|
|
""" |
|
|
Sentiment Data Collectors |
|
|
Fetches cryptocurrency sentiment data from Alternative.me Fear & Greed Index |
|
|
""" |
|
|
|
|
|
import asyncio |
|
|
from datetime import datetime, timezone |
|
|
from typing import Dict, List, Optional, Any |
|
|
from utils.api_client import get_client |
|
|
from utils.logger import setup_logger, log_api_request, log_error |
|
|
from config import config |
|
|
|
|
|
logger = setup_logger("sentiment_collector") |
|
|
|
|
|
|
|
|
def calculate_staleness_minutes(data_timestamp: Optional[datetime]) -> Optional[float]: |
|
|
""" |
|
|
Calculate staleness in minutes from data timestamp to now |
|
|
|
|
|
Args: |
|
|
data_timestamp: Timestamp of the data |
|
|
|
|
|
Returns: |
|
|
Staleness in minutes or None if timestamp not available |
|
|
""" |
|
|
if not data_timestamp: |
|
|
return None |
|
|
|
|
|
now = datetime.now(timezone.utc) |
|
|
if data_timestamp.tzinfo is None: |
|
|
data_timestamp = data_timestamp.replace(tzinfo=timezone.utc) |
|
|
|
|
|
delta = now - data_timestamp |
|
|
return delta.total_seconds() / 60.0 |
|
|
|
|
|
|
|
|
async def get_fear_greed_index() -> Dict[str, Any]: |
|
|
""" |
|
|
Fetch current Fear & Greed Index from Alternative.me |
|
|
|
|
|
The Fear & Greed Index is a sentiment indicator for the cryptocurrency market. |
|
|
- 0-24: Extreme Fear |
|
|
- 25-49: Fear |
|
|
- 50-74: Greed |
|
|
- 75-100: Extreme Greed |
|
|
|
|
|
Returns: |
|
|
Dict with provider, category, data, timestamp, staleness, success, error |
|
|
""" |
|
|
provider = "AlternativeMe" |
|
|
category = "sentiment" |
|
|
endpoint = "/fng/" |
|
|
|
|
|
logger.info(f"Fetching Fear & Greed Index from {provider}") |
|
|
|
|
|
try: |
|
|
client = get_client() |
|
|
provider_config = config.get_provider(provider) |
|
|
|
|
|
if not provider_config: |
|
|
error_msg = f"Provider {provider} not configured" |
|
|
log_error(logger, provider, "config_error", error_msg, endpoint) |
|
|
return { |
|
|
"provider": provider, |
|
|
"category": category, |
|
|
"data": None, |
|
|
"timestamp": datetime.now(timezone.utc).isoformat(), |
|
|
"staleness_minutes": None, |
|
|
"success": False, |
|
|
"error": error_msg |
|
|
} |
|
|
|
|
|
|
|
|
url = f"{provider_config.endpoint_url}{endpoint}" |
|
|
params = { |
|
|
"limit": "1", |
|
|
"format": "json" |
|
|
} |
|
|
|
|
|
|
|
|
response = await client.get(url, params=params, timeout=provider_config.timeout_ms // 1000) |
|
|
|
|
|
|
|
|
log_api_request( |
|
|
logger, |
|
|
provider, |
|
|
endpoint, |
|
|
response.get("response_time_ms", 0), |
|
|
"success" if response["success"] else "error", |
|
|
response.get("status_code") |
|
|
) |
|
|
|
|
|
if not response["success"]: |
|
|
error_msg = response.get("error_message", "Unknown error") |
|
|
log_error(logger, provider, response.get("error_type", "unknown"), error_msg, endpoint) |
|
|
return { |
|
|
"provider": provider, |
|
|
"category": category, |
|
|
"data": None, |
|
|
"timestamp": datetime.now(timezone.utc).isoformat(), |
|
|
"staleness_minutes": None, |
|
|
"success": False, |
|
|
"error": error_msg, |
|
|
"error_type": response.get("error_type") |
|
|
} |
|
|
|
|
|
|
|
|
data = response["data"] |
|
|
|
|
|
|
|
|
data_timestamp = None |
|
|
if isinstance(data, dict) and "data" in data: |
|
|
data_list = data["data"] |
|
|
if isinstance(data_list, list) and len(data_list) > 0: |
|
|
index_data = data_list[0] |
|
|
if isinstance(index_data, dict) and "timestamp" in index_data: |
|
|
try: |
|
|
|
|
|
data_timestamp = datetime.fromtimestamp( |
|
|
int(index_data["timestamp"]), |
|
|
tz=timezone.utc |
|
|
) |
|
|
except: |
|
|
pass |
|
|
|
|
|
staleness = calculate_staleness_minutes(data_timestamp) |
|
|
|
|
|
|
|
|
index_value = None |
|
|
index_classification = None |
|
|
if isinstance(data, dict) and "data" in data: |
|
|
data_list = data["data"] |
|
|
if isinstance(data_list, list) and len(data_list) > 0: |
|
|
index_data = data_list[0] |
|
|
if isinstance(index_data, dict): |
|
|
index_value = index_data.get("value") |
|
|
index_classification = index_data.get("value_classification") |
|
|
|
|
|
logger.info( |
|
|
f"{provider} - {endpoint} - Fear & Greed Index: {index_value} ({index_classification}), " |
|
|
f"staleness: {staleness:.2f}m" if staleness else "staleness: N/A" |
|
|
) |
|
|
|
|
|
return { |
|
|
"provider": provider, |
|
|
"category": category, |
|
|
"data": data, |
|
|
"timestamp": datetime.now(timezone.utc).isoformat(), |
|
|
"data_timestamp": data_timestamp.isoformat() if data_timestamp else None, |
|
|
"staleness_minutes": staleness, |
|
|
"success": True, |
|
|
"error": None, |
|
|
"response_time_ms": response.get("response_time_ms", 0), |
|
|
"index_value": index_value, |
|
|
"index_classification": index_classification |
|
|
} |
|
|
|
|
|
except Exception as e: |
|
|
error_msg = f"Unexpected error: {str(e)}" |
|
|
log_error(logger, provider, "exception", error_msg, endpoint, exc_info=True) |
|
|
return { |
|
|
"provider": provider, |
|
|
"category": category, |
|
|
"data": None, |
|
|
"timestamp": datetime.now(timezone.utc).isoformat(), |
|
|
"staleness_minutes": None, |
|
|
"success": False, |
|
|
"error": error_msg, |
|
|
"error_type": "exception" |
|
|
} |
|
|
|
|
|
|
|
|
async def collect_sentiment_data() -> List[Dict[str, Any]]: |
|
|
""" |
|
|
Main function to collect sentiment data from all sources |
|
|
|
|
|
Currently collects from: |
|
|
- Alternative.me Fear & Greed Index |
|
|
|
|
|
Returns: |
|
|
List of results from all sentiment collectors |
|
|
""" |
|
|
logger.info("Starting sentiment data collection from all sources") |
|
|
|
|
|
|
|
|
results = await asyncio.gather( |
|
|
get_fear_greed_index(), |
|
|
return_exceptions=True |
|
|
) |
|
|
|
|
|
|
|
|
processed_results = [] |
|
|
for result in results: |
|
|
if isinstance(result, Exception): |
|
|
logger.error(f"Collector failed with exception: {str(result)}") |
|
|
processed_results.append({ |
|
|
"provider": "Unknown", |
|
|
"category": "sentiment", |
|
|
"data": None, |
|
|
"timestamp": datetime.now(timezone.utc).isoformat(), |
|
|
"staleness_minutes": None, |
|
|
"success": False, |
|
|
"error": str(result), |
|
|
"error_type": "exception" |
|
|
}) |
|
|
else: |
|
|
processed_results.append(result) |
|
|
|
|
|
|
|
|
successful = sum(1 for r in processed_results if r.get("success", False)) |
|
|
logger.info(f"Sentiment data collection complete: {successful}/{len(processed_results)} successful") |
|
|
|
|
|
return processed_results |
|
|
|
|
|
|
|
|
|
|
|
collect_sentiment = collect_sentiment_data |
|
|
|
|
|
|
|
|
class SentimentCollector: |
|
|
""" |
|
|
Sentiment Collector class for WebSocket streaming interface |
|
|
Wraps the standalone sentiment collection functions |
|
|
""" |
|
|
|
|
|
def __init__(self, config: Any = None): |
|
|
""" |
|
|
Initialize the sentiment collector |
|
|
|
|
|
Args: |
|
|
config: Configuration object (optional, for compatibility) |
|
|
""" |
|
|
self.config = config |
|
|
self.logger = logger |
|
|
|
|
|
async def collect(self) -> Dict[str, Any]: |
|
|
""" |
|
|
Collect sentiment data from all sources |
|
|
|
|
|
Returns: |
|
|
Dict with aggregated sentiment data |
|
|
""" |
|
|
results = await collect_sentiment_data() |
|
|
|
|
|
|
|
|
aggregated = { |
|
|
"overall_sentiment": None, |
|
|
"sentiment_score": None, |
|
|
"social_volume": None, |
|
|
"trending_topics": [], |
|
|
"by_source": {}, |
|
|
"social_trends": [], |
|
|
"timestamp": datetime.now(timezone.utc).isoformat() |
|
|
} |
|
|
|
|
|
for result in results: |
|
|
if result.get("success") and result.get("data"): |
|
|
provider = result.get("provider", "unknown") |
|
|
|
|
|
|
|
|
if provider == "Alternative.me" and "data" in result["data"]: |
|
|
index_data = result["data"]["data"][0] if result["data"]["data"] else {} |
|
|
aggregated["sentiment_score"] = int(index_data.get("value", 0)) |
|
|
aggregated["overall_sentiment"] = index_data.get("value_classification", "neutral") |
|
|
aggregated["by_source"][provider] = { |
|
|
"value": aggregated["sentiment_score"], |
|
|
"classification": aggregated["overall_sentiment"] |
|
|
} |
|
|
|
|
|
return aggregated |
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
async def main(): |
|
|
results = await collect_sentiment_data() |
|
|
|
|
|
print("\n=== Sentiment Data Collection Results ===") |
|
|
for result in results: |
|
|
print(f"\nProvider: {result['provider']}") |
|
|
print(f"Success: {result['success']}") |
|
|
print(f"Staleness: {result.get('staleness_minutes', 'N/A')} minutes") |
|
|
if result['success']: |
|
|
print(f"Response Time: {result.get('response_time_ms', 0):.2f}ms") |
|
|
if result.get('index_value'): |
|
|
print(f"Fear & Greed Index: {result['index_value']} ({result['index_classification']})") |
|
|
else: |
|
|
print(f"Error: {result.get('error', 'Unknown')}") |
|
|
|
|
|
asyncio.run(main()) |
|
|
|