentials.credentials)
# In api_server_extended.py
@app.post("/api/auth/token")
async def get_token(api_key: str):
"""Issue JWT token for API key"""
# Validate API key against database
user = await verify_api_key(api_key)
if not user:
raise HTTPException(status_code=401, detail="Invalid API key")
token = auth_manager.create_token(user.id)
return {"access_token": token, "token_type": "bearer"}
# Protected endpoint example
@app.get("/api/protected-data")
async def protected_endpoint(current_user: str = Depends(get_current_user)):
"""This endpoint requires authentication"""
return {"user_id": current_user, "data": "sensitive"}
4.2 Rate Limiting
Files:
utils/rate_limiter_enhanced.py- Enhanced rate limiter
Implementation:
# In api_server_extended.py
from slowapi import Limiter
from slowapi.util import get_remote_address
from slowapi.errors import RateLimitExceeded
limiter = Limiter(key_func=get_remote_address)
app.state.limiter = limiter
# Rate limit configuration
FREE_TIER = "30/minute" # 30 requests per minute
PRO_TIER = "300/minute" # 300 requests per minute
ADMIN_TIER = None # Unlimited
@app.exception_handler(RateLimitExceeded)
async def rate_limit_handler(request, exc):
return JSONResponse(
status_code=429,
content={"error": "Rate limit exceeded", "retry_after": 60}
)
# Apply to endpoints
@app.get("/api/prices")
@limiter.limit(FREE_TIER)
async def get_prices(request: Request):
return await prices_handler()
@app.get("/api/sentiment")
@limiter.limit(FREE_TIER)
async def get_sentiment(request: Request):
return await sentiment_handler()
# Premium endpoints
@app.get("/api/historical-data")
@limiter.limit(PRO_TIER)
async def get_historical_data(request: Request, current_user: str = Depends(get_current_user)):
return await historical_handler()
Tier Configuration:
RATE_LIMIT_TIERS = {
"free": {
"requests_per_minute": 30,
"requests_per_day": 1000,
"max_symbols": 5,
"data_retention_days": 7
},
"pro": {
"requests_per_minute": 300,
"requests_per_day": 50000,
"max_symbols": 100,
"data_retention_days": 90
},
"enterprise": {
"requests_per_minute": None, # Unlimited
"requests_per_day": None,
"max_symbols": None,
"data_retention_days": None
}
}
4.3 Monitoring & Diagnostics
Files:
api/endpoints.py- Diagnostic endpointsmonitoring/health_monitor.py- Health checks
Implementation:
@app.get("/api/health")
async def health_check():
"""Comprehensive health check"""
return {
"status": "healthy",
"timestamp": datetime.now().isoformat(),
"components": {
"database": await check_database(),
"providers": await check_providers(),
"models": await check_models(),
"websocket": await check_websocket(),
"cache": await check_cache()
},
"metrics": {
"uptime_seconds": get_uptime(),
"active_connections": active_ws_count(),
"request_count_1h": get_request_count("1h"),
"average_response_time_ms": get_avg_response_time()
}
}
@app.post("/api/diagnostics/run")
async def run_diagnostics(auto_fix: bool = False):
"""Full system diagnostics"""
issues = []
fixes = []
# Check all components
checks = [
check_database_integrity(),
check_provider_health(),
check_disk_space(),
check_memory_usage(),
check_model_availability(),
check_config_files(),
check_required_directories(),
verify_api_connectivity()
]
results = await asyncio.gather(*checks)
for check in results:
if check['status'] != 'ok':
issues.append(check)
if auto_fix:
fix = await apply_fix(check)
fixes.append(fix)
return {
"timestamp": datetime.now().isoformat(),
"total_checks": len(checks),
"issues_found": len(issues),
"issues": issues,
"fixes_applied": fixes if auto_fix else []
}
@app.get("/api/metrics")
async def get_metrics():
"""System metrics for monitoring"""
return {
"cpu_percent": psutil.cpu_percent(interval=1),
"memory_percent": psutil.virtual_memory().percent,
"disk_percent": psutil.disk_usage('/').percent,
"database_size_mb": get_database_size() / 1024 / 1024,
"active_requests": active_request_count(),
"websocket_connections": active_ws_count(),
"provider_stats": await get_provider_statistics()
}
Phase 5: Background Tasks & Auto-Discovery
Goal: Continuous operation with automatic provider discovery
5.1 Background Tasks
Files:
scheduler.py- Task schedulingmonitoring/scheduler_comprehensive.py- Enhanced scheduler
Tasks to Activate:
# In api_server_extended.py
@app.on_event("startup")
async def start_background_tasks():
"""Start all background tasks"""
tasks = [
# Data collection tasks
asyncio.create_task(collect_prices_every_5min()),
asyncio.create_task(collect_defi_data_every_hour()),
asyncio.create_task(fetch_news_every_30min()),
asyncio.create_task(analyze_sentiment_every_hour()),
# Health & monitoring tasks
asyncio.create_task(health_check_every_5min()),
asyncio.create_task(broadcast_stats_every_5min()),
asyncio.create_task(cleanup_old_logs_daily()),
asyncio.create_task(backup_database_daily()),
asyncio.create_task(send_diagnostics_hourly()),
# Discovery tasks (optional)
asyncio.create_task(discover_new_providers_daily()),
]
logger.info(f"Started {len(tasks)} background tasks")
# Scheduled tasks with cron-like syntax
TASK_SCHEDULE = {
"collect_prices": "*/5 * * * *", # Every 5 minutes
"collect_defi": "0 * * * *", # Hourly
"fetch_news": "*/30 * * * *", # Every 30 minutes
"sentiment_analysis": "0 * * * *", # Hourly
"health_check": "*/5 * * * *", # Every 5 minutes
"backup_database": "0 2 * * *", # Daily at 2 AM
"cleanup_logs": "0 3 * * *", # Daily at 3 AM
}
5.2 Auto-Discovery Service
Files:
backend/services/auto_discovery_service.py- Discovery logic
Implementation:
# Enable in environment
ENABLE_AUTO_DISCOVERY=true
AUTO_DISCOVERY_INTERVAL_HOURS=24
class AutoDiscoveryService:
"""Automatically discover new crypto API providers"""
async def discover_providers(self) -> List[Provider]:
"""Scan for new providers"""
discovered = []
sources = [
self.scan_github_repositories,
self.scan_api_directories,
self.scan_rss_feeds,
self.query_existing_apis,
]
for source in sources:
try:
providers = await source()
discovered.extend(providers)
logger.info(f"Discovered {len(providers)} from {source.__name__}")
except Exception as e:
logger.error(f"Discovery error in {source.__name__}: {e}")
# Validate and store
valid = []
for provider in discovered:
if await self.validate_provider(provider):
await self.store_provider(provider)
valid.append(provider)
return valid
async def scan_github_repositories(self):
"""Search GitHub for crypto API projects"""
# Query GitHub API for relevant repos
# Extract API endpoints
# Return as Provider objects
pass
async def validate_provider(self, provider: Provider) -> bool:
"""Test if provider is actually available"""
try:
async with aiohttp.ClientSession() as session:
async with session.get(
provider.base_url,
timeout=aiohttp.ClientTimeout(total=5)
) as resp:
return resp.status < 500
except:
return False
# Start discovery on demand
@app.post("/api/discovery/run")
async def trigger_discovery(background: bool = True):
"""Trigger provider discovery"""
discovery_service = AutoDiscoveryService()
if background:
asyncio.create_task(discovery_service.discover_providers())
return {"status": "Discovery started in background"}
else:
providers = await discovery_service.discover_providers()
return {"discovered": len(providers), "providers": providers}
π³ HuggingFace Spaces Deployment
Configuration for HF Spaces
spaces/app.py (Entry point):
import os
import sys
# Set environment for HF Spaces
os.environ['HF_SPACE'] = 'true'
os.environ['PORT'] = '7860' # HF Spaces default port
# Import and start the main FastAPI app
from api_server_extended import app
if __name__ == "__main__":
import uvicorn
uvicorn.run(
app,
host="0.0.0.0",
port=7860,
log_level="info"
)
spaces/requirements.txt:
fastapi==0.109.0
uvicorn[standard]==0.27.0
aiohttp==3.9.1
pydantic==2.5.3
websockets==12.0
sqlalchemy==2.0.23
torch==2.1.1
transformers==4.35.2
huggingface-hub==0.19.1
slowapi==0.1.9
python-jose==3.3.0
psutil==5.9.6
aiofiles==23.2.1
spaces/README.md:
# Crypto-DT-Source on HuggingFace Spaces
Real-time cryptocurrency data aggregation service with 200+ providers.
## Features
- Real-time price data
- AI sentiment analysis
- 50+ REST endpoints
- WebSocket streaming
- Provider health monitoring
- Historical data storage
## API Documentation
- Swagger UI: https://[your-space-url]/docs
- ReDoc: https://[your-space-url]/redoc
## Quick Start
```bash
curl https://[your-space-url]/api/health
curl https://[your-space-url]/api/prices?symbols=BTC,ETH
curl https://[your-space-url]/api/sentiment
WebSocket Connection
const ws = new WebSocket('wss://[your-space-url]/ws');
ws.onmessage = (event) => console.log(JSON.parse(event.data));
---
## β
Activation Checklist
### Phase 1: Data Integration
- [ ] Modify `/api/market` to return real CoinGecko data
- [ ] Modify `/api/prices` to fetch real provider data
- [ ] Modify `/api/trending` to return live trending coins
- [ ] Implement `/api/ohlcv` with Binance data
- [ ] Implement `/api/defi` with DeFi Llama data
- [ ] Remove all hardcoded mock data
- [ ] Test all endpoints with real data
- [ ] Add caching layer (5-30 min TTL based on endpoint)
### Phase 2: Database
- [ ] Run database migrations
- [ ] Create all required tables
- [ ] Implement write pattern for real data storage
- [ ] Implement read pattern for historical queries
- [ ] Add database health check
- [ ] Test data persistence across restarts
- [ ] Implement cleanup tasks for old data
### Phase 3: AI & Sentiment
- [ ] Install transformers and torch
- [ ] Load HuggingFace sentiment model
- [ ] Implement sentiment analysis endpoint
- [ ] Implement crypto-specific sentiment classification
- [ ] Create news sentiment pipeline
- [ ] Store sentiment scores in database
- [ ] Test model inference latency
### Phase 4: Security
- [ ] Generate JWT secret key
- [ ] Implement authentication middleware
- [ ] Create API key management system
- [ ] Implement rate limiting on all endpoints
- [ ] Add tier-based rate limits (free/pro/enterprise)
- [ ] Create `/api/auth/token` endpoint
- [ ] Test authentication on protected endpoints
- [ ] Set up HTTPS certificate for CORS
### Phase 5: Background Tasks
- [ ] Activate all scheduled tasks
- [ ] Set up price collection (every 5 min)
- [ ] Set up DeFi data collection (hourly)
- [ ] Set up news fetching (every 30 min)
- [ ] Set up sentiment analysis (hourly)
- [ ] Set up health checks (every 5 min)
- [ ] Set up database backup (daily)
- [ ] Set up log cleanup (daily)
### Phase 6: HF Spaces Deployment
- [ ] Create `spaces/` directory
- [ ] Create `spaces/app.py` entry point
- [ ] Create `spaces/requirements.txt`
- [ ] Create `spaces/README.md`
- [ ] Configure environment variables
- [ ] Test locally with Docker
- [ ] Push to HF Spaces
- [ ] Verify all endpoints accessible
- [ ] Monitor logs and metrics
- [ ] Set up auto-restart on failure
---
## π§ Environment Variables
```bash
# Core
PORT=7860
ENVIRONMENT=production
LOG_LEVEL=info
# Database
DATABASE_URL=sqlite:///data/crypto_aggregator.db
DATABASE_POOL_SIZE=20
# Security
JWT_SECRET_KEY=your-secret-key-change-in-production
API_KEY_SALT=your-salt-key
# HuggingFace Spaces
HF_SPACE=true
HF_SPACE_URL=https://huggingface.co/spaces/your-username/crypto-dt-source
# Features
ENABLE_AUTO_DISCOVERY=true
ENABLE_SENTIMENT_ANALYSIS=true
ENABLE_BACKGROUND_TASKS=true
# Rate Limiting
FREE_TIER_LIMIT=30/minute
PRO_TIER_LIMIT=300/minute
# Caching
CACHE_TTL_PRICES=300 # 5 minutes
CACHE_TTL_DEFI=3600 # 1 hour
CACHE_TTL_NEWS=1800 # 30 minutes
# Providers (optional API keys)
ETHERSCAN_API_KEY=
BSCSCAN_API_KEY=
COINGECKO_API_KEY=
π Expected Performance
After implementation:
| Metric | Target | Current |
|---|---|---|
| Price endpoint response time | < 500ms | N/A |
| Sentiment analysis latency | < 2s | N/A |
| WebSocket update frequency | Real-time | β Working |
| Database query latency | < 100ms | N/A |
| Provider failover time | < 2s | β Working |
| Authentication overhead | < 50ms | N/A |
| Concurrent connections supported | 1000+ | β Tested |
π¨ Troubleshooting
Models not loading on HF Spaces
# HF Spaces has limited disk space
# Use distilbert models (smaller) instead of full models
# Or cache models in requirements
pip install --no-cache-dir transformers torch
Database file too large
# Implement cleanup task
# Keep only 90 days of data
# Archive old data to S3
Rate limiting too aggressive
# Adjust limits in environment
FREE_TIER_LIMIT=100/minute
PRO_TIER_LIMIT=500/minute
WebSocket disconnections
# Increase heartbeat frequency
WEBSOCKET_HEARTBEAT_INTERVAL=10 # seconds
WEBSOCKET_HEARTBEAT_TIMEOUT=30 # seconds
π Next Steps
- Review Phase 1-2: Data integration and database
- Review Phase 3-4: AI and security implementations
- Review Phase 5-6: Background tasks and HF deployment
- Execute implementation following the checklist
- Test thoroughly before production deployment
- Monitor metrics and adjust configurations
- Collect user feedback and iterate
π― Success Criteria
Project is production-ready when:
β All 50+ endpoints return real data β Database stores 90 days of historical data β Sentiment analysis runs on real ML models β Authentication required on all protected endpoints β Rate limiting enforced across all tiers β Background tasks running without errors β Health check returns all components OK β WebSocket clients can stream real-time data β Auto-discovery discovers new providers β Deployed on HuggingFace Spaces successfully β Average response time < 1 second β Zero downtime during operation
Document Version: 2.0 Last Updated: 2025-11-15 Maintained by: Claude Code AI Status: Ready for Implementation