Really-amin's picture
Upload 136 files
48ae4e0 verified
raw
history blame
15.7 kB
"""
Persistence Service
Handles data persistence with multiple export formats (JSON, CSV, database)
"""
import json
import csv
import logging
from typing import Dict, Any, List, Optional
from datetime import datetime, timedelta
from pathlib import Path
import asyncio
from collections import defaultdict
import pandas as pd
logger = logging.getLogger(__name__)
class PersistenceService:
"""Service for persisting data in multiple formats"""
def __init__(self, db_manager=None, data_dir: str = 'data'):
self.db_manager = db_manager
self.data_dir = Path(data_dir)
self.data_dir.mkdir(parents=True, exist_ok=True)
# In-memory cache for quick access
self.cache: Dict[str, Any] = {}
self.history: Dict[str, List[Dict[str, Any]]] = defaultdict(list)
self.max_history_per_api = 1000 # Keep last 1000 records per API
async def save_api_data(
self,
api_id: str,
data: Dict[str, Any],
metadata: Optional[Dict[str, Any]] = None
) -> bool:
"""
Save API data with metadata
Args:
api_id: API identifier
data: Data to save
metadata: Additional metadata (category, source, etc.)
Returns:
Success status
"""
try:
timestamp = datetime.now()
# Create data record
record = {
'api_id': api_id,
'timestamp': timestamp.isoformat(),
'data': data,
'metadata': metadata or {}
}
# Update cache
self.cache[api_id] = record
# Add to history
self.history[api_id].append(record)
# Trim history if needed
if len(self.history[api_id]) > self.max_history_per_api:
self.history[api_id] = self.history[api_id][-self.max_history_per_api:]
# Save to database if available
if self.db_manager:
await self._save_to_database(api_id, data, metadata, timestamp)
logger.debug(f"Saved data for {api_id}")
return True
except Exception as e:
logger.error(f"Error saving data for {api_id}: {e}")
return False
async def _save_to_database(
self,
api_id: str,
data: Dict[str, Any],
metadata: Dict[str, Any],
timestamp: datetime
):
"""Save data to database"""
if not self.db_manager:
return
try:
# Save using database manager methods
category = metadata.get('category', 'unknown')
with self.db_manager.get_session() as session:
# Find or create provider
from database.models import Provider, DataCollection
provider = session.query(Provider).filter_by(name=api_id).first()
if not provider:
# Create new provider
provider = Provider(
name=api_id,
category=category,
endpoint_url=metadata.get('url', ''),
requires_key=metadata.get('requires_key', False),
priority_tier=metadata.get('priority', 3)
)
session.add(provider)
session.flush()
# Create data collection record
collection = DataCollection(
provider_id=provider.id,
category=category,
scheduled_time=timestamp,
actual_fetch_time=timestamp,
data_timestamp=timestamp,
staleness_minutes=0,
record_count=len(data) if isinstance(data, (list, dict)) else 1,
payload_size_bytes=len(json.dumps(data)),
on_schedule=True
)
session.add(collection)
except Exception as e:
logger.error(f"Error saving to database: {e}")
def get_cached_data(self, api_id: str) -> Optional[Dict[str, Any]]:
"""Get cached data for an API"""
return self.cache.get(api_id)
def get_all_cached_data(self) -> Dict[str, Any]:
"""Get all cached data"""
return self.cache.copy()
def get_history(self, api_id: str, limit: int = 100) -> List[Dict[str, Any]]:
"""Get historical data for an API"""
history = self.history.get(api_id, [])
return history[-limit:] if limit else history
def get_all_history(self) -> Dict[str, List[Dict[str, Any]]]:
"""Get all historical data"""
return dict(self.history)
async def export_to_json(
self,
filepath: str,
api_ids: Optional[List[str]] = None,
include_history: bool = False
) -> bool:
"""
Export data to JSON file
Args:
filepath: Output file path
api_ids: Specific APIs to export (None = all)
include_history: Include historical data
Returns:
Success status
"""
try:
filepath = Path(filepath)
filepath.parent.mkdir(parents=True, exist_ok=True)
# Prepare data
if include_history:
data = {
'cache': self.cache,
'history': dict(self.history),
'exported_at': datetime.now().isoformat()
}
else:
data = {
'cache': self.cache,
'exported_at': datetime.now().isoformat()
}
# Filter by API IDs if specified
if api_ids:
if 'cache' in data:
data['cache'] = {k: v for k, v in data['cache'].items() if k in api_ids}
if 'history' in data:
data['history'] = {k: v for k, v in data['history'].items() if k in api_ids}
# Write to file
with open(filepath, 'w', encoding='utf-8') as f:
json.dump(data, f, indent=2, default=str)
logger.info(f"Exported data to JSON: {filepath}")
return True
except Exception as e:
logger.error(f"Error exporting to JSON: {e}")
return False
async def export_to_csv(
self,
filepath: str,
api_ids: Optional[List[str]] = None,
flatten: bool = True
) -> bool:
"""
Export data to CSV file
Args:
filepath: Output file path
api_ids: Specific APIs to export (None = all)
flatten: Flatten nested data structures
Returns:
Success status
"""
try:
filepath = Path(filepath)
filepath.parent.mkdir(parents=True, exist_ok=True)
# Prepare rows
rows = []
cache_items = self.cache.items()
if api_ids:
cache_items = [(k, v) for k, v in cache_items if k in api_ids]
for api_id, record in cache_items:
row = {
'api_id': api_id,
'timestamp': record.get('timestamp'),
'category': record.get('metadata', {}).get('category', ''),
}
# Flatten data if requested
if flatten:
data = record.get('data', {})
if isinstance(data, dict):
for key, value in data.items():
# Simple flattening - only first level
if isinstance(value, (str, int, float, bool)):
row[f'data_{key}'] = value
else:
row[f'data_{key}'] = json.dumps(value)
else:
row['data'] = json.dumps(record.get('data'))
rows.append(row)
# Write CSV
if rows:
df = pd.DataFrame(rows)
df.to_csv(filepath, index=False)
logger.info(f"Exported data to CSV: {filepath}")
return True
else:
logger.warning("No data to export to CSV")
return False
except Exception as e:
logger.error(f"Error exporting to CSV: {e}")
return False
async def export_history_to_csv(
self,
filepath: str,
api_id: str
) -> bool:
"""
Export historical data for a specific API to CSV
Args:
filepath: Output file path
api_id: API identifier
Returns:
Success status
"""
try:
filepath = Path(filepath)
filepath.parent.mkdir(parents=True, exist_ok=True)
history = self.history.get(api_id, [])
if not history:
logger.warning(f"No history data for {api_id}")
return False
# Prepare rows
rows = []
for record in history:
row = {
'timestamp': record.get('timestamp'),
'api_id': record.get('api_id'),
'data': json.dumps(record.get('data'))
}
rows.append(row)
# Write CSV
df = pd.DataFrame(rows)
df.to_csv(filepath, index=False)
logger.info(f"Exported history for {api_id} to CSV: {filepath}")
return True
except Exception as e:
logger.error(f"Error exporting history to CSV: {e}")
return False
async def import_from_json(self, filepath: str) -> bool:
"""
Import data from JSON file
Args:
filepath: Input file path
Returns:
Success status
"""
try:
filepath = Path(filepath)
with open(filepath, 'r', encoding='utf-8') as f:
data = json.load(f)
# Import cache
if 'cache' in data:
self.cache.update(data['cache'])
# Import history
if 'history' in data:
for api_id, records in data['history'].items():
self.history[api_id].extend(records)
# Trim if needed
if len(self.history[api_id]) > self.max_history_per_api:
self.history[api_id] = self.history[api_id][-self.max_history_per_api:]
logger.info(f"Imported data from JSON: {filepath}")
return True
except Exception as e:
logger.error(f"Error importing from JSON: {e}")
return False
async def backup_all_data(self, backup_dir: Optional[str] = None) -> str:
"""
Create a backup of all data
Args:
backup_dir: Backup directory (uses default if None)
Returns:
Path to backup file
"""
try:
if backup_dir:
backup_path = Path(backup_dir)
else:
backup_path = self.data_dir / 'backups'
backup_path.mkdir(parents=True, exist_ok=True)
# Create backup filename with timestamp
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
backup_file = backup_path / f'backup_{timestamp}.json'
# Export everything
await self.export_to_json(
str(backup_file),
include_history=True
)
logger.info(f"Created backup: {backup_file}")
return str(backup_file)
except Exception as e:
logger.error(f"Error creating backup: {e}")
raise
async def restore_from_backup(self, backup_file: str) -> bool:
"""
Restore data from a backup file
Args:
backup_file: Path to backup file
Returns:
Success status
"""
try:
logger.info(f"Restoring from backup: {backup_file}")
success = await self.import_from_json(backup_file)
if success:
logger.info("Backup restored successfully")
return success
except Exception as e:
logger.error(f"Error restoring from backup: {e}")
return False
def clear_cache(self):
"""Clear all cached data"""
self.cache.clear()
logger.info("Cache cleared")
def clear_history(self, api_id: Optional[str] = None):
"""Clear history for specific API or all"""
if api_id:
if api_id in self.history:
del self.history[api_id]
logger.info(f"Cleared history for {api_id}")
else:
self.history.clear()
logger.info("Cleared all history")
def get_statistics(self) -> Dict[str, Any]:
"""Get statistics about stored data"""
total_cached = len(self.cache)
total_history_records = sum(len(records) for records in self.history.values())
api_stats = {}
for api_id, records in self.history.items():
if records:
timestamps = [
datetime.fromisoformat(r['timestamp'])
for r in records
if 'timestamp' in r
]
if timestamps:
api_stats[api_id] = {
'record_count': len(records),
'oldest': min(timestamps).isoformat(),
'newest': max(timestamps).isoformat()
}
return {
'cached_apis': total_cached,
'total_history_records': total_history_records,
'apis_with_history': len(self.history),
'api_statistics': api_stats
}
async def cleanup_old_data(self, days: int = 7) -> int:
"""
Remove data older than specified days
Args:
days: Number of days to keep
Returns:
Number of records removed
"""
try:
cutoff = datetime.now() - timedelta(days=days)
removed_count = 0
for api_id, records in list(self.history.items()):
original_count = len(records)
# Filter out old records
self.history[api_id] = [
r for r in records
if datetime.fromisoformat(r['timestamp']) > cutoff
]
removed_count += original_count - len(self.history[api_id])
# Remove empty histories
if not self.history[api_id]:
del self.history[api_id]
logger.info(f"Cleaned up {removed_count} old records (older than {days} days)")
return removed_count
except Exception as e:
logger.error(f"Error during cleanup: {e}")
return 0
async def save_collection_data(
self,
api_id: str,
category: str,
data: Dict[str, Any],
timestamp: datetime
):
"""
Save data collection (compatibility method for scheduler)
Args:
api_id: API identifier
category: Data category
data: Collected data
timestamp: Collection timestamp
"""
metadata = {
'category': category,
'collection_time': timestamp.isoformat()
}
await self.save_api_data(api_id, data, metadata)